Lead in Wild Edible Mushroom Species in Leicester, England †
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
Human Health Risks
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Schlecht, M.T.; Säumel, I. Wild growing mushrooms for the Edible City? Cadmium and lead content in edible mushrooms harvested within the urban agglomeration of Berlin, Germany. Environ. Pollut. 2015, 204, 298–305. [Google Scholar] [CrossRef] [PubMed]
- Mleczek, M.; Budka, A.; Siwulski, M.; Budzyńska, S.; Kalač, P.; Karolewski, Z.; Niedzielski, P. Anthropogenic contamination leads to changes in mineral composition of soil-and tree-growing mushroom species: A case study of urban vs. rural environments and dietary implications. Sci. Total Environ. 2022, 809, 151162. [Google Scholar] [CrossRef] [PubMed]
- Säumel, I.; Kotsyuk, I.; Hölscher, M.; Lenkereit, C.; Weber, F.; Kowarik, I. How healthy is urban horticulture in high traffic areas? Trace metal concentrations in vegetable crops from plantings within inner city neighbourhoods in Berlin, Germany. Environ. Pollut. 2012, 165, 124–132. [Google Scholar] [CrossRef] [PubMed]
- Dowlati, M.; Sobhi, H.R.; Esrafili, A.; FarzadKia, M.; Yeganeh, M. Heavy metals content in edible mushrooms: A systematic review, meta-analysis and health risk assessment. Trends Food Sci. 2021, 109, 527–535. [Google Scholar] [CrossRef]
- Fiket, Ž.; Medunić, G.; Furdek Turk, M.; Ivanić, M.; Kniewald, G. Influence of soil characteristics on rare earth fingerprints in mosses and mushrooms: Example of a pristine temperate rainforest (Slavonia, Croatia). Chemosphere 2017, 179, 92–100. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Wang, R.; Fan, L.; Chen, T.; Bai, Y.; Yu, Q.; Liu, Y. Assessment of multiple exposure to chemical elements and health risks among residents near Huodehong lead-zinc mining area in Yunnan, Southwest China. Chemosphere 2017, 174, 613–627. [Google Scholar] [CrossRef] [PubMed]
- Agnan, Y.; Séjalon-Delmas, N.; Claustres, A.; Probst, A. Investigation of spatial and temporal metal atmospheric deposition in France through lichen and moss bioaccumulation over one century. Sci. Total Environ. 2015, 529, 285–296. [Google Scholar] [CrossRef] [PubMed]
- Sgamma, T.; Masiero, E.; Mali, P.; Mahat, M.; Slater, A. Sequence-specific detection of Aristolochia DNA—A simple test for contamination of herbal products. Front. Plant Sci. 2018, 9, 1828. [Google Scholar] [CrossRef] [PubMed]
- Gil-Díaz, M.; Pinilla, P.; Alonso, J.; Lobo, M.C. Viability of a nanoremediation process in single or multi-metal (loid) contaminated soils. J. Hazard Mater. 2017, 321, 812–819. [Google Scholar] [CrossRef] [PubMed]
- US EPA. Risk Assessment Guidance for Superfund. Volume 1: Human Health Evaluation Manual (Part A); US EPA: Washington, DC, USA, 1989.
- US EPA. Risk Assessment Guidance for Superfund Volume I: Human Health Evaluation Manual (Part F, Supplemental Guidance for Inhalation Risk Assessment); US EPA: Washington, DC, USA, 2009.
- Rovira, J.; Nadal, M.; Schuhmacher, M.; Domingo, J.L. Environmental levels of PCDD/Fs and metals around a cement plant in Catalonia, Spain, before and after alternative fuel implementation. Assessment of human health risks. Sci. Total Environ. 2014, 485, 121–129. [Google Scholar] [CrossRef] [PubMed]
- Rovira, J.; Vilavert, L.; Nadal, M.; Schuhmacher, M.; Domingo, J.L. Temporal trends in the levels of metals, PCDD/Fs and PCBs in the vicinity of a municipal solid waste incinerator. Preliminary assessment of human health risks. Waste Manag. 2015, 43, 168–175. [Google Scholar] [CrossRef] [PubMed]
- Resongles, E.; Dietze, V.; Green, D.C.; Harrison, R.M.; Ochoa-Gonzalez, R.; Tremper, A.H.; Weiss, D.J. Strong evidence for the continued contribution of lead deposited during the 20th century to the atmospheric environment in London of today. Proc. Natl. Acad. Sci. USA 2021, 118, e2102791118. [Google Scholar] [CrossRef] [PubMed]
- MacKinnon, G.; MacKenzie, A.B.; Cook, G.T.; Pulford, I.D.; Duncan, H.J.; Scott, E.M. Spatial and temporal variations in Pb concentrations and isotopic composition in road dust, farmland soil and vegetation in proximity to roads since cessation of use of leaded petrol in the UK. Sci. Total Environ. 2011, 409, 5010–5019. [Google Scholar] [CrossRef] [PubMed]
- Chen, F.Y.; Jiang, S.J. Determination of Hg and Pb in fuels by inductively coupled plasma mass spectrometry using flow injection chemical vapor generation. Anal. Sci. 2009, 25, 1471–1476. [Google Scholar] [CrossRef]
- Meng, Y.; Cave, M.; Zhang, C. Identifying geogenic and anthropogenic controls on different spatial distribution patterns of aluminium, calcium and lead in urban topsoil of Greater London Authority area. Chemosphere 2020, 238, 124541. [Google Scholar] [CrossRef]
- EC (European Commission). Commission Regulation (EU) 2023/915 on Maximum Levels for Certain Contaminants in Food and Repealing Regulation (EC) No 1881/2006; pp. 103–157. Available online: https://eur-lex.europa.eu/eli/reg/2023/915/oj (accessed on 13 October 2023).
- Barraclough, D. UKSHS Report No.1, UK Soil and Herbage Pollutant Survey: Introduction and Summary; Environment Agency: Bristol, UK, 2007.
- CL:AIRE. Category 4 Screening Levels (C4SLs). Available online: https://www.claire.co.uk/projects-and-initiatives/category-4-screening-levels (accessed on 7 September 2023).
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jagdev, G.S.; Evans, M.D.; Sgamma, T.; Lobo-Bedmar, M.d.C.; Peña-Fernández, A. Lead in Wild Edible Mushroom Species in Leicester, England. Biol. Life Sci. Forum 2023, 26, 59. https://doi.org/10.3390/Foods2023-15035
Jagdev GS, Evans MD, Sgamma T, Lobo-Bedmar MdC, Peña-Fernández A. Lead in Wild Edible Mushroom Species in Leicester, England. Biology and Life Sciences Forum. 2023; 26(1):59. https://doi.org/10.3390/Foods2023-15035
Chicago/Turabian StyleJagdev, Gurminderjeet S., Mark D. Evans, Tiziana Sgamma, María del Carmen Lobo-Bedmar, and Antonio Peña-Fernández. 2023. "Lead in Wild Edible Mushroom Species in Leicester, England" Biology and Life Sciences Forum 26, no. 1: 59. https://doi.org/10.3390/Foods2023-15035
APA StyleJagdev, G. S., Evans, M. D., Sgamma, T., Lobo-Bedmar, M. d. C., & Peña-Fernández, A. (2023). Lead in Wild Edible Mushroom Species in Leicester, England. Biology and Life Sciences Forum, 26(1), 59. https://doi.org/10.3390/Foods2023-15035