At the Edge of Uncertainty: Decoding the Cosmological Constant Value with the Bose–Einstein Distribution
Abstract
:1. Introduction
2. Cosmological Constant and Uncertainty
3. Dark Energy as a Massless Bose–Einstein Condensate
3.1. Renormalization via the Bose–Einstein Distribution Function
3.2. Validating the Model via Consistency with General Relativity
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
1 | Although BECs are ordinarily composed of massive particles (such as atoms of rubidium, sodium, etc.), the possibility of a BEC for massless particles is demonstrated by the fact that a BEC of photons has been achieved [54]. |
References
- Weinberg, S. The Cosmological Constant Problem. Rev. Mod. Phys. 1989, 61, 1–23. [Google Scholar] [CrossRef]
- Zel’dovich, Y.B.; Krasinski, A.; Zeldovich, Y.B. The Cosmological constant and the theory of elementary particles. Sov. Phys. Usp. 1968, 11, 381–393. [Google Scholar] [CrossRef]
- Carroll, S.M. Quintessence and the rest of the world. Phys. Rev. Lett. 1998, 81, 3067–3070. [Google Scholar] [CrossRef]
- Padmanabhan, T. Cosmological constant: The Weight of the vacuum. Phys. Rept. 2003, 380, 235–320. [Google Scholar] [CrossRef]
- Andrews, M.R.; Townsend, C.G.; Miesner, H.J.; Durfee, D.S.; Ketterle, W. Observation of Interference Between Two Bose Condensates. Science 1997, 275, 637–641. [Google Scholar] [CrossRef]
- Das, S.; Bhaduri, R.K. Dark matter and dark energy from a Bose–Einstein condensate. Class. Quant. Grav. 2015, 32, 105003. [Google Scholar] [CrossRef]
- Freidel, L.; Kowalski-Glikman, J.; Leigh, R.G.; Minic, D. Vacuum energy density and gravitational entropy. Phys. Rev. D 2023, 107, 126016. [Google Scholar] [CrossRef]
- Ng, Y.J.; van Dam, H. Measuring the foaminess of space-time with gravity-wave interferometers. Found. Phys. 2000, 30, 795–805. [Google Scholar] [CrossRef]
- Zlatev, I.; Wang, L.; Steinhardt, P.J. Quintessence, Cosmic Coincidence, and the Cosmological Constant. Phys. Rev. Lett. 1999, 82, 896–899. [Google Scholar] [CrossRef]
- Wang, L.M.; Steinhardt, P.J. Cluster abundance constraints on quintessence models. Astrophys. J. 1998, 508, 483–490. [Google Scholar] [CrossRef]
- Schwartz, M.D. Quantum Field Theory and the Standard Model; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar]
- Landau, L.D.; Abrikosov, A.A.; Khalatnikov, I.M. An asymptotic expression for the photon Green function in quantum electrodynamics. Dokl. Akad. Nauk SSSR 1954, 95, 1177–1180. [Google Scholar] [CrossRef]
- Maldacena, J.M. The Large N limit of superconformal field theories and supergravity. Adv. Theor. Math. Phys. 1998, 2, 231–252. [Google Scholar] [CrossRef]
- Gubser, S.S.; Klebanov, I.R.; Polyakov, A.M. Gauge theory correlators from noncritical string theory. Phys. Lett. B 1998, 428, 105–114. [Google Scholar] [CrossRef]
- Witten, E. Anti-de Sitter space and holography. Adv. Theor. Math. Phys. 1998, 2, 253–291. [Google Scholar] [CrossRef]
- Montvay, I.; Münster, G. Quantum Fields on a Lattice; Cambridge University Press: Cambridge, UK, 1994. [Google Scholar]
- d’Inverno, R. Introducing Einstein’s Relatvity; Oxford University Press: Oxford, UK, 1899. [Google Scholar]
- Chang, L.N.; Lewis, Z.; Minic, D.; Takeuchi, T. On the Minimal Length Uncertainty Relation and the Foundations of String Theory. Adv. High Energy Phys. 2011, 2011, 493514. [Google Scholar] [CrossRef]
- Adler, R.J. Six easy roads to the Planck scale. Am. J. Phys. 2010, 78, 925–932. [Google Scholar] [CrossRef]
- Regge, T. Gravitational fields and quantum mechanics. Nuovo Cim. 1958, 7, 215–221. [Google Scholar] [CrossRef]
- Ng, Y.J.; van Dam, H. Limitation to quantum measurements of space-time distances. Ann. N. Y. Acad. Sci. 1995, 755, 579–584. [Google Scholar] [CrossRef]
- Christiansen, W.A.; Ng, Y.J.; Floyd, D.J.E.; Perlman, E.S. Limits on Spacetime Foam. Phys. Rev. D 2011, 83, 084003. [Google Scholar] [CrossRef]
- Mead, C.A. Possible Connection Between Gravitation and Fundamental Length. Phys. Rev. 1964, 135, B849–B862. [Google Scholar] [CrossRef]
- Vilkovisky, G.A. Effective action in quantum gravity. Class. Quant. Grav. 1992, 9, 895–903. [Google Scholar] [CrossRef]
- DeWitt, B.S. Gravity: A universal regulator? Phys. Rev. Lett. 1964, 13, 114. [Google Scholar] [CrossRef]
- Mead, C.A. Observable consequences of fundamental-length hypotheses. Phys. Rev. 1966, 143, 990. [Google Scholar] [CrossRef]
- Garay, L.J. Quantum evolution in space–time foam. Int. J. Mod. Phys. A 1999, 14, 4079–4120. [Google Scholar] [CrossRef]
- Tello, P.G.; Succi, S.; Bini, D.; Kauffman, S. From quantum foam to graviton condensation: The Zel’dovich route. arXiv 2023, arXiv:2306.17168. [Google Scholar] [CrossRef]
- ’t Hooft, G. Dimensional reduction in quantum gravity. Conf. Proc. C 1993, 930308, 284–296. [Google Scholar]
- Susskind, L. The World as a hologram. J. Math. Phys. 1995, 36, 6377–6396. [Google Scholar] [CrossRef]
- Bekenstein, J.D. Black holes and entropy. Phys. Rev. D 1973, 7, 2333–2346. [Google Scholar] [CrossRef]
- O’Connell, A.D.; Hofheinz, M.; Ansmann, M.; Bialczak, R.C.; Lenander, M.; Lucero, E.; Neeley, M.; Sank, D.; Wang, H.; Weides, M.; et al. Quantum ground state and single-phonon control of a mechanical resonator. Nature 2010, 464, 697–703. [Google Scholar] [CrossRef]
- Kotler, S.; Peterson, G.A.; Shojaee, E.; Lecocq, F.; Cicak, K.; Kwiatkowski, A.; Geller, S.; Glancy, S.; Knill, E.; Simmonds, R.W.; et al. Direct observation of deterministic macroscopic entanglement. Science 2021, 372, 622–625. [Google Scholar] [CrossRef]
- Baryshev, Y.; Teerikorpi, P. Fundamental Questions of Practical Cosmology: Exploring the Realm of Galaxies; Springer: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Ali, A.F. A proposal for solving the cosmological constant problem. arXiv 2022, arXiv:2210.06262. [Google Scholar]
- Ali, A.F.; Inan, N. Unraveling the Mystery of the Cosmological Constant: Does Spacetime Uncertainty Hold the Key? This essay received an honorable mention in the 2023 Gravity Research Foundation essay competition. Europhys. Lett. 2023, 143, 49001. [Google Scholar] [CrossRef]
- Mach, E. The Science of Mechanics; A Critical and Historical Account of Its Development; Open Court Publishing Co.: LaSalle, IL, USA, 1960. [Google Scholar]
- Einstein, A. The foundation of the general theory of relativity. Annalen Phys. 1916, 49, 769–822. [Google Scholar] [CrossRef]
- Heisenberg, W. Uber den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik. Z. Phys. 1927, 43, 172–198. [Google Scholar] [CrossRef]
- Einstein, A.; Podolsky, B.; Rosen, N. Can quantum mechanical description of physical reality be considered complete? Phys. Rev. 1935, 47, 777–780. [Google Scholar] [CrossRef]
- Stodolna, A.S.; Rouzée, A.; Lépine, F.; Cohen, S.; Robicheaux, F.; Gijsbertsen, A.; Jungmann, J.; Bordas, C.; Vrakking, M. Hydrogen atoms under magnification: Direct observation of the nodal structure of stark states. Phys. Rev. Lett. 2013, 110, 213001. [Google Scholar] [CrossRef]
- Lee, J.G.; Adelberger, E.G.; Cook, T.S.; Fleischer, S.M.; Heckel, B.R. New Test of the Gravitational 1/r2 Law at Separations down to 52 μm. Phys. Rev. Lett. 2020, 124, 101101. [Google Scholar] [CrossRef]
- Mercier de Lépinay, L.; Ockeloen-Korppi, C.F.; Woolley, M.J.; Sillanpää, M.A. Quantum mechanics–free subsystem with mechanical oscillators. Science 2021, 372, 625–629. [Google Scholar] [CrossRef]
- Putterman, S.; Finkelstein, R.; Rudnick, I. Macroscopic quantum uncertainty principle and superfluid hydrodynamics. Phys. Rev. Lett. 1971, 27, 1697. [Google Scholar] [CrossRef]
- Weinberg, S. Anthropic Bound on the Cosmological Constant. Phys. Rev. Lett. 1987, 59, 2607. [Google Scholar] [CrossRef]
- Unruh, W.G. A Unimodular Theory of Canonical Quantum Gravity. Phys. Rev. D 1989, 40, 1048. [Google Scholar] [CrossRef] [PubMed]
- Shapiro, I.L.; Solà, J. Scaling behavior of the cosmological constant: Interface between quantum field theory and cosmology. J. High Energy Phys. 2002, 2002, JHEP02. [Google Scholar] [CrossRef]
- Davis, K.B.; Mewes, M.O.; Andrews, M.R.; van Druten, N.J.; Durfee, D.S.; Kurn, D.M.; Ketterle, W. Bose-Einstein Condensation in a Gas of Sodium Atoms. Phys. Rev. Lett. 1995, 75, 3969–3973. [Google Scholar] [CrossRef] [PubMed]
- Leggett, A.J. Quantum Liquids: Bose Condensation and Cooper Pairing in Condensed-Matter Systems; Oxford University Press: Oxford, UK, 2006. [Google Scholar]
- Pethick, C.J.; Smith, H. Bose–Einstein Condensation in Dilute Gases; Cambridge University Press: Cambridge, UK, 2008. [Google Scholar]
- Lifshitz, E.M.; Pitaevskii, L.P. Statistical Physics: Theory of the Condensed State; Elsevier: Amsterdam, The Netherlands, 2013; Volume 9. [Google Scholar]
- Dodelson, S.; Schmidt, F. Modern Cosmology; Academic Press: Cambridge, MA, USA, 2020. [Google Scholar]
- Pathria, R.K. Statistical Mechanics; Butterworth-Heinemann: Oxford, UK, 1996; ISBN 978-0-7506-2469-5. [Google Scholar] [CrossRef]
- Klaers, J.; Schmitt, J.; Vewinger, F.; Weitz, M. Bose–Einstein condensation of photons in an optical microcavity. Nature 2010, 468, 545–548. [Google Scholar] [CrossRef]
- Das, S.; Sur, S. A Unified Cosmological Dark Sector from a Bose-Einstein Condensate. arXiv 2022, arXiv:2203.16402. [Google Scholar] [CrossRef]
- Boehmer, C.G.; Harko, T. Can dark matter be a Bose-Einstein condensate? J. Cosmol. Astropart. Phys. 2007, 6, 25. [Google Scholar] [CrossRef]
- Huang, K. Statistical Mechanics; John Wiley & Sons: Hoboken, NJ, USA, 2008. [Google Scholar]
- Mandl, F.; Shaw, G. Quantum Field Theory; John Wiley & Sons: Hoboken, NJ, USA, 2010. [Google Scholar]
- Anderson, M.H.; Ensher, J.R.; Matthews, M.R.; Wieman, C.E.; Cornell, E.A. Observation of Bose-Einstein condensation in a dilute atomic vapor. Science 1995, 269, 198–201. [Google Scholar] [CrossRef]
- Inan, N.; Ali, A.F.; Jusufi, K.; Yasser, A. Graviton mass due to dark energy as a superconducting medium-theoretical and phenomenological aspects. J. Cosmol. Astropart. Phys. 2024, 8, 12. [Google Scholar] [CrossRef]
- Ali, A.F. Unbreakable SU(3) Atoms of Vacuum Energy. SSRN 2024. [Google Scholar] [CrossRef]
- Singleton, D.; Inan, N.; Chiao, R.Y. Neutrino induced decoherence and variation in nuclear decay rates. Phys. Lett. A 2015, 379, 941–946. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ali, A.F.; Inan, N. At the Edge of Uncertainty: Decoding the Cosmological Constant Value with the Bose–Einstein Distribution. Astronomy 2025, 4, 8. https://doi.org/10.3390/astronomy4020008
Ali AF, Inan N. At the Edge of Uncertainty: Decoding the Cosmological Constant Value with the Bose–Einstein Distribution. Astronomy. 2025; 4(2):8. https://doi.org/10.3390/astronomy4020008
Chicago/Turabian StyleAli, Ahmed Farag, and Nader Inan. 2025. "At the Edge of Uncertainty: Decoding the Cosmological Constant Value with the Bose–Einstein Distribution" Astronomy 4, no. 2: 8. https://doi.org/10.3390/astronomy4020008
APA StyleAli, A. F., & Inan, N. (2025). At the Edge of Uncertainty: Decoding the Cosmological Constant Value with the Bose–Einstein Distribution. Astronomy, 4(2), 8. https://doi.org/10.3390/astronomy4020008