25-Hydroxyvitamin D Serum Levels Linked to Single-Nucleotide Polymorphisms (SNPs) (rs2228570, rs2282679, rs10741657) in Sports Performance in CrossFit® Elite Athletes †
Abstract
:1. Introduction
2. Material and Methods
2.1. Study Design
2.2. Inclusion Criteria
2.3. Data Collection
2.4. Sociodemographic and Anthropometrics
2.5. Physical Performance
2.6. Dietary Assessment
2.6.1. Quantification of Plasma 25(OH)D Concentration Level
2.6.2. Single-Nucleotide Polymorphism (SNP) Determination by DNA Isolation and Genotyping
2.6.3. CrossFti® Total Level
2.6.4. CrossFit Training
2.6.5. Statistical Analysis
3. Results
3.1. CrossFit® Athlete’s Characteristics and Dietary Assessment
3.2. 25(OH)D Plasma Level
3.3. CrossFit® Total Degrees
3.4. Comparisons between 25-Hydroxy Vitamin D and Single-Nucleotide Polymorphisms of the CYP2R1, GC and VDR Genes
3.5. Correlations between 25-Hydroxy Vitamin D and Single-Nucleotide Polymorphisms of the CYP2R1, GC and VDR Genes
3.6. Single-Nucleotide Polymorphisms of the CYP2R1, GC and VDR Genes Associated with 25-Hydroxy Vitamin D Plasma Level
3.7. Correlation of Sports Level Degree in CrossFit® Total and 25-Hydroxy Vitamin D (25(OH)D) Plasma Level
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Glassman, G. What Is CrossFit? CrossFit J. 2004, 56, 1–7. Available online: http://journal.crossfit.com/2004/03/what-is-crossfitmar-04-cfj.tpl (accessed on 29 August 2023).
- Glassman, G. Understanding CrossFit. East Val. Crossfit Newsl. 2007, 1–115. Available online: http://journal.crossfit.com/2007/04/understanding-crossfit-by-greg.tpl (accessed on 29 August 2023).
- Gogojewicz, A.; Śliwicka, E.; Durkalec-Michalski, K. Assessment of Dietary Intake and Nutritional Status in CrossFit-Trained Individuals: A Descriptive Study. Int. J. Environ. Res. Public Health 2020, 17, 4772. [Google Scholar] [CrossRef] [PubMed]
- dos Santos Quaresma, M.V.L.; Guazzelli Marques, C.; Nakamoto, F.P. Effects of diet interventions, dietary supplements, and performance-enhancing substances on the performance of CrossFit-trained individuals: A systematic review of clinical studies. Nutrition 2021, 82, 110994. [Google Scholar] [CrossRef] [PubMed]
- Brisebois, M.; Kramer, S.; Lindsay, K.G.; Wu, C.T.; Kamla, J. Dietary practices and supplement use among CrossFit® participants. J. Int. Soc. Sports Nutr. 2022, 19, 316–335. [Google Scholar] [CrossRef] [PubMed]
- Shuler, F.D.; Wingate, M.K.; Moore, G.H.; Giangarra, C. Sports Health Benefits of Vitamin D. Sports Health 2012, 4, 496–501. [Google Scholar] [CrossRef] [PubMed]
- Todd, J.J.; Pourshahidi, L.K.; McSorley, E.M.; Madigan, S.M.; Magee, P.J. Vitamin D: Recent Advances and Implications for Athletes. Sport Med. 2015, 45, 213–229. [Google Scholar] [CrossRef] [PubMed]
- Larson-Meyer, D.E.; Willis, K.S. Vitamin D and athletes. Curr. Sports Med. Rep. 2010, 9, 220–226. [Google Scholar] [CrossRef]
- Yagüe, M.d.l.P.; Yurrita, L.C.; Cabañas, M.J.C.; Cenzual, M.A.C. Role of Vitamin D in Athletes and Their Performance: Current Concepts and New Trends. Nutrients 2020, 12, 579. [Google Scholar] [CrossRef]
- Mielgo-Ayuso, J.; Calleja-González, J.; Urdampilleta, A.; León-Guereño, P.; Córdova, A.; Caballero-García, A.; Fernández-Lázaro, D. Effects of Vitamin D Supplementation on Haematological Values and Muscle Recovery in Elite Male Traditional Rowers. Nutrients 2018, 10, 1968. [Google Scholar] [CrossRef]
- Oliver-Lopez, A.; Garcia-Valverde, A.; Sabido, R. Summary of the evidence on responses and adaptations derived from CrossFit training. A systematic review. Retos 2022, 46, 309–322. [Google Scholar] [CrossRef]
- Fernández-Lázaro, D.; Hernández, J.L.G.; Lumbreras, E.; Mielgo-Ayuso, J.; Seco-Calvo, J. 25-Hydroxyvitamin D Serum Levels Linked to Single Nucleotide Polymorphisms (SNPs) (rs2228570, rs2282679, rs10741657) in Skeletal Muscle Aging in Institutionalized Elderly Men Not Supplemented with Vitamin D. Int. J. Mol. Sci. 2022, 23, 11846. [Google Scholar] [CrossRef] [PubMed]
- Guest, N.S.; Horne, J.; Vanderhout, S.M.; El-Sohemy, A. Sport Nutrigenomics: Personalized Nutrition for Athletic Performance. Front. Nutr. 2019, 6, 8. [Google Scholar] [CrossRef] [PubMed]
- Collins, J.; Adamski, M.M.; Twohig, C.; Murgia, C. Opportunities for training for nutritional professionals in nutritional genomics: What is out there? Nutr. Diet. 2018, 75, 206–218. [Google Scholar] [CrossRef] [PubMed]
- Cheng, J.B.; Levine, M.A.; Bell, N.H.; Mangelsdorf, D.J.; Russell, D.W. Genetic evidence that the human CYP2R1 enzyme is a key vitamin D 25-hydroxylase. Proc. Natl. Acad. Sci. USA 2004, 101, 7711–7715. [Google Scholar] [CrossRef] [PubMed]
- Slater, N.A.; Rager, M.L.; Havrda, D.E.; Harralson, A.F. Genetic Variation in CYP2R1 and GC Genes Associated with Vitamin D Deficiency Status. J. Pharm. Pract. 2017, 30, 31–36. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.J.; Zhang, F.; Richards, J.B.; Kestenbaum, B.; Van Meurs, J.B.; Berry, D.; Kiel, D.P.; Streeten, E.A.; Ohlsson, C.; Koller, D.L.; et al. Common genetic determinants of vitamin D insufficiency: A genome-wide association study. Lancet 2010, 376, 180–188. [Google Scholar] [CrossRef]
- Kamyshna, I.I.; Pavlovych, L.B.; Malyk, I.V.; Kamyshnyi, A.M. 25-OH Vitamin D blood serum linkage with VDR gene polymorphism (rs2228570) in thyroid pathology patients in the West-Ukrainian population. J. Med. Life 2021, 14, 549–556. [Google Scholar] [CrossRef]
- Redenšek, S.; Kristanc, T.; Blagus, T.; Trošt, M.; Dolžan, V. Genetic Variability of the Vitamin D Receptor Affects Susceptibility to Parkinson’s Disease and Dopaminergic Treatment Adverse Events. Front. Aging Neurosci. 2022, 14, 853277. [Google Scholar] [CrossRef]
- McGrath, J.J.; Saha, S.; Burne, T.H.J.; Eyles, D.W. A systematic review of the association between common single nucleotide polymorphisms and 25-hydroxyvitamin D concentrations. J. Steroid Biochem. Mol. Biol. 2010, 121, 471–477. [Google Scholar] [CrossRef]
- von Elm, E.; Altman, D.G.; Egger, M.; Pocock, S.J.; Gøtzsche, P.C.; Vandenbroucke, J.P. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: Guidelines for reporting observational studies. J. Clin. Epidemiol. 2008, 61, 344–349. [Google Scholar] [CrossRef] [PubMed]
- World Medical Association. World Medical Association Declaration of Helsinki: Ethical principles for medical research involving human subjects. JAMA 2013, 310, 2191–2194. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Lázaro, D.; Mielgo-Ayuso, J.; Soto, M.D.V.; Adams, D.P.; González-Bernal, J.J.; Seco-Calvo, J. The Effects of 6 Weeks of Tribulus terrestris L. Supplementation on Body Composition, Hormonal Response, Perceived Exertion, and CrossFit® Performance: A Randomized, Single-Blind, Placebo-Controlled Study. Nutrients 2021, 13, 3969. [Google Scholar] [CrossRef] [PubMed]
- Flouris, A.D.; Koutedakis, Y.; Nevill, A.; Metsios, G.S.; Tsiotra, G.; Parasiris, Y. Enhancing specificity in proxy-design for the assessment of bioenergetics. J. Sci. Med. Sport 2004, 7, 197–204. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Lázaro, D. Ergogenic Strategies for Optimizing Performance and Health in Regular Physical Activity Participants: Evaluation of the Efficacy of Compressive Cryotherapy, Exposure to Intermittent Hypoxia at Rest and Sectorized Training of the Inspiratory Muscles. Ph.D. Thesis, University of León, León, Spain, 2020. Available online: https://dialnet.unirioja.es/servlet/tesis?codigo=286163&info=resumen&idioma=SPA (accessed on 7 September 2023).
- Fernández-Lázaro, D.; Mielgo-Ayuso, J.; del Valle Soto, M.; Adams, D.P.; Gutiérrez-Abejón, E.; Seco-Calvo, J. Impact of Optimal Timing of Intake of Multi-Ingredient Performance Supplements on Sports Performance, Muscular Damage, and Hormonal Behavior across a Ten-Week Training Camp in Elite Cyclists: A Randomized Clinical Trial. Nutrients 2021, 13, 3746. [Google Scholar] [CrossRef] [PubMed]
- CrossFit Games. Competition Rulebook CrossFit 2023. Available online: https://games.crossfit.com/rules (accessed on 29 August 2023).
- Bello, H.J.; Caballero-García, A.; Pérez-Valdecantos, D.; Roche, E.; Noriega, D.C.; Córdova-Martínez, A. Effects of Vitamin D in Post-Exercise Muscle Recovery. A Systematic Review and Meta-Analysis. Nutrients 2021, 13, 4013. [Google Scholar] [CrossRef] [PubMed]
- Bollen, S.E.; Atherton, P.J. Myogenic, genomic and non-genomic influences of the vitamin D axis in skeletal muscle. Cell Biochem. Funct. 2021, 39, 48–59. [Google Scholar] [CrossRef]
- Ksiażek, A.; Zagrodna, A.; Słowińska-Lisowska, M. Vitamin D, Skeletal Muscle Function and Athletic Performance in Athletes—A Narrative Review. Nutrients 2019, 11, 1800. [Google Scholar] [CrossRef]
- Girgis, C.M.; Mokbel, N.; Cha, K.M.; Houweling, P.J.; Abboud, M.; Fraser, D.R.; Mason, R.S.; Clifton-Bligh, R.J.; Gunton, J.E. The vitamin D receptor (VDR) is expressed in skeletal muscle of male mice and modulates 25-hydroxyvitamin D (25OHD) uptake in myofibers. Endocrinology 2014, 155, 3227–3237. [Google Scholar] [CrossRef]
- Bass, J.J.; Nakhuda, A.; Deane, C.S.; Brook, M.S.; Wilkinson, D.J.; Phillips, B.E.; Philp, A.; Tarum, J.; Kadi, F.; Andersen, D.; et al. Overexpression of the vitamin D receptor (VDR) induces skeletal muscle hypertrophy. Mol. Metab. 2020, 42, 101059. [Google Scholar] [CrossRef]
- Scimeca, M.; Centofanti, F.; Celi, M.; Gasbarra, E.; Novelli, G.; Botta, A.; Tarantino, U. Vitamin D Receptor in Muscle Atrophy of Elderly Patients: A Key Element of Osteoporosis-Sarcopenia Connection. Aging Dis. 2018, 9, 952–964. [Google Scholar] [CrossRef] [PubMed]
- Srikuea, R.; Zhang, X.; Park-Sarge, O.K.; Esser, K.A. VDR and CYP27B1 are expressed in C2C12 cells and regenerating skeletal muscle: Potential role in suppression of myoblast proliferation. Am. J. Physiol. Cell Physiol. 2012, 303, C396–C405. [Google Scholar] [CrossRef] [PubMed]
- Lurie, G.; Wilkens, L.R.; Thompson, P.J.; Carney, M.E.; Palmieri, R.T.; Pharoah, P.D.P.; Song, H.; Hogdall, E.; Kjaer, S.K.; DiCioccio, R.A.; et al. Vitamin D receptor rs2228570 polymorphism and invasive ovarian carcinoma risk: Pooled analysis in five studies within the Ovarian Cancer Association Consortium. Int. J. Cancer 2011, 128, 936. [Google Scholar] [CrossRef] [PubMed]
- Olsson, K.; Saini, A.; Strömberg, A.; Alam, S.; Lilja, M.; Rullman, E.; Gustafsson, T. Evidence for Vitamin D Receptor Expression and Direct Effects of 1α,25(OH)2D3 in Human Skeletal Muscle Precursor Cells. Endocrinology 2016, 157, 98–111. [Google Scholar] [CrossRef] [PubMed]
- Nunes, I.F.O.C.; Cavalcante, A.A.C.M.; Alencar, M.V.O.B.; Carvalho, M.D.F.; Sarmento, J.L.R.; Teixeira, N.S.C.C.A.; Paiva, A.A.; Carvalho, L.R.; Nascimento, L.F.M.; Cruz, M.S.P.; et al. Meta-Analysis of the Association Between the rs228570 Vitamin D Receptor Gene Polymorphism and Arterial Hypertension Risk. Adv. Nutr. 2020, 11, 1211–1220. [Google Scholar] [CrossRef] [PubMed]
- Balta, B.; Gumus, H.; Bayramov, R.; Korkmaz Bayramov, K.; Erdogan, M.; Oztop, D.B.; Dogan, M.E.; Taheri, S.; Dundar, M. Increased vitamin D receptor gene expression and rs11568820 and rs4516035 promoter polymorphisms in autistic disorder. Mol. Biol. Rep. 2018, 45, 541–546. [Google Scholar] [CrossRef] [PubMed]
- Vidigal, V.M.; Silva, T.D.; de Oliveira, J.; Pimenta, C.A.M.; Felipe, A.V.; Forones, N.M. Genetic polymorphisms of vitamin D receptor (VDR), CYP27B1 and CYP24A1 genes and the risk of colorectal cancer. Int. J. Biol. Markers 2017, 32, e224–e230. [Google Scholar] [CrossRef] [PubMed]
- Larson-Meyer, E. Vitamin D supplementation in athletes. Nestle Nutr. Inst. Workshop Ser. 2013, 75, 109–121. [Google Scholar]
- Caballero-García, A.; Córdova-Martínez, A.; Vicente-Salar, N.; Roche, E.; Pérez-Valdecantos, D. Vitamin D, Its Role in Recovery after Muscular Damage Following Exercise. Nutrients 2021, 13, 2336. [Google Scholar] [CrossRef]
- Orces, C.H. The association between 25-hydroxyvitamin D levels and muscle strength in adolescents. Nutr. Hosp. 2021, 38, 1169–1174. [Google Scholar]
- Remelli, F.; Vitali, A.; Zurlo, A.; Volpato, S. Vitamin D Deficiency and Sarcopenia in Older Persons. Nutrients 2019, 11, 2861. [Google Scholar] [CrossRef] [PubMed]
- Gussago, C.; Arosio, B.; Guerini, F.R.; Ferri, E.; Costa, A.S.; Casati, M.; Bollini, E.M.; Ronchetti, F.; Colombo, E.; Bernardelli, G.; et al. Impact of vitamin D receptor polymorphisms in centenarians. Endocrine 2016, 53, 558–564. [Google Scholar] [CrossRef] [PubMed]
Characteristics | CrossFit® Athletes | |
---|---|---|
Sample size (n) | 50 | |
Age (years) | 35.7 ± 11.3 | |
Gender n (%) | Male | 50 (100) |
Female | 0 (0) | |
Nationality n (%) | Spanish | 38 (76) |
Other | 12 (24) | |
Body mass (kg) | 77.6 ± 10.9 | |
Fat Mass (kg) | 9.7 ± 2.9 | |
Fat Mass (%) | 12.5 ± 2.3 | |
Free Fat Mass (kg) | 67.9 ± 4.1 | |
Free Fat Mass (%) | 65.2 ± 2.6 | |
Height (cm) | 171.5 ± 5.6 | |
VO2max (mL/kg/min) | 43.5 ± 4.4 | |
Crossfit® experience (months) | 35.3 ± 11.7 | |
Fran 1 WODs (seconds) | 231 ± 15 |
CrossFit® Athletes | n = 50 |
---|---|
Energy (kcal/kg) | 40.3 ± 4.8 |
Proteins (g) | 141.3 ± 37.9 |
Fats (g) | 134.3 ± 43.2 |
Carbohydrates (g) | 341.2 ± 97.6 |
Ca (mg) | 1026.3 ± 224.1 |
Mg (mg) | 544.3 ± 97.2 |
P (mg) | 2120.6 ± 67.1 |
Fe (mg) | 23.1 ± 3.6 |
Zn (mg) | 13.4 ± 1.1 |
Vitamin A (µg) | 1862.3 ± 1177.1 |
Vitamin E (mg) | 16.0 ± 1.8 |
Vitamin B1 (mg) | 2.9 ± 0.4 |
Vitamin B2 (mg) | 2.6 ± 0.3 |
Vitamin B (mg) | 40.9 ± 6.1 |
Vitamin B6 (mg) | 4.3 ± 0.5 |
Vitamin B9 (mg) | 637.2 ± 172.1 |
Vitamin B12 (µg) | 9.6 ± 2.7 |
Vitamin C (µg) | 351.1 ± 140.2 |
Age (Years) | Sample (n) | 25-OH/D (ng/mL) Mean (SD) | 1 Deficiency n (%) <20 ng/mL | 1 Insufficiency n (%) <30–32 ng/mL | 1 Sufficiency (%) >30–32 ng/mL | 1 Optimum (%) 40–100 ng/mL | 1 Toxic (%) >150 ng/mL + Hypercalcemia |
---|---|---|---|---|---|---|---|
<35 | 19 | 36.2 (4.3) | - | 2 (10.5) | 14 (73.7) | 3 (15.8) | - |
>35 | 31 | 33.1 (6.8) | - | 6 (19.3) | 20 (64.5) | 5 (16.2) | - |
35.7 (11.3) | 50 | 34.7 (5.2) | - | 8 (16.0) | 34 (68.0) | 8 (16.0) | - |
Gen | SNPs | Allele | n (%) | Degrees of CrossFit® Total (Level n) 1 | CrossFit® Athletes | |||
---|---|---|---|---|---|---|---|---|
Beginner (Level 0) < 270 kg | Intermediate (Level 1) 271–360 kg | Advanced (Level 2) 361–450 | Elite (Level 3) ≥ 451 | Competitors 2 (+360 kg/+1000 lb) | ||||
CYP2R1 | rs10741657 | AA | 17 (34.0) | 0 | 6 | 8 | 3 | 11 |
GA | 25 (50.0) | 2 | 18 | 4 | 1 | 5 | ||
GG | 8 (16.0) | 4 | 3 | 1 | 0 | 1 | ||
AA/GA/GG | 50 (100.0) | 6 | 27 | 13 | 4 | 17 | ||
GC | rs2282679 | TT | 19 (38.0) | 1 | 8 | 7 | 3 | 10 |
GT | 22 (44.0) | 3 | 15 | 4 | 0 | 4 | ||
GG | 9 (18.0) | 2 | 4 | 2 | 1 | 3 | ||
TT/GT/GG | 50 (100.0) | 6 | 27 | 13 | 4 | 17 | ||
VDR | rs2228570 | AA | 21 (42.0) | 0 | 11 | 6 | 4 | 10 |
GA | 18 (36.0) | 2 | 10 | 6 | 0 | 6 | ||
GG | 11 (22.0) | 4 | 6 | 1 | 0 | 1 | ||
AA/GA/GG | 50 (100.0) | 6 | 27 | 13 | 4 | 17 |
Gen | SNPs | Alleles | 25(OH)D (ng/mL), Mean (SD) | p-Value |
---|---|---|---|---|
CYP2R1 | rs10741657 | AA | 38.2 (11.2) | 0.076 |
GA | 26.9 (7.5) | |||
GG | 21.5 (4.7) | |||
GC | rs2282679 | TT | 42.6 (3.2) | <0.05 |
GT * | 25.4 (5.7) | |||
GG * | 21.6 (5.1) | |||
VDR | rs2228570 | AA | 35.9 (8.3) | <0.05 |
GA | 24.4 (5.6) | |||
GG $ | 18.9 (4.9) |
Gen (SNPs) | Full Cohort (n = 50) | |
---|---|---|
r | p-Valor | |
CYP2R1 (rs10741657) | ||
AA | 0.17 | 0.034 |
GA | 0.089 | 0.424 |
GG | −0.34 | 0.016 |
GC (rs2282679) | ||
TT | 0.29 | 0.041 |
GT | 0.07 | 0.526 |
GG | −0.33 | 0.012 |
VDR (rs2228570) | ||
AA | 0.15 | 0.030 |
GA | 0.06 | 0.172 |
GG | −0.43 | <0.001 |
Variable | Full Cohort (n = 50) | |
---|---|---|
OR (IC 95%) Crude | OR (IC 95%) Multivariate 1 | |
Body mass index (BMI) (kg/m2) | 1.00 (ref.) | -- |
VO2 max (mL/kg/min) | 1.62 (0.81–3.27) | 1.77 (0.54–3.65) |
Age (years) | 0.91 (0.71–1.18) | 0.92 (0.62–1.46) |
Free Fat Mass (kg) | 0.97 (0.84–1.191) | 1.14 (0.86–1.52) |
CYP2R1 (rs10741657) | 1.00 (ref.) | -- |
AA | 1.44 (0.74–2.87) | 2.01 (0.77–5.48) |
GA | 0.93 (0.782–1.05) | 1.02 (0.83–1.27) |
GG | 0.83 (0.74–0.93) | 0.76 (0.65–0.89) |
GC (rs2282679) | 1.00 (ref.) | -- |
TT | 3.69 (2.28–5.99) | 3.67 (2.11–6.41) |
GT | 0.83 (0.68–1.02) | 0.76 (0.49–1.21) |
GG | 0.67 (0.53–0.85) | 0.66 (0.51–0.89) |
VDR (rs2228570) | 1.00 (ref.) | -- |
AA | 2.93 (1.58–5.47) | 2.88 (1.43–5.92) |
GA | 1.01 (0.42–2.64) | 1.24 (0.29–6.11) |
GG | 0.53 (0.23–1.42) | 0.31 (0.12–1.27) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fernández-Lázaro, D.; Miguel, A.M.C.S.; Seco-Calvo, J.; Roche, E.; Fernandez-Lazaro, C.I. 25-Hydroxyvitamin D Serum Levels Linked to Single-Nucleotide Polymorphisms (SNPs) (rs2228570, rs2282679, rs10741657) in Sports Performance in CrossFit® Elite Athletes. Biol. Life Sci. Forum 2023, 29, 21. https://doi.org/10.3390/IECN2023-15799
Fernández-Lázaro D, Miguel AMCS, Seco-Calvo J, Roche E, Fernandez-Lazaro CI. 25-Hydroxyvitamin D Serum Levels Linked to Single-Nucleotide Polymorphisms (SNPs) (rs2228570, rs2282679, rs10741657) in Sports Performance in CrossFit® Elite Athletes. Biology and Life Sciences Forum. 2023; 29(1):21. https://doi.org/10.3390/IECN2023-15799
Chicago/Turabian StyleFernández-Lázaro, Diego, Ana M. Celorrio San Miguel, Jesús Seco-Calvo, Enrique Roche, and Cesar I. Fernandez-Lazaro. 2023. "25-Hydroxyvitamin D Serum Levels Linked to Single-Nucleotide Polymorphisms (SNPs) (rs2228570, rs2282679, rs10741657) in Sports Performance in CrossFit® Elite Athletes" Biology and Life Sciences Forum 29, no. 1: 21. https://doi.org/10.3390/IECN2023-15799
APA StyleFernández-Lázaro, D., Miguel, A. M. C. S., Seco-Calvo, J., Roche, E., & Fernandez-Lazaro, C. I. (2023). 25-Hydroxyvitamin D Serum Levels Linked to Single-Nucleotide Polymorphisms (SNPs) (rs2228570, rs2282679, rs10741657) in Sports Performance in CrossFit® Elite Athletes. Biology and Life Sciences Forum, 29(1), 21. https://doi.org/10.3390/IECN2023-15799