Monitoring a Zinc Biofortification Workflow in an Experimental Field of Triticum aestivum L. Applying Smart Farming Technology †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Field
2.2. Grain Yield, Test Weight, and Thousand Kernel Weight (TKW) of Triticum aestivum L. Grains
2.3. Experimental Characterization–Unamanned Aerial Vehicle (UAV)
2.4. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- United Nations, Department of Economic and Social Affairs, Population Division. World Population Prospects 2019: Data Booklet. 2019, 12, pp. 1–28. Available online: https://population.un.org/wpp/Publications/Files/WPP2019_DataBooklet.pdf (accessed on 7 November 2020).
- Bouis, H.E.; Saltzman, A. Improving nutrition through biofortification: A review of evidence from HarvestPlus, 2003 through 2016. Glob Food Sec. 2017, 12, 49–58. [Google Scholar] [CrossRef] [PubMed]
- Saini, D.K.; Devi, P.; Kaushik, P. Advances in Genomic Interventions for Wheat Biofortification: A Review. Agronomy 2020, 10, 62. [Google Scholar] [CrossRef] [Green Version]
- Izydorczyk, G.; Ligas, B.; Mikula, K.; Witek-Krowiak, A.; Moustakas, K.; Chojnacka, K. Biofortification of edible plants with selenium and iodine—A systematic literature review. Sci. Total Environ. 2021, 754, 141983. [Google Scholar] [CrossRef] [PubMed]
- Daccak, D.; Coelho, A.; Marques, A.; Luís, I.; Pessoa, C.; Silva, M.M.; Guerra, M.; Leitão, R.; Ramalho, J.; Simões, M.; et al. Grapes enrichment with zinc for vinification: Mineral analysis with atomic absorption spectrophotometry, XRF and tissue analysis. In Proceedings of the 1st International Electronic Conference on Plant Science, online, 1–15 December 2020; Volume 4, pp. 1–6. [Google Scholar] [CrossRef]
- Buturi, C.V.; Mauro, R.P.; Fogliano, V.; Leonardi, C.; Giuffrida, F. Mineral biofortification of vegetables as a tool to improve human diet. Foods 2021, 10, 223. [Google Scholar] [CrossRef] [PubMed]
- Marques, A.C.; Lidon, F.C.; Coelho, A.R.F.; Pessoa, C.C.; Luís, I.C.; Campos, P.S.; Simões, M.; Almeida, A.S.; Pessoa, M.F.; Galhano, C.; et al. Effect of Rice Grain (Oriza sativa L.) Enrichment with selenium on foliar leaf gas exchanges and accumulation of nutrients. Plants 2021, 10, 288. [Google Scholar] [CrossRef]
- Cakmak, I.; Kutman, U.B. Agronomic biofortification of cereals with zinc: A review. Eur. J. Soil Sci. 2018, 69, 172–180. [Google Scholar] [CrossRef] [Green Version]
- Rehman, R.; Asif, M.; Cakmak, I.; Ozturk, L. Differences in uptake and translocation of foliar-applied Zn in maize and wheat. Plant Soil. 2021, 462, 235–244. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations (FAO)—FAO Cereal Supply and Demand Brief. Available online: http://www.fao.org/worldfoodsituation/csdb/en/ (accessed on 19 March 2021).
- Boursianis, A.D.; Papadopoulou, M.S.; Diamantoulakis, P.; Liopa-Tsakalidi, A.; Barouchas, P.; Salahas, G.; Karagiannidis, G.; Wan, S.; Goudos, S.K. Internet of things (IoT) and agricultural unmanned aerial vehicles (UAVs) in smart farming: A comprehensive review. Int. Things 2020, 100187. [Google Scholar] [CrossRef]
- Khanal, S.; Fulton, J.; Shearer, S. An overview of current and potential applications of thermal remote sensing in precision agriculture. Comput. Electron. Agric. 2017, 139, 22–32. [Google Scholar] [CrossRef]
- James, K.; Nichol, C.J.; Wade, T.; Cowley, D.; Poole, S.G.; Gray, A.; Gillespie, J. Thermal and multispectral remote sensing for the detection and analysis of archaelogically induced crop stress at a UK Site. Drones 2020, 4, 61. [Google Scholar] [CrossRef]
- Gomez-Coronado, F.; Almeida, A.S.; Santamaria, O.; Cakmak, I.; Poblaciones, M.J. Potential of advanced breeding lines of bread-making wheat to accumulate grain minerials (Ca, Fe, Mg and Zn) and low phytates under Mediterranean conditions. J. Agron. Crop Sci. 2019, 205, 341–352. [Google Scholar] [CrossRef]
- Luís, I.C.; Lidon, F.C.; Pessoa, C.C.; Marques, A.C.; Coelho, A.R.F.; Simões, M.; Patanita, M.; Dôres, J.; Ramalho, J.C.; Silva, M.M.; et al. Zinc enrichment in two contrasting genotypes of Triticum aestivum L. grains: Interactions between edaphic conditions and foliar fertilizers. Plants 2021, 10, 204. [Google Scholar] [CrossRef] [PubMed]
- ISO 7971-1. Cereals—Determination of Bulk Density, Called Mass Per Hectoliter—Part 1: Reference Method. International Organization for Standardization: Geneva, Switzerland, 2009.
- ISO 520. Cereals and pulses—Determination of the mass of 1000 grains. International Organization for Standardization: Geneva, Switzerland, 2010.
- Pessoa, C.C.; Lidon, F.C.; Coelho, A.R.F.; Caleiro, J.C.; Marques, A.C.; Luís, I.C.; Kullberg, J.C.; Legoinha, P.; Brito, M.G.; Ramalho, J.C.; et al. Calcium biofortification of Rocha pears, tissues accumulation and physicochemical implications in fresh and heat-treated fruits. Sci. Hortic. 2021, 277, 109834. [Google Scholar] [CrossRef]
- Coelho, A.R.F.; Lidon, F.C.; Pessoa, C.C.; Marques, A.C.; Luís, I.C.; Caleiro, J.; Simões, M.; Kullberg, J.; Legoinha, P.; Brito, M.; et al. Can foliar pulverization with CaCl2 and Ca(NO3)2 trigger Ca enrichment in Solanum tuberosum L. tubers? Plants 2021, 10, 245. [Google Scholar] [CrossRef] [PubMed]
- Hassan, M.A.; Yang, M.; Rasheed, A.; Yang, G.; Reynolds, M.; Xia, X.; Xiao, Y.; He, Z. A rapid monitoring of NDVI across the wheat growth cycle for grain yield prediction using a multi-spectral UAV plataform. Plant Sci. 2019, 282, 95–103. [Google Scholar] [CrossRef] [PubMed]
- Naser, M.A.; Khosla, R.; Longchamps, L.; Dahal, S. Using NDVI to differentiate wheat genotypes productivity under dryland and irrigated conditions. Remote Sens. 2020, 12, 824. [Google Scholar] [CrossRef] [Green Version]
- Yue, J.; Feng, H.; Li, Z.; Zhou, C.; Xu, K. Mapping winter-wheat biomass and grain yield based on a crop model and UAV remote sensing. Int. J. Remote Sens. 2021, 42, 1577–1601. [Google Scholar] [CrossRef]
Variety | Treatment | Replicated | Grain Yield (kg.ha−1) | Test Weight (kg.hL−1) | TKW (g) | NDVI ± STD |
---|---|---|---|---|---|---|
Paiva (P) | T0 | 1 | 452 | 75.9 | 42.3 | 0.431 ± 0.162 |
2 | 802 | 40.5 | 38.7 | 0.489 ± 0.153 | ||
3 | 1005 | 69.2 | 39.9 | 0.532 ± 0.151 | ||
4 | 950 | 72.2 | 39.7 | 0.598 ± 0.135 | ||
T1 | 1 | 621 | 74.1 | 38.3 | 0.458 ± 0.140 | |
2 | 1092 | 70.1 | 37.6 | 0.472 ± 0.149 | ||
3 | 890 | 73.2 | 36.2 | 0.564 ± 0.138 | ||
4 | 586 | 73.6 | 36.5 | 0.343 ± 0.185 | ||
T2 | 1 | 447 | 74.2 | 37.1 | 0.517 ± 0.138 | |
2 | 647 | 71.7 | 38.5 | 0.525 ± 0.144 | ||
3 | 916 | 67.4 | 35.8 | 0.495 ± 0.175 | ||
4 | 579 | 73.4 | 36.8 | 0.557 ± 0.152 | ||
Roxo (R) | T0 | 1 | 582 | 76.3 | 33.4 | 0.388 ± 0.164 |
2 | 1284 | 76.8 | 35.8 | 0.508 ± 0.157 | ||
3 | 932 | 77.2 | 35.7 | 0.521 ± 0.154 | ||
4 | 905 | 64.4 | 34.9 | 0.551 ± 0.154 | ||
T1 | 1 | 766 | 76.0 | 32.8 | 0.474 ± 0.163 | |
2 | 971 | 68.1 | 32.0 | 0.500 ± 0.168 | ||
3 | 679 | 73.9 | 31.8 | 0.462 ± 0.155 | ||
4 | 472 | 74.4 | 33.2 | 0.538 ± 0.163 | ||
T2 | 1 | 304 | 65.7 | 32.1 | 0.482 ± 0.154 | |
2 | 657 | 73.6 | 31.0 | 0.573 ± 0.135 | ||
3 | 514 | 75.5 | 32.4 | 0.488 ± 0.176 | ||
4 | 566 | 75.8 | 32.9 | 0.519 ± 0.158 |
(a) | (d) | ||||||||
Paiva T0 | Grain Yield | Test Weight | TKW | NDVI | Roxo T0 | Grain Yield | Test Weight | TKW | NDVI |
Grain Yield | 1 | −0.4 | −0.2 | 0.8 | Grain Yield | 1 | 0.6 | 1 | 0.2 |
Test Weight | −0.156 | 1 | 0.8 | −0.2 | Test Weight | 0.081 | 1 | 0.6 | −0.2 |
TKW | −0.761 | 0.74 | 1 | −0.4 | TKW | 0.895 | 0.084 | 1 | 0.2 |
NDVI | 0.858 | 0.111 | −0.569 | 1 | NDVI | 0.656 | −0.5 | 0.809 | 1 |
(b) | (e) | ||||||||
Paiva T1 | Grain Yield | Test Weight | TKW | NDVI | Roxo T1 | Grain Yield | Test Weight | TKW | NDVI |
Grain Yield | 1 | −0.8 | 0 | 0.8 | Grain Yield | 1 | −0.4 | −0.4 | −0.2 |
Test Weight | −0.895 | 1 | 0.4 | −0.6 | Test Weight | −0.689 | 1 | 0.6 | 0 |
TKW | −0.053 | −0.099 | 1 | −0.4 | TKW | −0.623 | 0.527 | 1 | 0.8 |
NDVI | 0.59 | −0.18 | −0.093 | 1 | NDVI | −0.426 | −0.165 | 0.679 | 1 |
(c) | (f) | ||||||||
Paiva T2 | Grain Yield | Test Weight | TKW | NDVI | Roxo T2 | Grain Yield | Test Weight | TKW | NDVI |
Grain Yield | 1 | −1 | −0.4 | −0.4 | Grain Yield | 1 | 0.4 | -0.2 | 1 |
Test Weight | −0.986 | 1 | 0.4 | 0.4 | Test Weight | 0.826 | 1 | 0.8 | 0.4 |
TKW | −0.503 | 0.504 | 1 | 0.4 | TKW | −0.332 | 0.192 | 1 | −0.2 |
NDVI | −0.564 | 0.695 | 0.331 | 1 | NDVI | 0.83 | 0.376 | −0.683 | 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luís, I.C.; Coelho, A.R.F.; Pessoa, C.C.; Daccak, D.; Marques, A.C.; Caleiro, J.; Patanita, M.; Dôres, J.; Simões, M.; Almeida, A.S.; et al. Monitoring a Zinc Biofortification Workflow in an Experimental Field of Triticum aestivum L. Applying Smart Farming Technology. Biol. Life Sci. Forum 2021, 3, 55. https://doi.org/10.3390/IECAG2021-09724
Luís IC, Coelho ARF, Pessoa CC, Daccak D, Marques AC, Caleiro J, Patanita M, Dôres J, Simões M, Almeida AS, et al. Monitoring a Zinc Biofortification Workflow in an Experimental Field of Triticum aestivum L. Applying Smart Farming Technology. Biology and Life Sciences Forum. 2021; 3(1):55. https://doi.org/10.3390/IECAG2021-09724
Chicago/Turabian StyleLuís, Inês Carmo, Ana Rita F. Coelho, Cláudia Campos Pessoa, Diana Daccak, Ana Coelho Marques, João Caleiro, Manuel Patanita, José Dôres, Manuela Simões, Ana Sofia Almeida, and et al. 2021. "Monitoring a Zinc Biofortification Workflow in an Experimental Field of Triticum aestivum L. Applying Smart Farming Technology" Biology and Life Sciences Forum 3, no. 1: 55. https://doi.org/10.3390/IECAG2021-09724
APA StyleLuís, I. C., Coelho, A. R. F., Pessoa, C. C., Daccak, D., Marques, A. C., Caleiro, J., Patanita, M., Dôres, J., Simões, M., Almeida, A. S., Pessoa, M. F., Silva, M. M., Reboredo, F. H., Legoinha, P., Pais, I. P., Campos, P. S., Ramalho, J. C., Kullberg, J. C., Brito, M. G., & Lidon, F. C. (2021). Monitoring a Zinc Biofortification Workflow in an Experimental Field of Triticum aestivum L. Applying Smart Farming Technology. Biology and Life Sciences Forum, 3(1), 55. https://doi.org/10.3390/IECAG2021-09724