Stability and Damping in the Disks of Massive Galaxies
Abstract
:1. Introduction
2. Building the Surface Density Model
3. Stability of the Disk
4. Potential Mechanisms for Damping
4.1. Damping by Oort Clouds
4.2. Interactional Damping by Interstellar Dust and Gas Clouds
4.3. Damping by Interstellar Interactions
4.4. Motion in the z-Plane
4.5. Local Perturbations in the Disk
5. Discussion
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Binney, J.; Tremaine, S. Galactic Dynamics: Second Edition; Princeton University Press: Princeton, NJ, USA, 2008. [Google Scholar]
- Tutukov, A.V.; Shustov, B.M.; Wiebe, D.S. The Stellar Epoch in the Evolution of the Galaxy. Astron. Rep. 2000, 44, 711–718. [Google Scholar] [CrossRef]
- Jeans, J.H. The Universe Around Us; Cambridge University Press: Cambridge, UK, 1929. [Google Scholar]
- Tutukov, A.V.; Fedorova, A.V. Formation of ring structures in galactic disks during close passages of galaxies. Astron. Rep. 2016, 60, 116–128. [Google Scholar] [CrossRef]
- Toomre, A. On the gravitational stability of a disk of stars. Astrophys. J. 1964, 139, 1217–1238. [Google Scholar] [CrossRef]
- Antoja, T.; Helmi, A.; Romero-Gómez, M.; Katz, D.; Babusiaux, C.; Drimmel, R.; Soubiran, C.; Figueras, F.; Poggio, E.; Reylé, C.; et al. A dynamically young and perturbed Milky Way disk. Nature 2018, 561, 360–362. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Das, I.; Basu, S. Linear Stability Analysis of a Magnetic Rotating Disk with Ohmic Dissipation and Ambipolar Diffusion. Astrophys. J. 2021, 910, 163. [Google Scholar] [CrossRef]
- de Vaucouleurs, G. Photoelectric photometry of the Andromeda nebula in the UBV system. Astrophys. J. 1958, 128, 465. [Google Scholar] [CrossRef]
- Takase, B. Distribution of Mass, Angular Momentum, and Rotational Energy in the Galaxy and NGC 224. Publ. Astron. Soc. Jpn. 1967, 19, 427. [Google Scholar]
- Gurovich, S.; Freeman, K.; Jerjen, H.; Staveley-Smith, L.; Puerari, I. The Slope of the Baryonic Tully-Fisher Relation. Astron. J. 2010, 140, 663–676. [Google Scholar] [CrossRef]
- Ostriker, J.P.; Peebles, P.J.E. A Numerical Study of the Stability of Flattened Galaxies: Or, can Cold Galaxies Survive? Astrophys. J. 1973, 186, 467–480. [Google Scholar] [CrossRef]
- Hunter, C. On Secular Stability, Secular Instability, and Points of Bifurcation of Rotating Gaseous Masses. Astrophys. J. 1977, 213, 497–517. [Google Scholar] [CrossRef]
- Rubin, V.C.; Ford, W.K., Jr. Rotation of the Andromeda Nebula from a Spectroscopic Survey of Emission Regions. Astrophys. J. 1970, 159, 379. [Google Scholar] [CrossRef]
- Carignan, C.; Chemin, L.; Huchtmeier, W.K.; Lockman, F.J. The Extended H I Rotation Curve and Mass Distribution of M31. Astrophys. J. 2006, 641, L109–L112. [Google Scholar] [CrossRef]
- Corbelli, E.; Lorenzoni, S.; Walterbos, R.; Braun, R.; Thilker, D. A wide-field H I mosaic of Messier 31. II. The disk warp, rotation, and the dark matter halo. Astron. Astrophys. 2010, 511, A89. [Google Scholar] [CrossRef]
- Oh, S.H.; de Blok, W.J.G.; Walter, F.; Brinks, E.; Kennicutt, R.C., Jr. High-Resolution Dark Matter Density Profiles of THINGS Dwarf Galaxies: Correcting for Noncircular Motions. Astron. J. 2008, 136, 2761–2781. [Google Scholar] [CrossRef] [Green Version]
- Christodoulou, D.M.; Kazanas, D. The Case against Dark Matter and Modified Gravity: Flat Rotation Curves Are a Rigorous Requirement in Rotating Self-Gravitating Newtonian Gaseous Discs. J. Mod. Phys. 2016, 7, 680–698. [Google Scholar] [CrossRef] [Green Version]
- Christodoulou, D.M.; Kazanas, D. Exact Axisymmetric Solutions of the 2-D Lane-Emden Equations with Rotation. J. Mod. Phys. 2016, 7, 2177–2187. [Google Scholar] [CrossRef] [Green Version]
- Criss, R.; Hofmeister, A. Galactic Density and Evolution Based on the Virial Theorem, Energy Minimization, and Conservation of Angular Momentum. Galaxies 2018, 6, 115. [Google Scholar] [CrossRef] [Green Version]
- Hofmeister, A.M.; Criss, R.E.; Criss, E.M. Verified solutions for the gravitational attraction to an oblate spheroid: Implications for planet mass and satellite orbits. Planet. Space Sci. 2018, 152, 68–81. [Google Scholar] [CrossRef]
- Marr, J.H. Galaxy rotation curves with lognormal density distribution. Mon. Not. R. Astron. Soc. 2015, 448, 3229–3241. [Google Scholar] [CrossRef] [Green Version]
- Marr, J.H. Angular momentum of disc galaxies with a lognormal density distribution. Mon. Not. R. Astron. Soc. 2015, 453, 2214–2219. [Google Scholar] [CrossRef]
- Marr, J.H. Entropy and Mass Distribution in Disc Galaxies. Galaxies 2020, 8, 12. [Google Scholar] [CrossRef]
- Verheijen, M.A.W. The Ursa Major Cluster of Galaxies. V. H I Rotation Curve Shapes and the Tully-Fisher Relations. Astrophys. J. 2001, 563, 694–715. [Google Scholar] [CrossRef]
- Michtchenko, T.A.; Vieira, R.S.S.; Barros, D.A.; Lépine, J.R.D. Modelling resonances and orbital chaos in disk galaxies. Application to a Milky Way spiral model. Astron. Astrophys. 2017, 597, A39. [Google Scholar] [CrossRef] [Green Version]
- Feigelson, E.D.; Babu, G.J. Modern Statistical Methods for Astronomy; Cambridge University Press: Cambridge, UK, 2012. [Google Scholar]
- Sick, J.; Courteau, S.; Cuillandre, J.C.; Dalcanton, J.; de Jong, R.; McDonald, M.; Simard, D.; Tully, R.B. The Stellar Mass of M31 as inferred by the Andromeda Optical & Infrared Disk Survey. In Galaxy Masses as Constraints of Formation Models; IAU Symposium; Cappellari, M., Courteau, S., Eds.; Cambridge University Press: Cambridge, UK, 2015; Volume 311, pp. 82–85. [Google Scholar]
- Watkins, L.L.; Evans, N.W.; An, J.H. The masses of the Milky Way and Andromeda galaxies. Mon. Not. R. Astron. Soc. 2010, 406, 264–278. [Google Scholar] [CrossRef] [Green Version]
- Erwin, P.; Pohlen, M.; Beckman, J.E. The Outer Disks of Early-Type Galaxies. I. Surface-Brightness Profiles of Barred Galaxies. Astron. J. 2008, 135, 20–54. [Google Scholar] [CrossRef]
- Herrmann, K.A.; Hunter, D.A.; Elmegreen, B.G. Surface Brightness Profiles of Dwarf Galaxies. I. Profiles and Statistics. Astron. J. 2013, 146, 104. [Google Scholar] [CrossRef] [Green Version]
- Peebles, P.J.E. Origin of the Angular Momentum of Galaxies. Astrophys. J. 1969, 155, 393. [Google Scholar] [CrossRef]
- Michtchenko, T.A.; Lépine, J.R.D.; Pérez-Villegas, A.; Vieira, R.S.S.; Barros, D.A. On the Stellar Velocity Distribution in the Solar Neighborhood in Light of Gaia DR2. Astrophys. J. 2018, 863, L37. [Google Scholar] [CrossRef] [Green Version]
- Griv, E.; Gedalin, M.; Eichler, D. The Stellar Velocity Distribution in the Solar Neighborhood: Deviations from the Schwarzschild Distribution. Astron. J. 2009, 137, 3520. [Google Scholar] [CrossRef]
- Kulsrud, R. Enhancement of Relaxation Processes by Collective Effects. In Gravitational N-Body Problem; Astrophysics and Space Science Library; Lecar, M., Ed.; Springer: Dordrecht, The Netherlands, 1972; Volume 31. [Google Scholar]
- Luhman, K.L. Discovery of a ~250 K Brown Dwarf at 2 pc from the Sun. Astrophys. J. 2014, 786, L18. [Google Scholar] [CrossRef] [Green Version]
- Moro-Martín, A. Origin of ‘Oumuamua. I. An Ejected Protoplanetary Disk Object? Astrophys. J. 2018, 866, 131. [Google Scholar] [CrossRef]
- Weissman, P.R. The mass of the Oort cloud. Astron. Astrophys. 1983, 118, 90–94. [Google Scholar]
- Mendis, D.A.; Marconi, M.L. A note on the total mass of comets in the solar system. Earth Moon Planets 1986, 36, 187–190. [Google Scholar] [CrossRef]
- Witte, M.; Rosenbauer, H.; Banaszkiewicz, M.; Fahr, H. The ULYSSES neutral gas experiment—Determination of the velocity and temperature of the interstellar neutral helium. Adv. Space Res. 1993, 13, 121–130. [Google Scholar] [CrossRef]
- Draine, B.T.; Dale, D.A.; Bendo, G.; Gordon, K.D.; Smith, J.D.T.; Armus, L.; Engelbracht, C.W.; Helou, G.; Kennicutt, R.C., Jr.; Li, A.; et al. Dust Masses, PAH Abundances, and Starlight Intensities in the SINGS Galaxy Sample. Astrophys. J. 2007, 663, 866–894. [Google Scholar] [CrossRef]
- Mann, I.; Kimura, H. Interstellar dust properties derived from mass density, mass distribution, and flux rates in the heliosphere. J. Geophys. Res. 2000, 105, 10317–10328. [Google Scholar] [CrossRef]
- Bromley, B.C.; Kenyon, S.J.; Brown, W.R.; Geller, M.J. Nearby High-speed Stars in Gaia DR2. Astrophys. J. 2018, 868, 25. [Google Scholar] [CrossRef] [Green Version]
- van der Kruit, P.C. The three-dimensional distribution of light and mass in disks of spiral galaxies. Astron. Astrophys. 1988, 192, 117–127. [Google Scholar]
- Harwit, M. Astrophysical Concepts; Springer: New York, NY, USA, 1988; ISBN 0-387-96683-8. [Google Scholar]
- Neeleman, M.; Prochaska, J.X.; Kanekar, N.; Rafelski, M. A cold, massive, rotating disk galaxy 1.5 billion years after the Big Bang. Nature 2020, 581, 269–272. [Google Scholar] [CrossRef]
- Frebel, A.; Christlieb, N.; Norris, J.E.; Thom, C.; Beers, T.C.; Rhee, J. Discovery of HE 1523-0901, a Strongly r-Process-enhanced Metal-poor Star with Detected Uranium. Astrophys. J. 2007, 660, L117–L120. [Google Scholar] [CrossRef]
- del Peloso, E.F.; da Silva, L.; Porto de Mello, G.F.; Arany-Prado, L.I. The age of the Galactic thin disk from Th/Eu nucleocosmochronology. III. Extended sample. Astron. Astrophys. 2005, 440, 1153–1159. [Google Scholar] [CrossRef] [Green Version]
- Alcobé, S.; Cubarsi, R. Disk populations from HIPPARCOS kinematic data. Discontinuities in the local velocity distribution. Astron. Astrophys. 2005, 442, 929–946. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marr, J.H. Stability and Damping in the Disks of Massive Galaxies. Astronomy 2022, 1, 222-234. https://doi.org/10.3390/astronomy1030012
Marr JH. Stability and Damping in the Disks of Massive Galaxies. Astronomy. 2022; 1(3):222-234. https://doi.org/10.3390/astronomy1030012
Chicago/Turabian StyleMarr, John Herbert. 2022. "Stability and Damping in the Disks of Massive Galaxies" Astronomy 1, no. 3: 222-234. https://doi.org/10.3390/astronomy1030012
APA StyleMarr, J. H. (2022). Stability and Damping in the Disks of Massive Galaxies. Astronomy, 1(3), 222-234. https://doi.org/10.3390/astronomy1030012