Biotransformation of Rice Husk into Phenolic Extracts by Combined Solid Fermentation and Enzymatic Treatment †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Rice husk Samples
2.2. Strains Obtainment
2.3. Strain Obtainment
2.3.1. Inoculation and Fermentation
2.3.2. Production of Enzymes
2.3.3. Analysis of Enzymatic Activity
2.3.4. Production of Functional Compounds from Lignin
2.3.5. Enzymatic Process
2.4. Characterization of the Obtained Product
2.4.1. Phenolic Compound Profile
2.4.2. Antioxidant Activity
2.4.3. Anti-Inflammatory Activity
2.4.4. Antibacterial Activity
2.5. Statistical Analysis
3. Results and Discussion
3.1. Protein and Phenolic Compounds Yield
3.2. Phenolic Compounds Profile
3.3. Bioactive Properties
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mattila, P.; Suonpää, K.; Piironen, V. Functional properties of edible mushrooms. Nutrition 2000, 16, 694–696. [Google Scholar] [CrossRef] [PubMed]
- Çağlarırmak, N. The nutrients of exotic mushrooms (Lentinula edodes and Pleurotus species) and an estimated approach to the volatile compounds. Food Chem. 2007, 105, 1188–1194. [Google Scholar] [CrossRef]
- Potumarthi, R.; Baadhe, R.R.; Nayak, P.; Jetty, A. Simultaneous pretreatment and sacchariffication of rice husk by Phanerochete chrysosporium for improved production of reducing sugars. Bioresour. Technol. 2013, 128, 113–117. [Google Scholar] [CrossRef] [PubMed]
- Bessada, S.M.F.; Barreira, J.C.M.; Barros, L.; Ferreira, I.C.F.R.; Oliveira, M.B.P.P. Phenolic profile and antioxidant activity of Coleostephus myconis (L.) Rchb.f.: An underexploited and highly disseminated species. Ind. Crops Prod. 2016, 89, 45–51. [Google Scholar] [CrossRef]
- Pinela, J.; Barros, L.; Carvalho, A.M.; Ferreira, I.C.F.R. Nutritional composition and antioxidant activity of four tomato (Lycopersicon esculentum L.) farmer’ varieties in Northeastern Portugal homegardens. Food Chem. Toxicol. 2012, 50, 829–834. [Google Scholar] [CrossRef] [PubMed]
- Lockowandt, L.; Pinela, J.; Roriz, C.L.; Pereira, C.; Abreu, R.M.V.; Calhelha, R.C.; Alves, M.J.; Barros, L.; Bredol, M.; Ferreira, I.C.F.R. Chemical features and bioactivities of cornflower (Centaurea cyanus L.) capitula: The blue flowers and the unexplored non-edible part. Ind. Crops Prod. 2019, 128, 496–503. [Google Scholar] [CrossRef]
- Abreu, R.M.V.; Ferreira, I.C.F.R.; Calhelha, R.C.; Lima, R.T.; Vasconcelos, M.H.; Adega, F.; Chaves, R.; Queiroz, M.-J.R.P. Anti-hepatocellular carcinoma activity using human HepG2 cells and hepatotoxicity of 6-substituted methyl 3-aminothieno [3,2-b]pyridine-2-carboxylate derivatives: In vitro evaluation, cell cycle analysis and QSAR studies. Eur. J. Med. Chem. 2011, 46, 5800–5806. [Google Scholar] [CrossRef] [PubMed]
- Barros, L.; Pereira, E.; Calhelha, R.C.; Dueñas, M.; Carvalho, A.M.; Santos-Buelga, C.; Ferreira, I.C.F.R. Bioactivity and chemical characterization in hydrophilic and lipophilic compounds of Chenopodium ambrosioides L. J. Funct. Foods 2013, 5, 1732–1740. [Google Scholar] [CrossRef]
- Souilem, F.; Fernandes, Â.; Calhelha, R.C.; Barreira, J.C.M.; Barros, L.; Skhiri, F.; Ferreira, I.C.F.R. Wild mushrooms and their mycelia as sources of bioactive compounds: Antioxidant, anti-inflammatory and cytotoxic properties. Food Chem. 2017, 230, 40–48. [Google Scholar] [CrossRef] [PubMed]
- Svobodova, B.; Barros, L.; Calhelha, R.C.; Heleno, S.; Alves, M.J.; Walcott, S.; Bittova, M.; Kuban, V.; Ferreira, I.C.F.R. Bioactive properties and phenolic profile of Momordica charantia L. medicinal plant growing wild in Trinidad and Tobago. Ind. Crops Prod. 2017, 95, 365–373. [Google Scholar] [CrossRef]
- Gao, Y.; Guo, X.; Liu, Y.; Mingwei, Z.; Ruifen, Z.; Lijun, Y.; Tong Rui, H.L. A full utilization of rice husk to evaluate phytochemical bioactivities and prepare cellulose nanocrystals. Sci. Rep. 2018, 8, 10482. [Google Scholar] [CrossRef] [PubMed]
- Ilhan-Ayisigi, E.; Budak, G.; Celiktas, M.S.; Sevimli-Gur, C.; Yesil-Celiktas, O. Anticancer activities of bioactive peptides derived from rice husk both in free and encapsulated form in chitosan. J. Ind. Eng. Chem. 2021, 103, 381–391. [Google Scholar] [CrossRef]
- Wisetkomolmat, J.; Arjin, C.; Hongsibsong, S.; Ruksiriwanich, W.; Niwat, C.; Tiyayon, P.; Jamjod, S.; Yamuangmorn, S.; Prom-U-Thai, C.; Sringarm, K. Antioxidant Activities and Characterization of Polyphenols from Selected Northern Thai Rice Husks: Relation with Seed Attributes. Rice Sci. 2023, 30, 148–159. [Google Scholar] [CrossRef]
- Lopretti, M.I.; Lecot Calandria, N.V.; Rodriguez, A.; Lluberas Nuñez, M.G.; Orozco, F.; Bolaños, L.; Vega-Baudrit, J. Biorefinery of rice husk to obtain functionalized bioactive compounds. J. Renew. Mater. 2019, 7, 313–324. [Google Scholar] [CrossRef]
- Pinela, J.; Omarini, A.B.; Stojković, D.; Barros, L.; Postemsky, P.D.; Calhelha, R.C.; Breccia, J.; Fernández-Lahore, M.; Soković, M.; Ferreira, I.C.F.R. Biotransformation of rice and sunflower side-streams by dikaryotic and monokaryotic strains of Pleurotus sapidus: Impact on phenolic profiles and bioactive properties. Food Res. Int. 2020, 132, 109094. [Google Scholar] [CrossRef] [PubMed]
- Tran, N.T.; Trang, T.T.N.; Ha, D.; Nguyen, T.H.; Nguyen, N.N.; Baek, K.; Nguyen, N.T.; Tran, C.K.; Tran, T.T.V.; Le, H.V.; et al. Highly Functional Materials Based on Nano-Lignin, Lignin, and Lignin/Silica Hybrid Capped Silver Nanoparticles with Antibacterial Activities. Biomacromolecules 2021, 22, 5327–5338. [Google Scholar] [CrossRef] [PubMed]
Enzyme | G. trabeum (UE/mL) | P. chrysosporium (UE/mg) |
---|---|---|
Lignin peroxidase | 80 | 50 |
Methoxyl hydrolase | 50 | 31 |
Peak | Rt (min) | λmax (nm) | Identification | Quantification (mg/g Extract) |
---|---|---|---|---|
1 | 11.46 | 276 | Veratryl alcohol | 70.4 ± 0.1 |
2 | 21.77 | 278/sh309 | Veratryl aldehyde | 23.3 ± 0.3 |
- | - | - | Total | 93.7 ± 0.2 |
Rice Husk | Positive Control | ||
---|---|---|---|
Antioxidant activity | Trolox | ||
TBARS inhibition (EC50, μg/mL) | 804 ± 39 | 5.8 ± 0.6 | |
OxHLIA (IC50, µg/mL) | 60 min Δt | 136 ± 5 | 19 ± 2 |
120 min Δt | 341 ± 17 | 41 ± 2 | |
Anti-inflammatory activity | Dexamethasone | ||
NO production inhibition (EC50, μg/mL) | >400 | 16 ± 1 | |
Cytotoxicity (GI50, μg/mL) | Ellipticine | ||
MCF-7 (breast carcinoma) | 310 ± 6 | 0.91 ± 0.04 | |
NCI-H460 (non-small cell lung carcinoma) | >400 | 1.03 ± 0.09 | |
HeLa (cervical carcinoma) | >400 | 1.91 ± 0.06 | |
HepG2 (hepatocellular carcinoma) | 239 ± 3 | 1.1 ± 0.2 | |
PLP2 (non-tumor porcine liver primary cells) | >400 | 3.2 ± 0.7 | |
Anti-inflammatory activity (IC50 values, μg/mL) | |||
RAW 264.7 (murine macrophage) | >400 | 16 ± 1 |
Rice Husk | Ampicillin | Imipenem | Vancomycin | |||||
---|---|---|---|---|---|---|---|---|
MIC | MBC | MIC | MBC | MIC | MBC | MIC | MBC | |
Gram-negative bacteria | ||||||||
Escherichia coli | 10 | >20 | <0.15 | <0.15 | <0.0078 | <0.0078 | n.t. | n.t. |
Klebsiella pneumoniae | 10 | >20 | 10 | 20 | <0.0078 | <0.0078 | n.t. | n.t. |
Morganella morganii | 10 | >20 | 20 | >20 | <0.0078 | <0.0078 | n.t. | n.t. |
Proteus mirabilis | 20 | >20 | <015 | <0.15 | <0.0078 | <0.0078 | n.t. | n.t. |
Pseudomonas aeruginosa | 10 | >20 | >20 | >20 | 0.5 | 1 | n.t. | n.t. |
Gram-positive bacteria | ||||||||
Enterococcus faecalis | 10 | >20 | <0.15 | <0.15 | n.t. | n.t. | <0.0078 | <0.0078 |
Listeria monocytogenes | 10 | >20 | <0.15 | <0.15 | <0.0078 | <0.0078 | n.t. | n.t. |
MRSA | 5 | >20 | <0.15 | <0.15 | n.t. | n.t. | 0.25 | 0.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dias, M.I.; Pinela, J.; Pires, T.C.S.P.; Mandim, F.; Barreiro, M.-F.; Barros, L.; Vega-Baudrit, J.R.; Ferreira, I.C.F.R.; Lopretti, M. Biotransformation of Rice Husk into Phenolic Extracts by Combined Solid Fermentation and Enzymatic Treatment. Biol. Life Sci. Forum 2023, 28, 12. https://doi.org/10.3390/blsf2023028012
Dias MI, Pinela J, Pires TCSP, Mandim F, Barreiro M-F, Barros L, Vega-Baudrit JR, Ferreira ICFR, Lopretti M. Biotransformation of Rice Husk into Phenolic Extracts by Combined Solid Fermentation and Enzymatic Treatment. Biology and Life Sciences Forum. 2023; 28(1):12. https://doi.org/10.3390/blsf2023028012
Chicago/Turabian StyleDias, Maria Inês, José Pinela, Tânia C. S. P. Pires, Filipa Mandim, Maria-Filomena Barreiro, Lillian Barros, José Roberto Vega-Baudrit, Isabel C. F. R. Ferreira, and Mary Lopretti. 2023. "Biotransformation of Rice Husk into Phenolic Extracts by Combined Solid Fermentation and Enzymatic Treatment" Biology and Life Sciences Forum 28, no. 1: 12. https://doi.org/10.3390/blsf2023028012
APA StyleDias, M. I., Pinela, J., Pires, T. C. S. P., Mandim, F., Barreiro, M. -F., Barros, L., Vega-Baudrit, J. R., Ferreira, I. C. F. R., & Lopretti, M. (2023). Biotransformation of Rice Husk into Phenolic Extracts by Combined Solid Fermentation and Enzymatic Treatment. Biology and Life Sciences Forum, 28(1), 12. https://doi.org/10.3390/blsf2023028012