Determination of 4(5)-Methylimidazole in Sugar–Amino Acid Aqueous Model Systems by UPLC-Q-ToF-MS †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents
2.2. Standard Solutions
2.3. Preparation of Aqueous Model Systems
2.4. SPE Procedure
2.5. UPLC-Q-ToF-MS Analysis
2.6. Chromatographic Study
3. Results and Discussion
3.1. UPLC-Q-ToF-MS Method
3.2. Analysis of Aqueous Model Systems
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. 4-Methylimidazole. IARC Monogr. Eval. Carcinog. Risks Hum. 2003, 101, 447–459. [Google Scholar]
- Revelou, P.-K.; Xagoraris, M.; Alissandrakis, E.; Pappas, C.S.; Tarantilis, P.A. A Review of the Analytical Methods for the Determination of 4(5)-Methylimidazole in Food Matrices. Chemosensors 2021, 9, 322. [Google Scholar] [CrossRef]
- Radzisewski, B. Ueber Glyoxalin Und Seine Homologe. Ber. der Dtsch. Chem. Ges. 1882, 15, 2706–2708. [Google Scholar] [CrossRef]
- Moon, J.-K.; Shibamoto, T. Formation of Carcinogenic 4(5)-Methylimidazole in Maillard Reaction Systems. J. Agric. Food Chem. 2011, 59, 615–618. [Google Scholar] [CrossRef] [PubMed]
- Hermosín, I.; Chicón, R.M.; Dolores Cabezudo, M. Free Amino Acid Composition and Botanical Origin of Honey. Food Chem. 2003, 83, 263–268. [Google Scholar] [CrossRef]
- Zábrodská, B.; Vorlová, L. Adulteration of Honey and Available Methods for Detection—A Review. Acta Vet. Brno 2015, 83, 85–102. [Google Scholar] [CrossRef]
- Wu, C.; Wang, L.; Li, H.; Yu, S. Determination of 4(5)-Methylimidazole in Foods and Beverages by Modified QuEChERS Extraction and Liquid Chromatography-Tandem Mass Spectrometry Analysis. Food Chem. 2019, 280, 278–285. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Li, C. Simultaneous Analysis of 2-Methylimidazole, 4-Methylimidazole, and 5-Hydroxymethylfurfural Potentially Formed in Fermented Soy Sauce by “Quick, Easy, Cheap, Effective, Rugged, and Safe” Purification and UHPLC with Tandem Mass Spectrometry. J. Sep. Sci. 2019, 42, 501–508. [Google Scholar] [CrossRef] [PubMed]
- Feng, T.-T.; Wu, J.-H.; Liang, X.; Du, M.; Qin, L.; Xu, X.-B. Isotope Dilution Determination for the Trace Level of 4(5)-Methylimidazole in Beverages Using Dispersive Liquid-Liquid Microextraction Coupled with ESI-HPLC–MS/MS. Food Chem. 2018, 245, 687–691. [Google Scholar] [CrossRef] [PubMed]
- Jacobs, G.; Voorspoels, S.; Vloemans, P.; Fierens, T.; Van Holderbeke, M.; Cornelis, C.; Sioen, I.; De Maeyer, M.; Vinkx, C.; Vanermen, G. Caramel Colour and Process By-Products in Foods and Beverages: Part I—Development of a UPLC-MS/MS Isotope Dilution Method for Determination of 2-Acetyl-4-(1,2,3,4-Tetrahydroxybutyl)Imidazole (THI), 4-Methylimidazole (4-MEI) and 2-Methylimidazol (2-MEI). Food Chem. 2018, 255, 348–356. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Tang, X.; Wu, C.; Yu, S. Maillard Reaction in Chinese Household-Prepared Stewed Pork Balls with Brown Sauce: Potentially Risky and Volatile Products. Food Sci. Hum. Wellness 2021, 10, 221–230. [Google Scholar] [CrossRef]
- Mottier, P.; Mujahid, C.; Tarres, A.; Bessaire, T.; Stadler, R.H. Process-Induced Formation of Imidazoles in Selected Foods. Food Chem. 2017, 228, 381–387. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.; Wang, L.; Li, H.; Yu, S. Combination of Solid-Phase Extraction with Microextraction Techniques Followed by HPLC for Simultaneous Determination of 2-Methylimidazole and 4-Methylimidazole in Beverages. Food Chem. 2020, 305, 125389. [Google Scholar] [CrossRef] [PubMed]
- Jang, H.W.; Jiang, Y.; Hengel, M.; Shibamoto, T. Formation of 4(5)-Methylimidazole and Its Precursors, α-Dicarbonyl Compounds, in Maillard Model Systems. J. Agric. Food Chem. 2013, 61, 6865–6872. [Google Scholar] [CrossRef] [PubMed]
Sample | Model System | Concentration (μg mL−1) |
---|---|---|
1 | 60 g glucose + 100 mg proline | 1.1 |
2 | 60 g glucose + 20 mg phenylalanine | 0.4 |
3 | 60 g glucose + 10 mg tyrosine | 0.2 |
4 | 60 g glucose + 10 mg lysine | 1.3 |
5 | 70 g fructose + 100 mg proline | 3.5 |
6 | 70 g fructose + 20 mg phenylalanine | 2.5 |
7 | 70 g fructose + 10 mg tyrosine | 3.0 |
8 | 70 g fructose + 10 mg lysine | 0.9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Revelou, P.-K.; Xagoraris, M.; Alissandrakis, E.; Pappas, C.S.; Tarantilis, P.A. Determination of 4(5)-Methylimidazole in Sugar–Amino Acid Aqueous Model Systems by UPLC-Q-ToF-MS. Biol. Life Sci. Forum 2022, 18, 58. https://doi.org/10.3390/Foods2022-12957
Revelou P-K, Xagoraris M, Alissandrakis E, Pappas CS, Tarantilis PA. Determination of 4(5)-Methylimidazole in Sugar–Amino Acid Aqueous Model Systems by UPLC-Q-ToF-MS. Biology and Life Sciences Forum. 2022; 18(1):58. https://doi.org/10.3390/Foods2022-12957
Chicago/Turabian StyleRevelou, Panagiota-Kyriaki, Marinos Xagoraris, Eleftherios Alissandrakis, Christos S. Pappas, and Petros A. Tarantilis. 2022. "Determination of 4(5)-Methylimidazole in Sugar–Amino Acid Aqueous Model Systems by UPLC-Q-ToF-MS" Biology and Life Sciences Forum 18, no. 1: 58. https://doi.org/10.3390/Foods2022-12957
APA StyleRevelou, P. -K., Xagoraris, M., Alissandrakis, E., Pappas, C. S., & Tarantilis, P. A. (2022). Determination of 4(5)-Methylimidazole in Sugar–Amino Acid Aqueous Model Systems by UPLC-Q-ToF-MS. Biology and Life Sciences Forum, 18(1), 58. https://doi.org/10.3390/Foods2022-12957