The Role of Plant-Derived Prebiotics in Obesity Management: Mechanisms, Efficacy, and Active Compounds †
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Study Design and Control Measures
3.2. Physiological Factors and Participant Demographics
3.3. Ethnic Considerations and Population Relevance
3.4. Prebiotics and Their Role in Weight Loss
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nicolucci, A.C.; Hume, M.P.; Martínez, I.; Mayengbam, S.; Walter, J.; Reimer, R.A. Prebiotics reduce body fat and alter intestinal microbiota in children who are overweight or with obesity. Gastroenterology 2017, 153, 711–722. [Google Scholar] [CrossRef] [PubMed]
- Farhangi, M.A.; Dehghan, P.; Musazadeh, V.; Kavyani, M.; Maleki, P. Effectiveness of omega-3 and prebiotics on adiponectin, leptin, liver enzymes lipid profile and anthropometric indices in patients with non-alcoholic fatty liver disease: A randomized controlled trial. J. Funct. Foods 2022, 92, 105074. [Google Scholar] [CrossRef]
- Lécuyer, L.; Laouali, N.; Viallon, V.; Artaud, F.; Hébert, J.R.; Shivappa, N.; Agudo, A.; Tjønneland, A.; Mellemkjær, L.; Kaaks, R.; et al. Associations between dietary inflammatory scores and biomarkers of inflammation in the European Prospective Investigation into Cancer and Nutrition (EPIC) cohort. Clin. Nutr. 2023, 42, 1115–1125. [Google Scholar] [CrossRef] [PubMed]
- Jamar, G.; Santamarina, A.B.; Casagrande, B.P.; Estadella, D.; de Rosso, V.V.; Wagner, R.; Fagundes, M.B.; Pisani, L.P. Prebiotic potencial of juçara berry on changes in gut bacteria and acetate of individuals with obesity. Eur. J. Nutr. 2020, 59, 3767–3778. [Google Scholar] [CrossRef] [PubMed]
- Vaghef-Mehrabany, E.; Ranjbar, F.; Asghari-Jafarabadi, M.; Hosseinpour-Arjmand, S.; Ebrahimi-Mameghani, M. Calorie restriction in combination with prebiotic supplementation in obese women with depression: Effects on metabolic and clinical response. Nutr. Neurosci. 2021, 24, 339–353. [Google Scholar] [PubMed]
- Behrouz, V.; Jazayeri, S.; Aryaeian, N.; Zahedi, M.J.; Hosseini, F. Effects of probiotic and prebiotic supplementation on leptin, adiponectin, and glycemic parameters in non-alcoholic fatty liver disease: A randomized clinical trial. Middle East J. Dig. Dis. 2017, 9, 150. [Google Scholar] [CrossRef] [PubMed]
- Visuthranukul, C.; Sriswasdi, S.; Tepaamorndech, S.; Chamni, S.; Leelahavanichkul, A.; Joyjinda, Y.; Aksornkitti, V.; Chomtho, S. Enhancing gut microbiota and microbial function with inulin supplementation in children with obesity. Int. J. Obes. 2024, 48, 1696–1704. [Google Scholar] [CrossRef] [PubMed]
- Aliasgharzadeh, A.; Khalili, M.; Mirtaheri, E.; Gargari, B.P.; Tavakoli, F.; Farhangi, M.A.; Babaei, A.; Dehghan, P. A combination of prebiotic inulin and oligofructose improve some of cardiovascular disease risk factors in women with type 2 diabetes: A randomized controlled clinical trial. Adv. Pharm. Bull. 2015, 5, 507–514. [Google Scholar] [CrossRef] [PubMed]
- Nehmi-Filho, V.; Santamarina, A.B.; de Freitas, J.A.; Trarbach, E.B.; de Oliveira, D.R.; Palace-Berl, F.; de Souza, E.; de Miranda, D.A.; Escamilla-Garcia, A.; Otoch, J.P.; et al. Novel nutraceutical supplements with yeast β-glucan, prebiotics, minerals, and Silybum marianum (silymarin) ameliorate obesity-related metabolic and clinical parameters: A double-blind randomized trial. Front. Endocrinol. 2023, 13, 1089938. [Google Scholar] [CrossRef] [PubMed]
- Dewulf, E.M.; Cani, P.D.; Claus, S.P.; Fuentes, S.; Puylaert, P.G.; Neyrinck, A.M.; Bindels, L.B.; de Vos, W.M.; Gibson, G.R.; Thissen, J.-P.; et al. Insight into the prebiotic concept: Lessons from an exploratory, double blind intervention study with inulin-type fructans in obese women. Gut 2012, 62, 1112–1121. [Google Scholar] [CrossRef] [PubMed]
- Gholizadeh Shamasbi, S.; Dehghan, P.; Mohammad-Alizadeh-Charandabi, S.; Aliasgarzadeh, A.; Mirghafourvand, M. The effect of resistant dextrin as a prebiotic on metabolic parameters and androgen levels in women with polycystic ovarian syndrome: A randomized, triple-blind, controlled clinical trial. Eur. J. Nutr. 2019, 58, 629–640. [Google Scholar] [PubMed]
- Dehghan, P.; Gargari, B.P.; Jafar-Abadi, M.A. Oligofructose-enriched inulin improves some inflammatory markers and metabolic endotoxemia in women with type 2 diabetes mellitus: A randomized controlled clinical trial. Nutrition 2014, 30, 418–423. [Google Scholar] [CrossRef] [PubMed]
- Edrisi, F.; Salehi, M.; Ahmadi, A.; Fararoei, M.; Rusta, F.; Mahmoodianfard, S. Effects of supplementation with rice husk powder and rice bran on inflammatory factors in overweight and obese adults following an energy-restricted diet: A randomized controlled trial. Eur. J. Nutr. 2018, 57, 833–843. [Google Scholar] [CrossRef] [PubMed]
Source | Prebiotic | Dosage | Duration | Effects | Reference | Diet | Population |
---|---|---|---|---|---|---|---|
Chicory root | Oligofructose-enriched inulin | 8 g/day | 16 weeks | Slowed weight gain, reduced body fat, trunk fat | [1] | Ad libitum | 42 obese children (Canada, 10–12 years) |
Corn-derived | Resistant dextrin (NUTRIOSE®06FM) | 10 g/day | 12 weeks | Decreased weight, BMI, WC, HC, NC | [2] | Reduced omega-3 | Iran, adults (BMI 25–35) |
Chicory root | Native inulin | 16 g/day | 12 weeks | Improved psychological parameters | [3] | Hypocaloric | Belgium, adults (BMI > 30) |
Juçara palm | Lyophilized juçara | 5 g/day | 6 weeks | No significant reduction | [4] | Ad libitum | Brazil, obese adults (BMI 30–40) |
Chicory root | Inulin | 10 g/day | 8 weeks | Reduced weight, WC, HC, total cholesterol | [5] | Calorie restriction | Iran, obese women (BMI 30–40) |
Chicory root | Oligofructose-enriched inulin | 10 g/day | 8 weeks | Reduced BMI, WC, HC, diastolic BP | [8] | Normal diet | Iran, women (BMI > 25) |
Plant-based fibers | Nutraceutical supplement | N/S | 25 weeks | Reduced WC | [9] | No intervention | Italy, healthy volunteers (BMI ≤ 34.9) |
Jerusalem artichoke | Oligofructose-enriched inulin | 13 g/day | 24 weeks | Decreased BMI z-score, FMI, trunk FMI | [7] | No intervention | Thailand, obese children (7–15 years) |
Chicory root | Inulin/oligofructose mix | 16 g/day | 12 weeks | Slight decrease in fat mass, plasma lactate | [10] | Weight loss advice | Belgium, obese women (BMI > 30) |
Corn-derived | Resistant dextrin | 10 g/day | 12 weeks | Reduced anthropometric indices | [11] | No intervention | Iran, women with PCOS |
Chicory root | Oligofructose powder | 16 g/day | 12 weeks | Decreased leptin, insulin, HOMA-IR | [6] | No intervention | Iran, NAFLD patients (BMI 25–40) |
Chicory root | Inulin | 10 g/day | 8 weeks | Decreased fasting glucose, energy intake, pro-inflammatory markers | [12] | No intervention | Iran, diabetic women (BMI 25–35) |
Rice bran/husk | Rice bran powder | N/S | 12 weeks | Decreased weight, BMI, WC, pro-inflammatory markers | [13] | Energy-restricted | Iran, adults (BMI ≥ 25) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ghodbane, I.; Boukhechem, S.; Bougherara, H.; Monnoye, M.; Oubira, I.; Lakhdara, N.; Gerard, P.; Dib, A.L. The Role of Plant-Derived Prebiotics in Obesity Management: Mechanisms, Efficacy, and Active Compounds. Biol. Life Sci. Forum 2025, 49, 13. https://doi.org/10.3390/blsf2025049013
Ghodbane I, Boukhechem S, Bougherara H, Monnoye M, Oubira I, Lakhdara N, Gerard P, Dib AL. The Role of Plant-Derived Prebiotics in Obesity Management: Mechanisms, Efficacy, and Active Compounds. Biology and Life Sciences Forum. 2025; 49(1):13. https://doi.org/10.3390/blsf2025049013
Chicago/Turabian StyleGhodbane, Ilyes, Said Boukhechem, Hithem Bougherara, Magali Monnoye, Ibtissem Oubira, Nedjoua Lakhdara, Philippe Gerard, and Amira Leila Dib. 2025. "The Role of Plant-Derived Prebiotics in Obesity Management: Mechanisms, Efficacy, and Active Compounds" Biology and Life Sciences Forum 49, no. 1: 13. https://doi.org/10.3390/blsf2025049013
APA StyleGhodbane, I., Boukhechem, S., Bougherara, H., Monnoye, M., Oubira, I., Lakhdara, N., Gerard, P., & Dib, A. L. (2025). The Role of Plant-Derived Prebiotics in Obesity Management: Mechanisms, Efficacy, and Active Compounds. Biology and Life Sciences Forum, 49(1), 13. https://doi.org/10.3390/blsf2025049013