Alteration in Gut Microbiome of Common Carp (Cyprinus carpio L., 1758) Mediated by Probiotics and Yeast Prebiotic †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethical Statement
2.2. Feed Composition
2.3. Animal Housing
2.4. DNA Extraction and Purification
2.5. Library Preparation and 16S rRNA Sequencing
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- The FAO. The State of World Fisheries and Aquaculture 2020: Sustainability in Action; Food and Agriculture Organization of the United Nations: Rome, Italy, 2020; ISBN 978-92-5-132692-3. [Google Scholar] [CrossRef]
- Lewbart, G.A. Bacteria and Ornamental Fish. Semin. Avian Exot. Pet. Med. 2001, 10, 48–56. [Google Scholar] [CrossRef]
- Wang, R.; Guo, Z.; Tang, Y.; Kuang, J.; Duan, Y.; Lin, H.; Jiang, S.; Shu, H.; Huang, J. Effects on Development and Microbial Community of Shrimp Litopenaeus Vannamei Larvae with Probiotics Treatment. AMB Expr. 2020, 10, 109. [Google Scholar] [CrossRef] [PubMed]
- Cabello, F.C.; Godfrey, H.P.; Buschmann, A.H.; Dölz, H.J. Aquaculture as yet Another Environmental Gateway to the Development and Globalisation of Antimicrobial Resistance. Lancet Infect. Dis. 2016, 16, e127–e133. [Google Scholar] [CrossRef] [PubMed]
- Watts, J.; Schreier, H.; Lanska, L.; Hale, M. The Rising Tide of Antimicrobial Resistance in Aquaculture: Sources, Sinks and Solutions. Mar. Drugs 2017, 15, 158. [Google Scholar] [CrossRef]
- Allameh, S.K.; Yusoff, F.M.; Ringø, E.; Daud, H.M.; Saad, C.R.; Ideris, A. Effects of Dietary Mono- and Multiprobiotic Strains on Growth Performance, Gut Bacteria and Body Composition of Javanese Carp (Puntius Gonionotus, Bleeker 1850). Aquacult Nutr. 2016, 22, 367–373. [Google Scholar] [CrossRef]
- Ramírez, C.; Coronado, J.; Silva, A.; Romero, J. Cetobacterium Is a Major Component of the Microbiome of Giant Amazonian Fish (Arapaima Gigas) in Ecuador. Animals 2018, 8, 189. [Google Scholar] [CrossRef]
- Talwar, C.; Nagar, S.; Lal, R.; Negi, R.K. Fish Gut Microbiome: Current Approaches and Future Perspectives. Indian. J. Microbiol. 2018, 58, 397–414. [Google Scholar] [CrossRef]
- Yu, G.; Zhao, S.; Ou, W.; Ai, Q.; Zhang, W.; Mai, K.; Zhang, Y. Host-Associated Bacillus Velezensis T20 Improved Disease Resistance and Intestinal Health of Juvenile Turbot (Scophthalmus Maximus). Aquac. Rep. 2024, 35, 101927. [Google Scholar] [CrossRef]
- Zhou, W.; Liu, B.; Li, Y.; Zhan, H.; Liu, Y.; Xiao, S.; Zhao, Q.; Wang, J. Dietary Supplementation with Sporosarcina Aquimarina MS4 Enhances Juvenile Sea Cucumber (Apostichopus Japonicus) Growth, Immunity and Disease Resistance against Vibrio Splendidus Infection at Low Temperature. Aquacult. Nutr. 2021, 27, 918–926. [Google Scholar] [CrossRef]
- Hoseinifar, S.H.; Hoseini, S.M.; Taheri Mirghaed, A.; Ghelichpour, M.; Shirzad-Aski, H.; Van Doan, H.; El-Haroun, E.; Safari, R.; Khanzadeh, M. Comparison of the Effects of Host-Associated (Autochthonous) and Commercial Probiotics on Immune Responses, Growth Parameters and Intestinal Microbiota of Caspian Whitefish (Rutilus Frisii Kutum) Fry. Front. Mar. Sci. 2024, 11, 1446927. [Google Scholar] [CrossRef]
- Chan, C.-H.; Chen, L.-H.; Chen, K.-Y.; Chen, I.-H.; Lee, K.-T.; Lai, L.-C.; Tsai, M.-H.; Chuang, E.Y.; Lin, M.-T.; Yan, T.-R. Single-Strain Probiotics Enhance Growth, Anti-Pathogen Immunity, and Resistance to Nocardia Seriolae in Grey Mullet (Mugil Cephalus) via Gut Microbiota Modulation. Anim. Microbiome 2024, 6, 67. [Google Scholar] [CrossRef] [PubMed]
- Llewellyn, M.S.; Boutin, S.; Hoseinifar, S.H.; Derome, N. Teleost Microbiomes: The State of the Art in Their Characterization, Manipulation and Importance in Aquaculture and Fisheries. Front. Microbiol. 2014, 5, 207. [Google Scholar] [CrossRef] [PubMed]
- Ferguson, R.M.W.; Merrifield, D.L.; Harper, G.M.; Rawling, M.D.; Mustafa, S.; Picchietti, S.; Balcázar, J.L.; Davies, S.J. The Effect of Pediococcus Acidilactici on the Gut Microbiota and Immune Status of On-Growing Red Tilapia (Oreochromis Niloticus): Probiotic Applications for Tilapia. J. Appl. Microbiol. 2010, 109, 851–862. [Google Scholar] [CrossRef]
- Bolyen, E.; Rideout, J.R.; Dillon, M.R.; Bokulich, N.A.; Abnet, C.C.; Al-Ghalith, G.A.; Alexander, H.; Alm, E.J.; Arumugam, M.; Asnicar, F.; et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 2019, 37, 852–857. [Google Scholar] [CrossRef]
- Butt, R.L.; Volkoff, H. Gut Microbiota and Energy Homeostasis in Fish. Front. Endocrinol. 2019, 10, 9. [Google Scholar] [CrossRef]
- Akhter, N.; Wu, B.; Memon, A.M.; Mohsin, M. Probiotics and Prebiotics Associated with Aquaculture: A Review. Fish Shellfish Immunol. 2015, 45, 733–741. [Google Scholar] [CrossRef]
- Hai, N.V. The Use of Probiotics in Aquaculture. J. Appl. Microbiol. 2015, 119, 917–935. [Google Scholar] [CrossRef]
- Mohammed, E.A.H.; Ahmed, A.E.M.; Kovács, B.; Pál, K. The Significance of Probiotics in Aquaculture: A Review of Research Trend and Latest Scientific Findings. Antibiotics 2025, 14, 242. [Google Scholar] [CrossRef]
- Han, S.; Liu, Y.; Zhou, Z.; He, S.; Cao, Y.; Shi, P.; Yao, B.; Ringø, E. Analysis of Bacterial Diversity in the Intestine of Grass Carp (Ctenopharyngodon Idellus) Based on 16S rDNA Gene Sequences: Intestinal Bacterial Diversity in Grass Carp. Aquac. Res. 2010, 42, 47–56. [Google Scholar] [CrossRef]
- Yassen, M.; EL-Naenaeey, E.-S.; Omar, A.; Tartor, Y. Virulence Determinants of Aeromonas Species Implicated in Fish Diseases and Control of Infection: An Overview. Zagazig Vet. J. 2021, 49, 284–299. [Google Scholar] [CrossRef]
- Romero, A.; Saraceni, P.R.; Pereiro, P.; Tomás, J.; Merino, S.; Figueras, A.; Novoa, B. Development of a Zebrafish Larvae Infection Model to Study Virulence Factors of A. Hydrophila. Fish Shellfish Immunol. 2016, 53, 85–86. [Google Scholar] [CrossRef]
- Van Kessel, M.A.; Dutilh, B.E.; Neveling, K.; Kwint, M.P.; Veltman, J.A.; Flik, G.; Jetten, M.S.; Klaren, P.H.; Op Den Camp, H.J. Pyrosequencing of 16S rRNA Gene Amplicons to Study the Microbiota in the Gastrointestinal Tract of Carp (Cyprinus Carpio L.). AMB Expr. 2011, 1, 41. [Google Scholar] [CrossRef] [PubMed]
- Praveen, P.K.; Debnath, C.; Shekhar, S.; Dalai, N.; Ganguly, S. Incidence of Aeromonas Spp. Infection in Fish and Chicken Meat and Its Related Public Health Hazards: A Review. Vet. World 2016, 9, 6–11. [Google Scholar] [CrossRef]
- Qian, Y.; Ye, J.; Yang, S.; Lin, Z.; Cao, W.; Xie, J. Evaluation of the Spoilage Potential of Shewanella Putrefaciens, Aeromonas Hydrophila, and Aeromonas Sobria Isolated from Spoiled Pacific White Shrimp (Litopenaeus Vannamei) during Cold Storage. J. Food Saf. 2018, 38, e12550. [Google Scholar] [CrossRef]
- Dailey, F.E.; McGraw, J.E.; Jensen, B.J.; Bishop, S.S.; Lokken, J.P.; Dorff, K.J.; Ripley, M.P.; Munro, J.B. The Microbiota of Freshwater Fish and Freshwater Niches Contain Omega-3 Fatty Acid-Producing Shewanella Species. Appl. Environ. Microbiol. 2016, 82, 218–231. [Google Scholar] [CrossRef]
- Sterniša, M.; Bucar, F.; Kunert, O.; Smole Možina, S. Targeting Fish Spoilers Pseudomonas and Shewanella with Oregano and Nettle Extracts. Int. J. Food Microbiol. 2020, 328, 108664. [Google Scholar] [CrossRef]
- Feher, M.; Fauszt, P.; Tolnai, E.; Fidler, G.; Pesti-Asboth, G.; Stagel, A.; Szucs, I.; Biro, S.; Remenyik, J.; Paholcsek, M.; et al. Effects of Phytonutrient-Supplemented Diets on the Intestinal Microbiota of Cyprinus Carpio. PLoS ONE 2021, 16, e0248537. [Google Scholar] [CrossRef]
- Hao, Y.T.; Wu, S.G.; Jakovlić, I.; Zou, H.; Li, W.X.; Wang, G.T. Impacts of Diet on Hindgut Microbiota and Short-Chain Fatty Acids in Grass Carp (Ctenopharyngodon Idellus). Aquac. Res. 2017, 48, 5595–5605. [Google Scholar] [CrossRef]
Water Parameters | Mean ± Standard Deviation |
---|---|
Dissolved oxygen (mg/L) | 6.78 ± 0.3 |
Temperature (°C) | 25.9 ± 0.9 |
pH | 7.4 ± 0.1 |
NO3− (mg/L) | 5.78 ± 2.9 |
NO2− (mg/L) | 0.24 ± 0.3 |
NH4+ (mg/L) | 0.37 ± 0.18 |
TDS (ppm) | 443 ± 6.72 |
Feed Supplements | Genus | Reads | Read % |
---|---|---|---|
Cetobacterium | 67.802 | 77.46 | |
Streptococcus | 08.341 | 9.53 | |
Citrobacter | 03.587 | 4.10 | |
Aeromonas | 02.827 | 3.23 | |
Control | Chryseobacterium | 01.964 | 2.24 |
Uruburuella | 01.955 | 2.23 | |
Plesiomonas | 01.154 | 1.23 | |
Lactococcus | 00.382 | 0.44 | |
Vibrio | 00.287 | 0.33 | |
Shewanella | 00.239 | 0.27 | |
Vibrio | 26.318 | 53.78 | |
Cetobacterium | 10.920 | 22.31 | |
Aeromonas | 9.695 | 19.81 | |
Lefisonia | 1.685 | 3.44 | |
P. acidilactici | Mycobcterium | 0.194 | 0.40 |
Streptococcus | 0.127 | 0.26 | |
Plesiomonas | 0.040 | 0.08 | |
Shewanella | 0.026 | 0.05 | |
Uruburuella | 0.026 | 0.05 | |
Citrobacter | 0.011 | 0.02 | |
Cetobacterium | 79.053 | 58.36 | |
Aeromonas | 47.169 | 34.82 | |
Vibrio | 3.478 | 2.57 | |
Citrobacter | 2.866 | 2.11 | |
S. cereviciae | Plesiomonas | 0.993 | 0.73 |
Chryseobacterium | 0.749 | 0.55 | |
Shewanella | 0.487 | 0.36 | |
Uruburuella | 0.317 | 0.23 | |
Streptococcus | 0.279 | 0.21 | |
Lefisonia | 0.082 | 0.06 | |
Cetobacterium | 101.599 | 91.54 | |
Aeromonas | 3.276 | 2.95 | |
Plesiomonas | 2.748 | 2.48 | |
Yeast cell wall | Vibrio | 0.806 | 0.73 |
Citrobacter | 0.732 | 0.66 | |
Colostridium | 0.605 | 0.55 | |
Chryseobacterium | 0.511 | 0.46 | |
Streptococcus | 0.393 | 0.35 | |
Shewanella | 0.147 | 0.13 | |
Uruburuella | 0.121 | 0.11 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mohammed, E.A.H.; Fehér, M.; Bársony, P.; Pál, K. Alteration in Gut Microbiome of Common Carp (Cyprinus carpio L., 1758) Mediated by Probiotics and Yeast Prebiotic. Biol. Life Sci. Forum 2025, 45, 1. https://doi.org/10.3390/blsf2025045001
Mohammed EAH, Fehér M, Bársony P, Pál K. Alteration in Gut Microbiome of Common Carp (Cyprinus carpio L., 1758) Mediated by Probiotics and Yeast Prebiotic. Biology and Life Sciences Forum. 2025; 45(1):1. https://doi.org/10.3390/blsf2025045001
Chicago/Turabian StyleMohammed, Elshafia Ali Hamid, Milán Fehér, Péter Bársony, and Károly Pál. 2025. "Alteration in Gut Microbiome of Common Carp (Cyprinus carpio L., 1758) Mediated by Probiotics and Yeast Prebiotic" Biology and Life Sciences Forum 45, no. 1: 1. https://doi.org/10.3390/blsf2025045001
APA StyleMohammed, E. A. H., Fehér, M., Bársony, P., & Pál, K. (2025). Alteration in Gut Microbiome of Common Carp (Cyprinus carpio L., 1758) Mediated by Probiotics and Yeast Prebiotic. Biology and Life Sciences Forum, 45(1), 1. https://doi.org/10.3390/blsf2025045001