The Potential Use of Synbiotic Combinations in Bread—A Review †
Abstract
:1. Introduction
2. The Potential Synbiotic Combinations in Breads
2.1. The Influence of Potential Synbiotic Combinations in Breads on Probiotic Viability
2.2. The Influence of Potential Symbiotic Combinations in Breads on Technological Properties
2.3. The Influence of Potential Synbiotic Combinations in Breads on Human Health
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tadesse, S. Probiotics, prebiotics and synbiotics as functional food ingredients: Production, health benefits and safety. J. Biol. Act. Prod. Nat. 2012, 2, 124–134. [Google Scholar] [CrossRef]
- González-Herrera, S.M.; Bermúdez-Quiñones, G.; Ochoa-Martínez, L.A.; Rutiaga-Quiñones, O.M.; Gallegos-Infante, J.A. Synbiotics: A technological approach in food applications. J. Food Sci. Technol. 2021, 58, 811–824. [Google Scholar] [CrossRef]
- Kumar, A.; Tomer, V.; Kaur, A.; Joshi, V.K. Synbiotics: A culinary art to creative health foods. Int. J. Food Ferment. Technol. 2015, 5, 1–14. [Google Scholar] [CrossRef]
- Chaturvedi, S.; Chakraborty, S. Review on potential non-dairy synbiotic beverages: A preliminary approach using legumes. Int. J. Food Sci. Technol. 2021, 56, 2068–2077. [Google Scholar] [CrossRef]
- Majzoobi, M.; Aghdam, M.B.K.; Eskandari, M.H.; Farahnaky, A. Quality and microbial properties of symbiotic bread produced by straight dough and frozen part-baking methods. J. Texture Stud. 2019, 50, 165–171. [Google Scholar] [CrossRef] [PubMed]
- Rashidinejad, A.; Bahrami, A.; Rehman, A.; Rezaei, A.; Babazadeh, A.; Singh, H.; Jafari, S.M. Co-encapsulation of probiotics with prebiotics and their application in functional/synbiotic dairy products. Crit. Rev. Food Sci. Nutr. 2022, 62, 2470–2494. [Google Scholar] [CrossRef] [PubMed]
- Zhao, N.; Yu, T.; Yan, F. Probiotic role and application of thermophilic Bacillus as novel food materials. Trends Food Sci. Technol. 2023, 138, 1–15. [Google Scholar] [CrossRef]
- Adibpour, N.; Hosseininezhad, M.; Pahlevanlo, A.; Hussain, M.A. A review on Bacillus coagulans as a spore-forming probiotic. Appl. Food Biotechnol. 2019, 61, 91–100. [Google Scholar] [CrossRef]
- Konuray, G.; Erginkaya, Z. Potential use of Bacillus coagulans in the food industry. Foods 2018, 7, 92. [Google Scholar] [CrossRef] [PubMed]
- Chan, M.Z.A.; Liu, S.Q. Fortifying foods with synbiotic and postbiotic preparations of the probiotic yeast, Saccharomyces boulardii. Curr. Opin. Food Sci. 2022, 43, 216–224. [Google Scholar] [CrossRef]
- Adedeji, O.E.; Okehie, I.D.; Ezekiel, O.O. Prebiotic influence of baobab pulp on the stability of Lactobacillus rhamnosus GG in white-pan bread. J. Food Meas. Charact. 2022, 16, 2221–2228. [Google Scholar] [CrossRef]
- Ezekiel, O.O.; Okehie, I.D.; Adedeji, O.E. Viability of Lactobacillus rhamnosus GG in simulated gastrointestinal conditions and after baking white pan bread at different temperature and time regimes. Curr. Microbiol. 2020, 77, 3869–3877. [Google Scholar] [CrossRef] [PubMed]
- Mirzamani, S.S.; Bassiri, A.R.; Tavakolipour, H.; Azizi, M.H.; Kargozari, M. Survival of fluidized bed encapsulated Lactobacillus acidophilus under simulated gastro-intestinal conditions and heat treatment during bread baking. J. Food Meas. Charact. 2021, 15, 5477–5484. [Google Scholar] [CrossRef]
- Ghasemi, L.; Nouri, L.; Mohammadi Nafchi, A.; Al-Hassan, A.A. The effects of encapsulated probiotic bacteria on the physicochemical properties, staling, and viability of probiotic bacteria in gluten-free bread. J. Food Process. Preserv. 2022, 46, e16359. [Google Scholar] [CrossRef]
- Pruksarojanakul, P.; Prakitchaiwattana, C.; Settachaimongkon, S.; Borompichaichartkul, C. Synbiotic edible film from konjac glucomannan composed of Lactobacillus casei-01® and Orafti®GR, and its application as coating on bread buns. J. Sci. Food Agric. 2020, 100, 2610–2617. [Google Scholar] [CrossRef] [PubMed]
- Gregirchak, N.; Stabnikova, O.; Stabnikov, V. Application of lactic acid bacteria for coating of wheat bread to protect it from microbial spoilage. Plant Foods Hum. Nutr. 2020, 75, 223–229. [Google Scholar] [CrossRef] [PubMed]
- Altamirano-Fortoul, R.; Moreno-Terrazas, R.; Quezada-Gallo, A.; Rosell, C.M. Viability of some probiotic coatings in bread and its effect on the crust mechanical properties. Food Hydrocoll. 2012, 29, 166–174. [Google Scholar] [CrossRef]
- Duc Thang, T.; Hanh Quyen, L.T.; Thuy Hang, H.T.; Thien Luan, N.; KimThuy, D.T.; Lieu, D.M. Survival survey of Lactobacillus acidophilus in additional probiotic bread. Turkish J. Agric. -Food Sci. Technol. 2019, 7, 588–592. [Google Scholar] [CrossRef]
- Zhang, L.; Chen, X.D.; Boom, R.M.; Schutyser, M.A.I. Survival of encapsulated Lactobacillus plantarum during isothermal heating and bread baking. Lwt 2018, 93, 396–404. [Google Scholar] [CrossRef]
- Seyedain-Ardabili, M.; Sharifan, A.; Tarzi, B.G. The production of synbiotic bread by microencapsulation. Food Technol. Biotechnol. 2016, 54, 52–59. [Google Scholar] [CrossRef]
- Zhang, D.; Rudjito, R.C.; Pietiäinen, S.; Chang, S.C.; Idström, A.; Evenäs, L.; Vilaplana, F.; Jiménez-Quero, A. Arabinoxylan supplemented bread: From extraction of fibers to effect of baking, digestion, and fermentation. Food Chem. 2023, 413, 135660. [Google Scholar] [CrossRef] [PubMed]
- Jagelaviciute, J.; Staniulyte, G.; Cizeikiene, D.; Basinskiene, L. Influence of enzymatic hydrolysis on composition and technological properties of apple pomace and its application for wheat bread making. Plant Foods Hum. Nutr. 2023, 78, 307–313. [Google Scholar] [CrossRef] [PubMed]
- Penhasi, A.; Reuveni, A.; Baluashvili, I. Microencapsulation may preserve the viability of probiotic bacteria during a baking process and digestion: A case study with Bifidobacterium animalis subsp. lactis in bread. Curr. Microbiol. 2021, 78, 576–589. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Li, M.; Li, Y.; Wang, X.; Li, Z.; Shi, J.; Huang, X.; Zhai, X.; Zou, X.; Gong, Y.; et al. Entrapment of probiotic (Bifidobacterium longum) in bilayer emulsion film with enhanced barrier property for improving viability. Food Chem. 2023, 423, 136300. [Google Scholar] [CrossRef] [PubMed]
- Tajadadi-Ebrahimi, M.; Bahmani, F.; Shakeri, H.; Hadaegh, H.; Hijijafari, M.; Abedi, F.; Asemi, Z. Effects of daily consumption of synbiotic bread on insulin metabolism and serum high-sensitivity C-reactive protein among diabetic patients: A double-blind, randomized, controlled clinical trial. Ann. Nutr. Metab. 2014, 65, 34–41. [Google Scholar] [CrossRef] [PubMed]
- Ghafouri, A.; Heshmati, J.; Heydari, I.; Shokouhi Shoormasti, R.; Estêvão, M.D.; Hoseini, A.S.; Morvaridzadeh, M.; Akbari-Fakhrabadi, M.; Farsi, F.; Zarrati, M.; et al. Effect of synbiotic bread containing lactic acid on blood lipids and apolipoproteins in patients with Type 2 diabetes: A randomized controlled trial. Food Sci. Nutr. 2022, 10, 4419–4430. [Google Scholar] [CrossRef] [PubMed]
- Shakeri, H.; Hadaegh, H.; Abedi, F.; Tajabadi-Ebrahimi, M.; Mazroii, N.; Ghandi, Y.; Asemi, Z. Consumption of synbiotic bread decreases triacylglycerol and VLDL levels while increasing HDL levels in serum from patients with Type-2 diabetes. Lipids 2014, 49, 695–701. [Google Scholar] [CrossRef]
- Bahmani, F.; Tajadadi-Ebrahimi, M.; Kolahdooz, F.; Mazouchi, M.; Hadaegh, H.; Jamal, A.S.; Mazroii, N.; Asemi, S.; Asemi, Z. The Consumption of synbiotic bread containing Lactobacillus sporogenes and inulin affects nitric oxide and malondialdehyde in patients with Type 2 diabetes mellitus: Randomized, double-blind, placebo-controlled trial. J. Am. Coll. Nutr. 2016, 35, 506–513. [Google Scholar] [CrossRef]
Product | Probiotic Source(s) | Prebiotic or Potential Prebiotic Source(s) | References |
---|---|---|---|
Bread | Bacillus coagulans | Inulin a | [5] |
Pan bread | Lacticaseibacillus rhamnosus | Baobab pulp a, high- amylose maize starch b, chitosan b | [11] |
Pan bread | Lacticaseibacillus rhamnosus | High-amylose maize starch b, cassava starch b, chitosan b | [12] |
Bread | Lactobacillus acidophilus | Xanthan gum b, gellan gum b, chitosan b | [13] |
Gluten-free “Barbari” bread | Lactobacillus acidophilus, Lactiplantibacillus plantarum | Tragacanth gum b, sago starch b | [14] |
Bread bun | Lacticaseibacillus casei | Inulin b, konjac glucomannan b | [15] |
Bread | Streptococcus salivarius subsp. thermophilus, Lactobacillus delbrueckii subsp. bulgaricus, Lactobacillus acidophilus, Acetobacter aceti, Bifidobacterium bifidum, Bifidobacterium adolescentis, Bifidobacterium longum, Bifidobacterium animalis, Lactobacillus acidophilus, Lactococcus lactis subsp. cremoris, Propionibacterium freudenreichii, Enterococcus faecium, Streptococcus salivarius subsp. thermophilus | Whey, glycerol b; high amylose maize starch b | [16] |
Bread | Lactobacillusacidophilus | Inulin a, b, carboxymethylcellulose,b, pectin a, b, fresh agave sap a, b | [17] |
Cream bread | Lactobacillusacidophilus | Xanthan gum b, maltodextrinb | [18] |
Bread | Lactiplantibacillus plantarum | Inulin b, gum arabic a,b, maltodextrin a, b | [19] |
Pan bread, hamburger bread | Lactobacillus acidophilus, Lacticaseibacillus casei | Inulin a, high-amylose maize starch b, chitosan b | [20] |
Bread | Bacteroides ovatus, Bifidobacterium adolescentis | Arabinoxylan a | [21] |
Bread | Lactobacillus acidophilus, Bifidobacterium animalis | Apple pomace a | [22] |
Bread | Bifidobacterium animalis spp. lactis | Hydroxypropyl cellulose b | [23] |
Steamed bread | Bifidobacterium longum | Gellan gum b | [24] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yazici, G.N.; Ozoglu, O.; Taspinar, T.; Yilmaz, I.; Ozer, M.S. The Potential Use of Synbiotic Combinations in Bread—A Review. Biol. Life Sci. Forum 2023, 26, 22. https://doi.org/10.3390/Foods2023-15081
Yazici GN, Ozoglu O, Taspinar T, Yilmaz I, Ozer MS. The Potential Use of Synbiotic Combinations in Bread—A Review. Biology and Life Sciences Forum. 2023; 26(1):22. https://doi.org/10.3390/Foods2023-15081
Chicago/Turabian StyleYazici, Gamze Nil, Ozum Ozoglu, Tansu Taspinar, Isilay Yilmaz, and Mehmet Sertac Ozer. 2023. "The Potential Use of Synbiotic Combinations in Bread—A Review" Biology and Life Sciences Forum 26, no. 1: 22. https://doi.org/10.3390/Foods2023-15081
APA StyleYazici, G. N., Ozoglu, O., Taspinar, T., Yilmaz, I., & Ozer, M. S. (2023). The Potential Use of Synbiotic Combinations in Bread—A Review. Biology and Life Sciences Forum, 26(1), 22. https://doi.org/10.3390/Foods2023-15081