Isolation and Genotypic Characterization of New Emerging Avian Reovirus Genetic Variants in Egypt
Abstract
:1. Introduction
2. Materials and Methods
2.1. Case History and Sample Collection
2.2. Sample Preparation
2.3. RNA Extraction and Screening of ARV
2.4. Virus Isolation
2.5. Nucleotide Sequencing of the Segment 1 Gene (σC)
3. Results
3.1. Clinical Signs and PM Lesions of Avian Reovirus Infections in Broiler Chickens
3.2. Screening of ARV
3.3. Reovirus Isolation
3.4. Molecular Analysis and Clustering of Isolated Reoviruses
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jones, R. Avian reovirus infections. Rev. Sci. Tech.-Off. Int. Epizoot. 2000, 19, 614–619. [Google Scholar] [CrossRef] [PubMed]
- Rodger, H.D. Fish disease causing economic impact in global aquaculture. In Fish Vaccines; Springer: Berlin/Heidelberg, Germany, 2016; pp. 1–34. [Google Scholar]
- King, A.M.; Adams, M.J.; Carstens, E.B.; Lefkowitz, E.J. Virus Taxonomy:Ninth Report of the International Committee on Taxonomy of Viruses; Elsevier: Amsterdam, The Netherlands, 2012; Volume 9. [Google Scholar]
- Tang, Y.; Lin, L.; Sebastian, A.; Lu, H. Detection and characterization of two co-infection variant strains of avian orthoreovirus (ARV) in young layer chickens using next-generation sequencing (NGS). Sci. Rep. 2016, 6, 24519. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ke, G.M.; Cheng, H.L.; Ke, L.Y.; Ji, W.T.; Chulu, J.L.; Liao, M.H.; Chang, T.J.; Liu, H.J. Development of a quantitative Light Cycler real-time RT-PCR for detection of avian reovirus. J. Virol. Methods 2006, 133, 6–13. [Google Scholar] [CrossRef]
- Li, N.; Zhang, D.-S.; Liu, H.-S.; Yin, C.-S.; Li, X.-X.; Liang, W.-Q.; Yuan, Z.; Xu, B.; Chu, H.-W.; Wang, J. The rice tapetum degeneration retardation gene is required for tapetum degradation and anther development. Plant Cell 2006, 18, 2999–3014. [Google Scholar] [CrossRef] [Green Version]
- Kovács, E.; Varga-Kugler, R.; Mató, T.; Homonnay, Z.; Tatár-Kis, T.; Farkas, S.; Kiss, I.; Bányai, K.; Palya, V. Identification of the main genetic clusters of avian reoviruses from a global strain collection. Front. Vet. Sci. 2022, 9, 1094761. [Google Scholar] [CrossRef] [PubMed]
- Chu, W.; Zhong, Q.; Zhang, J.-D.; Lu, J.-S.; Zhang, L.-X.; Yuan, X.-M.; Gan, M.-H.; Cai, X.-P.; Zhang, G.-Z. Sequence and phylogenetic analysis of chicken reoviruses in China. J. Integr. Agric. 2016, 15, 1846–1855. [Google Scholar]
- Kant, A.; Balk, F.; Born, L.; van Roozelaar, D.; Heijmans, J.; Gielkens, A.; ter Huurne, A. Classification of Dutch and German avian reoviruses by sequencing the σ C protein. Vet. Res. 2003, 34, 203–212. [Google Scholar] [CrossRef] [Green Version]
- Lu, H.; Tang, Y.; Dunn, P.A.; Wallner-Pendleton, E.A.; Lin, L.; Knoll, E.A. Isolation and molecular characterization of newly emerging avian reovirus variants and novel strains in Pennsylvania, USA, 2011–2014. Sci. Rep. 2015, 5, 14727. [Google Scholar] [CrossRef] [Green Version]
- Rosenberger, J.; Rosenberger, S.; Markis, M.; Rosenberger, J. Pathogenicity and control of recent (2011–2012) reovirus isolates from broiler and turkey flocks presenting with viral arthritis and tenosynovitis. In Proceedings of the 150th AVMA/AAAP Annual Convention, Chicago, IL, USA, 8 December 2013. [Google Scholar]
- Ayalew, L.E.; Gupta, A.; Fricke, J.; Ahmed, K.A.; Popowich, S.; Lockerbie, B.; Tikoo, S.K.; Ojkic, D.; Gomis, S. Phenotypic, genotypic and antigenic characterization of emerging avian reoviruses isolated from clinical cases of arthritis in broilers in Saskatchewan, Canada. Sci. Rep. 2017, 7, 3565. [Google Scholar] [CrossRef] [Green Version]
- Oanh, D.T.; Davydov, O.; Phu, H.X. Adaptive RBF-FD method for elliptic problems with point singularities in 2D. Appl. Math. Comput. 2017, 313, 474–497. [Google Scholar] [CrossRef] [Green Version]
- Hieronymus, D.R.; Villegas, P.; Kleven, S. Characteristics and pathogenicity of two avian reoviruses isolated from chickens with leg problems. Avian Dis. 1983, 27, 255–260. [Google Scholar] [CrossRef] [PubMed]
- Davis, J.F.; Kulkarni, A.; Fletcher, O. Reovirus infections in young broiler chickens. Avian Dis. 2013, 57, 321–325. [Google Scholar] [CrossRef] [PubMed]
- De Gussem, J.; Swam, H.; Lievens, K.; De Herdt, P. Reovirus tenosynovitis in a flock of layer breeders. Avian Pathol. 2010, 39, 169–170. [Google Scholar] [CrossRef] [PubMed]
- Franca, M.; Crespo, R.; Chin, R.; Woolcock, P.; Shivaprasad, H. Retrospective study of myocarditis associated with reovirus in turkeys. Avian Dis. 2010, 54, 1026–1031. [Google Scholar] [CrossRef] [PubMed]
- Egaña-Labrin, S.; Hauck, R.; Figueroa, A.; Stoute, S.; Shivaprasad, H.; Crispo, M.; Corsiglia, C.; Zhou, H.; Kern, C.; Crossley, B. Genotypic characterization of emerging avian reovirus genetic variants in California. Sci. Rep. 2019, 9, 9351. [Google Scholar] [CrossRef] [Green Version]
- Mallo, M.; Martínez-Costas, J.; Benavente, J. Avian reovirus S1133 can replicate in mouse L cells: Effect of pH and cell attachment status on viral infection. J. Virol. 1991, 65, 5499–5505. [Google Scholar] [CrossRef] [Green Version]
- Endo-Munoz, L.B. A western blot to detect antibody to avian reovirus. Avian Pathol. 1990, 19, 477–487. [Google Scholar] [CrossRef] [Green Version]
- Schnitzer, T.J. Protein coding assignment of the S genes of the avian reovirus S1133. Virology 1985, 141, 167–170. [Google Scholar] [CrossRef] [Green Version]
- Petrone-Garcia, V.M.; Gonzalez-Soto, J.; Lopez-Arellano, R.; Delgadillo-Gonzalez, M.; Valdes-Narvaez, V.M.; Alba-Hurtado, F.; Hernandez-Velasco, X.; Castellanos-Huerta, I.; Tellez-Isaias, G. Evaluation of avian reovirus S1133 vaccine strain in neonatal broiler chickens in gastrointestinal integrity and performance in a large-scale commercial field trial. Vaccines 2021, 9, 817. [Google Scholar] [CrossRef]
- Rau, W.; Van der Heide, L.; Kalbac, M.; Girshick, T. Onset of progeny immunity against viral arthritis/tenosynovitis after experimental vaccination of parent breeder chickens and cross-immunity against six reovirus isolates. Avian Dis. 1980, 24, 648–657. [Google Scholar] [CrossRef]
- Troxler, S.; Rigomier, P.; Bilic, I.; Liebhart, D.; Prokofieva, I.; Robineau, B.; Hess, M. Identification of a new reovirus causing substantial losses in broiler production in France, despite routine vaccination of breeders. Vet. Rec. 2013, 172, 556. [Google Scholar] [CrossRef] [PubMed]
- Wood, G.; Muskett, J.; Thornton, D. Observations on the ability of avian reovirus vaccination of hens to protect their progeny against the effects of challenge with homologous and heterologous strains. J. Comp. Pathol. 1986, 96, 125–129. [Google Scholar] [CrossRef] [PubMed]
- Wickramasinghe, R.; Meanger, J.; Enriquez, C.E.; Wilcox, G.E. Avian reovirus proteins associated with neutralization of virus infectivity. Virology 1993, 194, 688–696. [Google Scholar] [CrossRef]
- Tantawi, A.N.; Ruschitzka, M. Performance analysis of checkpointing strategies. ACM Trans. Comput. Syst. (TOCS) 1984, 2, 123–144. [Google Scholar] [CrossRef]
- Zaher, K.; Mohamed, S. Diagnosis of avian reovirus infection in local Egyptian chicks. Glob. Vet. 2009, 3, 227–231. [Google Scholar]
- Mohamed, S.; Al-Ebshahy, E.M.; Khalil, S.A.; AbdelHady, H.A.; Elbestawy, A.R. Molecular Identification And Pathogenicity Assessment Of Avian Reovirus In Egypt. Alex. J. Vet. Sci. 2019, 63, 93–97. [Google Scholar] [CrossRef]
- Madbouly, H.M.; El-Sawah, A.A. Isolation of reovirus from naturally infected turkeys and turkey poults in Egypt. Beni-Suef Vet. Med. J. 1999, 1, 31–45. [Google Scholar]
- Madbouly, H.M.; Hussein, A.S.; Zaki, T.K.; Ensaf, M.H. Preparation of oil adjuvant Inactivated avian reovirus vaccines. In Proceedings of the 3rd Scintific Confrance, Ras Sudr, Egypt, 29 January–1 February 2009; Faculty of Vetrainary Medicin (Moshtohor), Benha University: Toukh, Egypt, 2009; pp. 510–529. [Google Scholar]
- Madbouly, H.M.; Saber, M.S.; Nawar, A.A.M.; El-Sawy, A.; Mohamed, S.H. Studies on the avian reoviruses in Egypt. Histopathological examination. Beni-Suef Vet. Med. Res. 1997, VII, 65–80. [Google Scholar]
- Madbouly, H.M.; Saber, M.S.; Nawar, A.A.M.; Mohamed, S.H. Studies on the avian reoviruses in Egypt II-.Pathogenesis of the virus. Beni-Suef Vet. Med. Res. 1997, VII, 47–63. [Google Scholar]
- Ramzy, N.M.; Ibrahim, H.N.; ElHadad, S.F. Molecular Characterization and Hemato Biochemical Studies of Reovirus in Ismailia Farms. Egypt. J. Chem. Environ. Health 2016, 2, 167–182. [Google Scholar] [CrossRef]
- Mansour, S.M.; ElBakrey, R.M.; Orabi, A.; Ali, H.; Eid, A.A. Isolation and Detection of Avian Reovirus from Tenosynovitis and Malabsorption Affected Broiler Chickens with Involvement of Vertical Transmission. J. Virol. Sci. 2018, 4, 24–32. [Google Scholar]
- Al-Ebshahy, E.; Mohamed, S.; Abas, O. First report of seroprevalence and genetic characterization of avian orthoreovirus in Egypt. Trop. Anim. Health Prod. 2020, 52, 1049–1054. [Google Scholar] [CrossRef] [PubMed]
- York, J.J.; Fahey, K. Diagnosis of infectious laryngotracheitis using a monoclonal antibody ELISA. Avian Pathol. 1988, 17, 173–182. [Google Scholar] [CrossRef] [Green Version]
- Islam, M.; Khan, M.; Islam, M.; Hassan, J. Isolation and characterization of infectious laryngotracheitis virus in layer chickens. Bangladesh J. Vet. Med. 2010, 8, 123–130. [Google Scholar] [CrossRef] [Green Version]
- Guneratne, J.; Jones, R.; Georgiou, K. Some observations on the isolation and cultivation of avian reoviruses. Avian Pathol. 1982, 11, 453–462. [Google Scholar] [CrossRef] [PubMed]
- Hall, T. BioEdit 7.0. 5.3 Department of Microbiology, North Carolina State University. Available online: www.mbio.ncsu.edu/BioEdit/bioedit.html (accessed on 26 March 2023).
- Tamura, K.; Stecher, G.; Peterson, D.; Filipski, A.; Kumar, S. MEGA6: Molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 2013, 30, 2725–2729. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, S.; Stecher, G.; Tamura, K. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 2016, 33, 1870–1874. [Google Scholar] [CrossRef] [Green Version]
- Wilson, D.J.; McVean, G. Estimating diversifying selection and functional constraint in the presence of recombination. Genetics 2006, 172, 1411–1425. [Google Scholar] [CrossRef] [Green Version]
- Perelman, B.; Krispin, H.; Solomon, A.; Elrom, K.; Farnoushi, Y. Use of controlled exposure as a novel method for reovirus arthritis/tenosynovitis prevention. A preliminary report. Isr. J. Vet. Med. 2019, 74, 163–172. [Google Scholar]
- Jones, R.; Kibenge, F.S. Reovirus-induced tenosynovitis in chickens: The effect of breed. Avian Pathol. 1984, 13, 511–528. [Google Scholar] [CrossRef]
- Sellers, H.S. Current limitations in control of viral arthritis and tenosynovitis caused by avian reoviruses in commercial poultry. Vet. Microbiol. 2017, 206, 152–156. [Google Scholar] [CrossRef] [PubMed]
- Mirzazadeh, A.; Abbasnia, M.; Zahabi, H.; Hess, M. Genotypic characterization of two novel avian orthoreoviruses isolated in Iran from broilers with viral arthritis and malabsorption syndrome. Iran. J. Vet. Res. 2022, 23, 74. [Google Scholar] [PubMed]
- Pitcovski, J.; Goyal, S.M. Avian reovirus infections. Dis. Poult. 2020, 1, 382–400. [Google Scholar]
- Palomino-Tapia, V.; Mitevski, D.; Inglis, T.; van der Meer, F.; Abdul-Careem, M.F. Molecular characterization of emerging avian reovirus variants isolated from viral arthritis cases in Western Canada 2012–2017 based on partial sigma (σ) C gene. Virology 2018, 522, 138–146. [Google Scholar] [CrossRef] [PubMed]
- Mor, S.K.; Sharafeldin, T.A.; Porter, R.E.; Goyal, S.M. Molecular characterization of L class genome segments of a newly isolated turkey arthritis reovirus. Infect. Genet. Evol. 2014, 27, 193–201. [Google Scholar] [CrossRef] [PubMed]
- Mor, S.K.; Marthaler, D.; Verma, H.; Sharafeldin, T.A.; Jindal, N.; Porter, R.E.; Goyal, S.M. Phylogenetic analysis, genomic diversity and classification of M class gene segments of turkey reoviruses. Vet. Microbiol. 2015, 176, 70–82. [Google Scholar] [CrossRef]
- Chen, H.; Yan, M.; Tang, Y.; Diao, Y. Pathogenicity and genomic characterization of a novel avian orthoreovius variant isolated from a vaccinated broiler flock in China. Avian Pathol. 2019, 48, 334–342. [Google Scholar] [CrossRef]
- De Carli, S.; Wolf, J.M.; Gräf, T.; Lehmann, F.K.; Fonseca, A.S.; Canal, C.W.; Lunge, V.R.; Ikuta, N. Genotypic characterization and molecular evolution of avian reovirus in poultry flocks from Brazil. Avian Pathol. 2020, 49, 611–620. [Google Scholar] [CrossRef]
- Mase, M.; Gotou, M.; Inoue, D.; Masuda, T.; Watanabe, S.; Iseki, H. Genetic analysis of avian reovirus isolated from chickens in Japan. Avian Dis. 2021, 65, 346–350. [Google Scholar] [CrossRef]
- De la Torre, D.; Astolfi-Ferreira, C.S.; Chacón, R.; Puga, B.; Piantino Ferreira, A. Emerging new avian reovirus variants from cases of enteric disorders and arthritis/tenosynovitis in Brazilian poultry flocks. Br. Poult. Sci. 2021, 62, 361–372. [Google Scholar] [CrossRef]
- Ayalew, L.E.; Ahmed, K.A.; Mekuria, Z.H.; Lockerbie, B.; Popowich, S.; Tikoo, S.K.; Ojkic, D.; Gomis, S. The dynamics of molecular evolution of emerging avian reoviruses through accumulation of point mutations and genetic re-assortment. Virus Evol. 2020, 6, veaa025. [Google Scholar] [CrossRef] [PubMed]
- Souza, S.O.; De Carli, S.; Lunge, V.R.; Ikuta, N.; Canal, C.W.; Pavarini, S.P.; Driemeier, D. Pathological and molecular findings of avian reoviruses from clinical cases of tenosynovitis in poultry flocks from Brazil. Poult. Sci. 2018, 97, 3550–3555. [Google Scholar] [CrossRef] [PubMed]
- Egana-Labrin, S.C. Molecular, Pathogenic, and Antigenic Characterization of Emerging Avian Reovirus Variant Strains; University of California: Davis, CA, USA, 2022. [Google Scholar]
- Egaña-Labrin, S.; Jerry, C.; Roh, H.; Da Silva, A.; Corsiglia, C.; Crossley, B.; Rejmanek, D.; Gallardo, R. Avian reoviruses of the same genotype induce different pathology in chickens. Avian Dis. 2021, 65, 530–540. [Google Scholar] [CrossRef] [PubMed]
- Austermann-Busch, S.; Becher, P. RNA structural elements determine frequency and sites of nonhomologous recombination in an animal plus-strand RNA virus. J. Virol. 2012, 86, 7393–7402. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scheel, T.K.; Galli, A.; Li, Y.-P.; Mikkelsen, L.S.; Gottwein, J.M.; Bukh, J. Productive homologous and non-homologous recombination of hepatitis C virus in cell culture. PLoS Pathog. 2013, 9, e1003228. [Google Scholar] [CrossRef] [Green Version]
- Lai, M. RNA recombination in animal and plant viruses. Microbiol. Rev. 1992, 56, 61–79. [Google Scholar] [CrossRef]
- Galli, A.; Bukh, J. Comparative analysis of the molecular mechanisms of recombination in hepatitis C virus. Trends Microbiol. 2014, 22, 354–364. [Google Scholar] [CrossRef]
- Bampi, R.A. Pathogenicity of Variant Field Isolates of Avian Reovirus and Molecular Characterization of Brazilian Variants from Commercial Broilers; University of Georgia: Athens, GA, USA, 2016. [Google Scholar]
- Von Hankó, A. Autogenous vaccines. In Lohmann Information; EW-Group GmbH: Cuxhaven, Germany, 2009; Volume 44, p. 16. [Google Scholar]
- Kumar, D.; Dhama, K.; Agarwal, R.; Singh, P.; Ravikumar, G.; Malik, Y.S.; Mishra, B. Avian reoviruses. In Recent Advances in Animal Virology; Springer: Berlin/Heidelberg, Germany, 2019; pp. 289–300. [Google Scholar]
Isolates | Age/Day | Year | Mortality a | Clinical Symptoms | Type of Samples | Genotype b | Accession Number | |
---|---|---|---|---|---|---|---|---|
1 | Reo/Egypt/Broiler/GIZA-1-2021 | 14 | 2021 | 4% | Irregular wing feather development | Trachea-intestine-synovial membrane | Cluster IV | OP609778 |
2 | Reo/Egypt/Broiler/GIZA-2-2021 | 17 | 5% | Splay legs | OP609779 | |||
3 | Reo/Egypt/Broiler/GIZA-3-2021 | 20 | 6% | substantial weight variability | OP609780 | |||
4 | Reo/Egypt/Broiler/GIZA-4-2021 | 34 | 6% | substantial weight variability | Hock articular cartilage-intestine | OP609781 | ||
5 | Reo/Egypt/Broiler/GIZA-5-2022 | 22 | 2022 | 7% | Splay legs | Trachea-intestine-synovial membrane | OP609782 | |
6 | Reo/Egypt/Broiler/GIZA-6-2022 | 21 | 7% | Swollen hocks | OP609783 | |||
7 | Reo/Egypt/Broiler/GIZA-7-2022 | 21 | 5% | Swollen hocks | OP609784 | |||
8 | Reo/Egypt/Broiler/GIZA-8-2022 | 14 | 6% | Splay legs | Hock articular cartilage | OP609785 | ||
9 | Reo/Egypt/Broiler/GIZA-9-2022 | 35 | 5% | substantial weight variability | Intestine | OP609786 | ||
10 | Reo/Egypt/Broiler/D6366/2/23/2022 | 25 | 5% | substantial weight variability+ Splay legs | Lung | Cluster V | OP609787 | |
11 | Reo/Egypt/Broiler/D6366/2/15/2022 | 25 | 6% | Trachea | OP609788 |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | ||
56% | 49% | 53% | 100% | 52% | 53% | 98% | 53% | 42% | 54% | 53% | 44% | 43% | 43% | 55% | 55% | 52% | 43% | 43% | 43% | 45% | 44% | 44% | 45% | 45% | 1 | ARV-Vaccin-strain-S1133-2017-CI | |
49% | 55% | 56% | 55% | 54% | 56% | 53% | 47% | 54% | 53% | 48% | 47% | 48% | 54% | 54% | 54% | 48% | 50% | 49% | 51% | 50% | 50% | 51% | 52% | 2 | ARV-SK Canada-BROLIER-R38-2017-C-II | ||
50% | 49% | 54% | 52% | 49% | 52% | 51% | 52% | 51% | 52% | 51% | 52% | 52% | 52% | 51% | 50% | 50% | 52% | 53% | 52% | 54% | 55% | 55% | 3 | ARV-isolate-ISREAL-5233-2010-C-III | |||
53% | 62% | 81% | 53% | 64% | 69% | 65% | 65% | 53% | 52% | 52% | 64% | 64% | 80% | 66% | 68% | 67% | 69% | 67% | 71% | 72% | 73% | 4 | ARV-CANADA-D12-2020-S1C-IV | ||||
52% | 53% | 98% | 53% | 42% | 54% | 53% | 44% | 43% | 43% | 55% | 55% | 52% | 43% | 44% | 43% | 45% | 45% | 44% | 45% | 45% | 5 | ARV-isolate-Reo-Broiler-YTLY-161024b | |||||
59% | 52% | 90% | 52% | 65% | 65% | 59% | 60% | 58% | 66% | 66% | 59% | 51% | 52% | 51% | 54% | 53% | 56% | 56% | 57% | 6 | ARV-SK Canada-BROLIER-R33-2017-C-VI | ||||||
53% | 62% | 66% | 65% | 64% | 50% | 50% | 51% | 62% | 62% | 77% | 64% | 64% | 64% | 66% | 64% | 68% | 69% | 70% | 7 | ARV-Netherlands-GEI10-97M-2004 | |||||||
53% | 43% | 54% | 53% | 44% | 43% | 43% | 55% | 55% | 53% | 43% | 44% | 43% | 45% | 45% | 44% | 46% | 46% | 8 | ARV-INDIA-VA-1-vaccine-2008 | ||||||||
51% | 68% | 69% | 57% | 57% | 56% | 69% | 69% | 62% | 51% | 51% | 50% | 53% | 52% | 55% | 55% | 56% | 9 | ARV-Reo-Canada-AB-Broiler-2012 | |||||||||
52% | 52% | 58% | 57% | 58% | 52% | 52% | 82% | 82% | 83% | 81% | 83% | 82% | 87% | 89% | 89% | 10 | ARV-ISRAEL-5242-2018 | ||||||||||
89% | 66% | 64% | 65% | 78% | 78% | 62% | 51% | 52% | 52% | 53% | 52% | 54% | 55% | 55% | 11 | ARV-Japan-CS-108-2021 | |||||||||||
63% | 62% | 63% | 76% | 76% | 62% | 51% | 52% | 52% | 52% | 53% | 54% | 55% | 55% | 12 | ARV-China-SDYT2020-2022 | ||||||||||||
88% | 88% | 77% | 77% | 51% | 53% | 54% | 54% | 55% | 54% | 55% | 56% | 56% | 13 | ARV-Lebanon-D2291-1-3-13LB-2023 | |||||||||||||
93% | 74% | 74% | 51% | 52% | 53% | 54% | 54% | 54% | 55% | 55% | 55% | 14 | ARV-OMAN-D3122-1-15OM-2023 | ||||||||||||||
74% | 74% | 52% | 53% | 54% | 54% | 55% | 54% | 56% | 56% | 56% | 15 | ARV-AUE-D1897-12AE-2023 | |||||||||||||||
100% | 62% | 50% | 51% | 51% | 52% | 51% | 55% | 55% | 55% | 16 | Reo-Egypt-Broiler-D6366-2-23-2022 | ||||||||||||||||
62% | 50% | 51% | 51% | 52% | 51% | 55% | 55% | 55% | 17 | Reo-Egypt-Broiler-D6366-2-15-2022 | |||||||||||||||||
78% | 79% | 78% | 80% | 79% | 88% | 89% | 90% | 18 | Reo-Egypt-Broiler-GIZA-1-2021 | ||||||||||||||||||
91% | 85% | 89% | 95% | 83% | 85% | 85% | 19 | Reo-Egypt-Broiler-GIZA-2-2021 | |||||||||||||||||||
88% | 92% | 91% | 84% | 86% | 86% | 20 | Reo-Egypt-Broiler-GIZA-3-2021 | ||||||||||||||||||||
89% | 86% | 82% | 84% | 85% | 21 | Reo-Egypt-Broiler-GIZA-4-2021 | |||||||||||||||||||||
90% | 85% | 87% | 87% | 22 | Reo-Egypt-Broiler-GIZA-5-2022 | ||||||||||||||||||||||
84% | 86% | 86% | 23 | Reo-Egypt-Broiler-GIZA-6-2022 | |||||||||||||||||||||||
97% | 97% | 24 | Reo-Egypt-Broiler-GIZA-7-2022 | ||||||||||||||||||||||||
99% | 25 | Reo-Egypt-Broiler-GIZA-8-2022 | |||||||||||||||||||||||||
26 | Reo-Egypt-Broiler-GIZA-9-2022 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zanaty, A.; Mosaad, Z.; Elfeil, W.M.K.; Badr, M.; Palya, V.; Shahein, M.A.; Rady, M.; Hess, M. Isolation and Genotypic Characterization of New Emerging Avian Reovirus Genetic Variants in Egypt. Poultry 2023, 2, 174-186. https://doi.org/10.3390/poultry2020015
Zanaty A, Mosaad Z, Elfeil WMK, Badr M, Palya V, Shahein MA, Rady M, Hess M. Isolation and Genotypic Characterization of New Emerging Avian Reovirus Genetic Variants in Egypt. Poultry. 2023; 2(2):174-186. https://doi.org/10.3390/poultry2020015
Chicago/Turabian StyleZanaty, Ali, Zienab Mosaad, Wael M. K. Elfeil, Mona Badr, Vilmos Palya, Momtaz A. Shahein, Mohamed Rady, and Michael Hess. 2023. "Isolation and Genotypic Characterization of New Emerging Avian Reovirus Genetic Variants in Egypt" Poultry 2, no. 2: 174-186. https://doi.org/10.3390/poultry2020015
APA StyleZanaty, A., Mosaad, Z., Elfeil, W. M. K., Badr, M., Palya, V., Shahein, M. A., Rady, M., & Hess, M. (2023). Isolation and Genotypic Characterization of New Emerging Avian Reovirus Genetic Variants in Egypt. Poultry, 2(2), 174-186. https://doi.org/10.3390/poultry2020015