Comprehensive Investigation of Antimicrobial and Antifungal Mechanistic Pathways of Bioactive Phytochemicals from Apple Pomace Using Molecular Docking †
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Roy, P.; Mohanty, A.K.; Dick, P.; Misra, M. A Review on the Challenges and Choices for Food Waste Valorization: Environmental and Economic Impacts. ACS Environ. Au 2023, 3, 58–75. [Google Scholar] [CrossRef] [PubMed]
- Vlad, C.C.; Păcularu-Burada, B.; Vasile, A.M.; Milea, Ș.A.; Bahrim, G.-E.; Râpeanu, G.; Stănciuc, N. Upgrading the Functional Potential of Apple Pomace in Value-Added Ingredients with Probiotics. Antioxidants 2022, 11, 2028. [Google Scholar] [CrossRef] [PubMed]
- Wu, B.; Gao, K.; Guo, Y.; Ma, Y.; Qiu, C.; Song, C.; Ma, H. Research Progress on Extraction of Active Components from Apple Processing Waste. Crit. Rev. Food Sci. Nutr. 2023. Online ahead of print. [Google Scholar] [CrossRef]
- Geană, E.-I.; Ciucure, C.T.; Ionete, R.E.; Ciocârlan, A.; Aricu, A.; Ficai, A.; Andronescu, E. Profiling of Phenolic Compounds and Triterpene Acids of Twelve Apple (Malus domestica Borkh.) Cultivars. Foods 2021, 10, 267. [Google Scholar] [CrossRef] [PubMed]
- Hussain, S.Z.; Naseer, B.; Qadri, T.; Fatima, T.; Bhat, T.A. Apples (Pyrus malus)—Morphology, Taxonomy, Composition and Health Benefits. In Fruits Grown in Highland Regions of the Himalayas: Nutritional and Health Benefits; Hussain, S.Z., Naseer, B., Qadri, T., Fatima, T., Bhat, T.A., Eds.; Springer International Publishing: Cham, Switzerland, 2021; pp. 17–34. ISBN 978-3-030-75502-7. [Google Scholar]
- Karantonis, H.C.; Tsoupras, A.; Moran, D.; Zabetakis, I.; Nasopoulou, C. Olive, Apple, and Grape Pomaces with Antioxidant and Anti-Inflammatory Bioactivities for Functional Foods. In Functional Foods and Their Implications for Health Promotion; Zabetakis, I., Tsoupras, A., Lordan, R., Ramji, D., Eds.; Academic Press: Cambridge, MA, USA, 2023; pp. 131–159. ISBN 978-0-12-823811-0. [Google Scholar]
- Kushkevych, I. Growth of Microorganisms In Nature. In Bacterial Physiology and Biochemistry; Kushkevych, I., Ed.; Progress in Biochemistry and Biotechnology; Academic Press: Cambridge, MA, USA, 2023; pp. 311–324. ISBN 978-0-443-18738-4. [Google Scholar]
- Mir, M.A.; Qadri, H.; Aisha, S.; Shah, A.H. Combinatorial Approach to Combat Drug Resistance in Human Pathogenic Fungi. In Human Pathogenic Microbes; Mir, M.A., Ed.; Developments in Microbiology; Academic Press: Cambridge, MA, USA, 2022; pp. 207–232. ISBN 978-0-323-96127-1. [Google Scholar]
- Ramaswamy, A.; Balasubramanian, S.; Rajagopalan, M. Biomolecular Talks-Part 1: A Theoretical Revisit on Molecular Modeling and Docking Approaches. In Molecular Docking for Computer-Aided Drug Design: Fundamentals, Techniques, Resources and Applications; Academic Press: Cambridge, MA, USA, 2021; pp. 31–55. ISBN 978-0-12-822312-3. [Google Scholar]
- Dhasmana, A.; Raza, S.; Jahan, R.; Lohani, M.; Arif, J.M. High-Throughput Virtual Screening (HTVS) of Natural Compounds and Exploration of Their Biomolecular Mechanisms: An In Silico Approach. In New Look to Phytomedicine: Advancements in Herbal Products as Novel Drug Leads; Academic Press: Cambridge, MA, USA, 2019; pp. 523–548. ISBN 978-0-12-814620-0. [Google Scholar]
- Hobbi, P.; Okoro, O.V.; Hajiabbas, M.; Hamidi, M.; Nie, L.; Megalizzi, V.; Musonge, P.; Dodi, G.; Shavandi, A. Chemical Composition, Antioxidant Activity and Cytocompatibility of Polyphenolic Compounds Extracted from Food Industry Apple Waste: Potential in Biomedical Application. Molecules 2023, 28, 675. [Google Scholar] [CrossRef] [PubMed]
- Gumul, D.; Ziobro, R.; Korus, J.; Kruczek, M. Apple Pomace as a Source of Bioactive Polyphenol Compounds in Gluten-Free Breads. Antioxidants 2021, 10, 807. [Google Scholar] [CrossRef] [PubMed]
- Ferrentino, G.; Morozova, K.; Mosibo, O.K.; Ramezani, M.; Scampicchio, M. Biorecovery of Antioxidants from Apple Pomace by Supercritical Fluid Extraction. J. Clean. Prod. 2018, 186, 253–261. [Google Scholar] [CrossRef]
- Schieber, A.; Hilt, P.; Streker, P.; Endreß, H.-U.; Rentschler, C.; Carle, R. A New Process for the Combined Recovery of Pectin and Phenolic Compounds from Apple Pomace. Innov. Food Sci. Emerg. Technol. 2003, 4, 99–107. [Google Scholar] [CrossRef]
- Waldbauer, K.; McKinnon, R.; Kopp, B. Apple Pomace as Potential Source of Natural Active Compounds. Planta Med. 2017, 83, 994–1010. [Google Scholar] [CrossRef] [PubMed]
- Cargnin, S.T.; Gnoatto, S.B. Ursolic Acid from Apple Pomace and Traditional Plants: A Valuable Triterpenoid with Functional Properties. Food Chem. 2017, 220, 477–489. [Google Scholar] [CrossRef] [PubMed]
- Lyu, F.; Luiz, S.F.; Azeredo, D.R.P.; Cruz, A.G.; Ajlouni, S.; Ranadheera, C.S. Apple Pomace as a Functional and Healthy Ingredient in Food Products: A Review. Processes 2020, 8, 319. [Google Scholar] [CrossRef]
- Kim, S.; Chen, J.; Cheng, T.; Gindulyte, A.; He, J.; He, S.; Li, Q.; Shoemaker, B.A.; Thiessen, P.A.; Yu, B.; et al. PubChem 2023 Update. Nucleic Acids Res. 2023, 51, D1373–D1380. [Google Scholar] [CrossRef]
- Berman, H.M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T.N.; Weissig, H.; Shindyalov, I.N.; Bourne, P.E. The Protein Data Bank. Nucleic Acids Res. 2000, 28, 235–242. [Google Scholar] [CrossRef] [PubMed]
- Berman, H.M. The Protein Data Bank. In Methods of Biochemical Analysis; SAGE Publications, Inc.: Thousand Oaks, CA, USA, 2003; Volume 44, pp. 181–198. [Google Scholar]
- Burley, S.K.; Bhikadiya, C.; Bi, C.; Bittrich, S.; Chen, L.; Crichlow, G.V.; Christie, C.H.; Dalenberg, K.; Di Costanzo, L.; Duarte, J.M.; et al. RCSB Protein Data Bank: Powerful New Tools for Exploring 3D Structures of Biological Macromolecules for Basic and Applied Research and Education in Fundamental Biology, Biomedicine, Biotechnology, Bioengineering and Energy Sciences. Nucleic Acids Res. 2021, 49, D437–D451. [Google Scholar] [CrossRef] [PubMed]
- Burley, S.K.; Bhikadiya, C.; Bi, C.; Bittrich, S.; Chen, L.; Crichlow, G.V.; Duarte, J.M.; Dutta, S.; Fayazi, M.; Feng, Z.; et al. RCSB Protein Data Bank: Celebrating 50 Years of the PDB with New Tools for Understanding and Visualizing Biological Macromolecules in 3D. Protein Sci. 2022, 31, 187–208. [Google Scholar] [CrossRef] [PubMed]
- Hargrove, T.Y.; Friggeri, L.; Wawrzak, Z.; Qi, A.; Hoekstra, W.J.; Schotzinger, R.J.; York, J.D.; Guengerich, F.P.; Lepesheva, G.I. Structural Analyses of Candida Albicans Sterol 14α-Demethylase Complexed with Azole Drugs Address the Molecular Basis of Azole-Mediated Inhibition of Fungal Sterol Biosynthesis. J. Biol. Chem. 2017, 292, 6728–6743. [Google Scholar] [CrossRef] [PubMed]
- Heaslet, H.; Harris, M.; Fahnoe, K.; Sarver, R.; Putz, H.; Chang, J.; Subramanyam, C.; Barreiro, G.; Miller, J.R. Structural Comparison of Chromosomal and Exogenous Dihydrofolate Reductase from Staphylococcus Aureus in Complex with the Potent Inhibitor Trimethoprim. Proteins Struct. Funct. Bioinform. 2009, 76, 706–717. [Google Scholar] [CrossRef] [PubMed]
- Nicola, G.; Tomberg, J.; Pratt, R.F.; Nicholas, R.A.; Davies, C. Crystal Structures of Covalent Complexes of β-Lactam Antibiotics with Escherichia Coli Penicillin-Binding Protein 5: Toward an Understanding of Antibiotic Specificity. Biochemistry 2010, 49, 8094–8104. [Google Scholar] [CrossRef] [PubMed]
- Trott, O.; Olson, A.J. AutoDock Vina: Improving the Speed and Accuracy of Docking with a New Scoring Function, Efficient Optimization, and Multithreading. J. Comput. Chem. 2010, 31, 455–461. [Google Scholar] [CrossRef] [PubMed]
- Dallakyan, S.; Olson, A.J. Small-Molecule Library Screening by Docking with PyRx. Methods Mol. Biol. 2015, 1263, 243–250. [Google Scholar] [CrossRef] [PubMed]
Ligands | Targets (BA) | |||
---|---|---|---|---|
Name | IDs | 5TZ1 | 2W9H | 3MZF |
Phenolic acids | ||||
Caffeic acid | 689043 | −6.6 | −6.3 | −5.4 |
Gallic acid | 370 | −5.7 | −5.6 | −5.2 |
Ferulic acid | 445858 | −6.2 | −6.4 | −5.4 |
p-Coumaric acid | 637542 | −6.5 | −6.2 | −5.1 |
Chlorogenic acid | 1794427 | −8.4 | −8.7 | −7.0 |
Syringic acid | 10742 | −5.5 | −5.7 | −5.4 |
Ellagic acid | 5281855 | −7.5 | −8.7 | −7.1 |
4-Hydroxybenzoic acid | 135 | −5.5 | −5.4 | −4.7 |
3,4-Dihydroxybenzoic acid | 72 | −5.8 | −5.4 | −5.2 |
Cinnamic acid | 444539 | −6.6 | −5.9 | −5.0 |
Polyphenols | ||||
(+)-Catechin | 9064 | −8.3 | −8.6 | −6.6 |
(−)-Epicatechin | 72276 | −8.2 | −8.3 | −6.6 |
Quercetin | 5280343 | −8.5 | −8.8 | −6.6 |
Kaempferol | 5280863 | −8.3 | −8.7 | −6.5 |
Rutin | 5280805 | −9.5 | −8.5 | −7.7 |
Myricetin | 5281672 | −7.6 | −8.7 | −6.6 |
Phloretin | 4788 | −7.7 | −8.0 | −6.3 |
Procyanidin | 107876 | −9.9 | −8.2 | −7.2 |
Phlorizin | 6072 | −8.4 | −8.8 | −7.0 |
Triterpenoids | ||||
Ursolic acid | 64945 | −9.5 | −6.1 | −5.9 |
Oleanolic acid | 10494 | −9.9 | −5.2 | −5.4 |
Reference compounds | ||||
Oteseconazole | 77050711/VT1 | −10.3 | N/A | N/A |
Trimethoprim | 5578/TOP | N/A | −7.4 | N/A |
Imipenem | 5288621/IM2 | N/A | N/A | −5.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tamaian, R.; Ciucure, C.-T.; Geană, E.-I. Comprehensive Investigation of Antimicrobial and Antifungal Mechanistic Pathways of Bioactive Phytochemicals from Apple Pomace Using Molecular Docking. Biol. Life Sci. Forum 2023, 26, 76. https://doi.org/10.3390/Foods2023-15034
Tamaian R, Ciucure C-T, Geană E-I. Comprehensive Investigation of Antimicrobial and Antifungal Mechanistic Pathways of Bioactive Phytochemicals from Apple Pomace Using Molecular Docking. Biology and Life Sciences Forum. 2023; 26(1):76. https://doi.org/10.3390/Foods2023-15034
Chicago/Turabian StyleTamaian, Radu, Corina-Teodora Ciucure, and Elisabeta-Irina Geană. 2023. "Comprehensive Investigation of Antimicrobial and Antifungal Mechanistic Pathways of Bioactive Phytochemicals from Apple Pomace Using Molecular Docking" Biology and Life Sciences Forum 26, no. 1: 76. https://doi.org/10.3390/Foods2023-15034
APA StyleTamaian, R., Ciucure, C. -T., & Geană, E. -I. (2023). Comprehensive Investigation of Antimicrobial and Antifungal Mechanistic Pathways of Bioactive Phytochemicals from Apple Pomace Using Molecular Docking. Biology and Life Sciences Forum, 26(1), 76. https://doi.org/10.3390/Foods2023-15034