Exudate Compounds of Origanum Species †
Abstract
:1. Introduction
2. Experiments
2.1. Plant Material
2.2. Preparation of Extracts
2.3. TLC Analysis
2.4. GC/MS Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
IBER | Institute of Biodiversity and Ecosystem Research |
GC/MS | Gas Chromatography–Mass Spectrometry |
TLC | Thin layer chromatography |
References
- Wollenweber, E.; Dietz, V.H. Occurrence and distribution of free flavonoid aglycones in plants. Phytochemistry 1981, 20, 869–932. [Google Scholar] [CrossRef]
- Wollenweber, E. On the distribution of exudate flavonoids among Angiosperms. Rev. Latinoamer. Quim. 1990, 21, 115–121. [Google Scholar]
- Onyilagha, J.; Grotewold, E. The biology and structural distribution of surface flavonoids. In Recent Research Developments in Plant Science; Pandalai, S.G., Ed.; Research Signpost: Trivandrum, India, 2004; Volume 2, pp. 53–71. [Google Scholar]
- Nikolova, M.; Ivancheva, S. Distribution of surface flavonoids in Bulgarian plants. Nat. Prod. Commun. 2006, 1, 1029–1035. [Google Scholar] [CrossRef]
- Wollenweber, E.; Schneider, H. Lipophilic exudates of Pteridaceae—Chemistry and chemotaxonomy. Biochem. Syst. Ecol. 2000, 28, 751–777. [Google Scholar] [CrossRef]
- Valant-Vetschera, K.M.; Bhutia, D.T.; Wollenweber, E. Exudate flavonoids of Primula spp.: Structural and biogenetic chemodiversity. Nat. Prod. Commun. 2009, 4, 365–370. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elser, D.; Gilli, C.; Brecker, L.; Valant-Vetschera, K.M. Striking diversification of exudate profiles in selected Primula lineages. Nat. Prod. Commun. 2016, 11, 585–590. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ibáñez, M.D.; Blázquez, M.A. Herbicidal value of essential oils from oregano-like flavour species. Food Agric. Immunol. 2017, 28, 1168–1180. [Google Scholar] [CrossRef] [Green Version]
- Bedini, S.; Farina, P.; Napoli, E.; Flamini, G.; Ascrizzi, R.; Verzera, A.; Conti, B.; Zappalà, L. Bioactivity of different chemotypes of Oregano essential oil against the Blowfly Calliphora vomitoria Vector of foodborne pathogens. Insects 2021, 12, 52. [Google Scholar] [CrossRef] [PubMed]
- Joshi, P.K.; Joshi, N.; Tewari, G.; Tandon, S. Chemical, biocidal and pharmacological aspects of Origanum species: A brief review. J. Indian Chem. Soc. 2015, 92, 1603–1615. [Google Scholar] [CrossRef]
- Dragoeva, A.; Stoyanova, Z.H.; Kalcheva, V.K. Allelopathic activity of micropropagated Origanum vulgare ssp. hirtum and its effect on mitotic activity. Allelopath. J. 2008, 22, 131–142. [Google Scholar]
- Grevsen, K.; Frettй, X.C.; Christensen, L.P. Content and composition of volatile terpenes, flavonoids and phenolic acids in Greek Oregano (Origanum vulgare L. ssp. hirtum) at different development stages during cultivation in cool temperate climate. Eur. J. Hort. Sci. 2009, 74, 193–203. [Google Scholar]
- Vokou, D.; Kokkini, S.; Bessiere, J.M. Geographic variation of Greek oregano (Origanum vulgare ssp. hirtum) essential oils. Biochem. Syst. Ecol. 1993, 21, 287–295. [Google Scholar] [CrossRef]
- Hartmann, T. Diversity and variability of plant secondary metabolism: A mechanistic view. Entomol. Exp. Appl. 1996, 80, 177–188. [Google Scholar] [CrossRef]
- Nikolova, M.; Aneva, I.; Zhelev, P.; Berkov, S. GC-MS based metabolite profiling and antioxidant activity of Balkan and Bulgarian endemic plants. Agric. Conspec. Sci. 2019, 84, 59–65. [Google Scholar]
- Tomás-Barberán, F.A.; Husain, S.Z.; Gil, M.I. The distribution of methylated flavones in the Lamiaceae. Biochem. Syst. Ecol. 1988, 16, 43–46. [Google Scholar] [CrossRef]
- Skoula, M.; Grayer, R.J.; Kite, G.C.; Veitch, N.C. Exudate flavones and flavanones in Origanum species and their interspecific variation. Biochem. Syst. Ecol. 2008, 36, 646–654. [Google Scholar] [CrossRef]
- Suntres, Z.E.; Coccimiglio, J.; Alipour, M. The bioactivity and toxicological actions of carvacrol. Crit. Food Sci. Nutr. 2015, 55, 304–318. [Google Scholar] [CrossRef] [PubMed]
- Luu, B.; De Aguilar, J.-L.G.; Girlanda-Junges, C. Cyclohexenonic long-chain fatty alcohols as neuronal growth stimulators. Molecules 2000, 5, 1439–1460. [Google Scholar] [CrossRef]
- Castilho, P.C.; Weinhold, T.S.; Gouveia, S.C.; Savluchinske-Feio, S.; Pereira, P.T.; Rodrigues, A.I.; Venâncio, F. Chemical composition and bioactivity of essential oils and extracts from oregano from madeira Island, Portugal. Acta Hortic. 2009, 826, 213–220. [Google Scholar] [CrossRef]
- Fattahi, M.; Cusido, R.M.; Khojasteh, A.; Bonfill, M.; Palazon, J. Xanthomicrol: A comprehensive review of its chemistry, distribution, biosynthesis and pharmacological activity. Mini Rev. Med. Chem. 2014, 14, 725–733. [Google Scholar] [CrossRef]
- Thapa, S.; Lv, M.; Xu, H. Acetylcholinesterase: A primary target for drugs and insecticides. Mini Rev. Med. Chem. 2017, 17, 665–1676. [Google Scholar] [CrossRef] [PubMed]
- Chung, Y.K.; Heo, H.J.; Kim, E.K.; Kim, H.K.; Huh, T.L.; Lim, Y.; Kim, S.K.; Shin, D.H. Inhibitory effect of ursolic acid purified from Origanum majorana L. on the acetylcholinesterase. Mol. Cells 2001, 11, 137–143. [Google Scholar] [PubMed]
No | Taxon | Description of Origin |
Od | O. dictamnus | Plant collection Kazanlak, source material (seeds) purchased from seed plot https://zelena-prolet.com/ |
Ov | O. vulgare | Natural population, Trigrad, Bulgaria CO1408 |
Oh1 | O. vulgare subsp. hirtum | Natural population, at the Struma valley BulgariaC01409 |
Oh2 | O. vulgare subsp. hirtum | Plant collection IBER, source material (seeds) from natural population http://www.iber.bas.bg/sites/default/files/projects/plantscollection |
Oh3 | O. vulgare subsp. hirtum | Plant collection Kazanlak, source material (seeds) purchased from Germany company https://www.pharmasaat.de |
Oh4 | O. vulgare subsp. hirtum | Plant collection Kazanlak, source material from natural population, northern Greek |
Oh5 | O. vulgare subsp. hirtum | Plant collection Kazanlak, Hebros variety |
Oh6 | O. vulgare subsp. hirtum | Plant collection Kazanlak, candidate variety |
Oh7 | O. vulgare subsp. hirtum | Plant collection Kazanlak, hybrid 1, seed progeny of O. vulgare subsp. hirtum obtained by free pollination of O. vulgare subsp. hirtum and O. vulgare |
Oh8 | O. vulgare subsp. hirtum | Plant collection Kazanlak, hybrid 2, seed progeny of O. vulgare subsp. hirtum obtained by free pollination of O. vulgare subsp. hirtum and O. vulgare |
Compounds | Od | Ov | Oh1 | Oh2 | Oh3 | Oh4 | Oh5 | Oh6 | Oh7 | Oh8 |
---|---|---|---|---|---|---|---|---|---|---|
Apigenin | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● |
Scutellarein 6,7-diMe | ● | ● | ● | ● | ||||||
Scutellarein 6,7,4ˈ-triMe | ● | |||||||||
Scutellarein 6,7,8-triMe (Xantomicrol) | ● | ● | ● | ● | ||||||
Luteolin | O | ● | ● | ● | ● | ● | ● | ● | ● | ● |
Naringenin | ● | ● | ● | ● | ● | ● | ● | ● | ||
Eriodictyol | o | ● | ● | ● | ● | ● | ● | ● | ● |
Compounds | Od | Ov | Oh1 | Oh2 | Oh3 | Oh4 | Oh5 | Oh6 | Oh7 | Oh8 |
---|---|---|---|---|---|---|---|---|---|---|
Monoterpenes | ||||||||||
Carvacrol | 13.6 | 0.9 | 49.2 | 14.7 | 30.8 | 5.1 | 29.1 | 31.6 | 39.1 | 14.5 |
Sesquiterpenes | ||||||||||
Copaene | 4.7 | |||||||||
Caryophyllene | 1.4 | 0.8 | 3.3 | 0.8 | 1.3 | |||||
Caryophyllene oxide | 2.7 | 0.4 | 0.4 | 0.8 | 0.3 | 0.1 | ||||
Fatty alcohols | ||||||||||
Tetradecanol | 1.9 | |||||||||
Octadecanol | 0.4 | 0.2 | 0.1 | |||||||
Hexadecanol | 1.1 | 0.2 | ||||||||
Tetracosanol | 1.7 | 0.6 | 1.2 | |||||||
Hexacosanol | 13.4 | 61.1 | 2.3 | 36.5 | 31.2 | 46.5 | 8.9 | 12.6 | 5.7 | 33.4 |
Fatty acids | ||||||||||
Hexadecanoic acid | 1.1 | 0.8 | 0.4 | 0.3 | 0.6 | 0.1 | 0.1 | |||
Octadecatrienoic acid | 0.7 | 0.1 | ||||||||
Fatty acid | 1.9 | |||||||||
Polyunsaturated fatty acid | 8.5 | 10.8 | 1.9 | |||||||
Unsaturated fatty acid | 1.8 | 1.2 | 1.1 | 8.5 | 22.5 | 0.6 | 9.8 | |||
Antifugal agents | ||||||||||
Polyene | 1.5 | 2.4 | 1.2 | |||||||
Phenolics | ||||||||||
Hydroquinone derivative | 3.4 | 19.6 | 0.5 | 0.4 | 0.4 | 5.6 | 3.2 | 7.6 | 1.6 | |
Triterpenes | ||||||||||
ß-Sitosterol | 1.4 | 0.2 | 0.6 | |||||||
Triterpene | 2.1 | 0.5 | 4.6 | 1.1 | 0.3 | 2.9 | 2.2 | 1.2 | 1.1 | 0.6 |
Oleanolic acid | 2.9 | |||||||||
Ursolic acid | 8.2 | 6.9 | 10.4 | 0.2 | 0.8 | 1.3 | 0.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nikolova, M.; Dzhurmanski, A.; Berkov, S. Exudate Compounds of Origanum Species . Biol. Life Sci. Forum 2021, 2, 19. https://doi.org/10.3390/BDEE2021-09408
Nikolova M, Dzhurmanski A, Berkov S. Exudate Compounds of Origanum Species . Biology and Life Sciences Forum. 2021; 2(1):19. https://doi.org/10.3390/BDEE2021-09408
Chicago/Turabian StyleNikolova, Milena, Anatoli Dzhurmanski, and Strahil Berkov. 2021. "Exudate Compounds of Origanum Species " Biology and Life Sciences Forum 2, no. 1: 19. https://doi.org/10.3390/BDEE2021-09408
APA StyleNikolova, M., Dzhurmanski, A., & Berkov, S. (2021). Exudate Compounds of Origanum Species . Biology and Life Sciences Forum, 2(1), 19. https://doi.org/10.3390/BDEE2021-09408