Biological Amendments Improved Survival, Growth Traits, and Microbial Properties of Air-Layered Litchi chinensis Sonn. cv. Early Large Red Saplings †
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Survival and Growth Traits of Saplings
3.2. Rooting Characteristics
3.3. Microbial Population and Soil Enzymes
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sharma, S.D.; Kumar, P.; Gautam, H.R.; Bhardwaj, S.K. Isolation of arbuscular mycorrhizal fungi and Azotobacter chroococcum from local litchi orchards and evaluation of their activity in air-layers system. Sci. Hortic. 2009, 123, 117–123. [Google Scholar] [CrossRef]
- Sarita, B.P.; Kour, K.; Mehla, U.; Bhawana, S.S.; Jasrotia, A.; Bushan, B. Effect of different potting media on survival and growth of air layered litchi cv. Dehradun. Int. J. Curr. Microbio. App. Sci. 2019, 8, 1196–1204. [Google Scholar]
- Dinesh, R.; Anandaraj, M.; Kumar, A.; Srinivasan, V.; Bini, Y.K.; Subila, K.P.; Aravind, R.; Hamza, S. Effects of plant growth-promoting rhizobacteria and NPK fertilizers on biochemical and microbial properties of soils under ginger (Zingiber officinale) cultivation. Agric. Res. 2013, 2, 346–353. [Google Scholar] [CrossRef]
- Sasan, R.K.; Bidochka, M.J. The insect-pathogenic fungus Metarhizium robertsii (Clavicipitaceae) is also an endophyte that stimulates plant root development. Am. J. Bot. 2012, 99, 101–107. [Google Scholar] [CrossRef]
- Meyling, N.; Eilenberg, J. Ecology of the entomopathogenic fungi Beauveria bassiana and Metarhizium anisopliae in temperate agro-ecosystems: Potential for conservation biological control. Biol. Cont. 2007, 43, 145–155. [Google Scholar] [CrossRef]
- Hu, G.; St. Leger, R.J. Field studies using a recombinant mycoinsecticide (Metarhizium anisopliae) reveal that it is rhizosphere competent. Appl. Environ. Microbiol. 2002, 68, 6383–6387. [Google Scholar] [CrossRef]
- Bruck, D.J. Ecology of Metarhizium anisopliae in soilless potting media and the rhizosphere: Implications for pest management. Biol. Cont. 2005, 32, 155–163. [Google Scholar] [CrossRef]
- Behrooz, A.; Vahdati, K.; Rejali, F.; Lotfi, M.; Sarikhani, S.; Leslie, C.A. Arbuscular mycorrhiza and plant growth-promoting bacteria alleviate drought stress in walnut. HortScience 2019, 54, 1087–1092. [Google Scholar] [CrossRef]
- Forouzi, A.; Ghasemnezhad, A.; Ghorbani Nasrabad, R. Effects of growth stimulator microbes on growth and ions concentration of Stevia under salinity stress conditions. Int. J. Hortic. Sci. Technol. 2019, 6, 217–236. [Google Scholar]
- Abbott, L.K.; Robson, A.D. Factors influencing the occurrence of VA-mycorrhizae. Agric. Ecosyst. Environ. 1985, 35, 121–150. [Google Scholar] [CrossRef]
- Zaferanchi, S.; Salmasi, S.; Salehi Lisar, S.; Sarikhani, M. Influence of organics and biofertilizers on biochemical properties of Calendula officinalis L. Int. J. Hortic. Sci. Technol. 2019, 6, 125–136. [Google Scholar]
- Sharma, S.D.; Devi, M.; Kumar, P.; Bhardwaj, S.K.; Raj, H. Potential use of bio-organic and inorganic nutrient source dynamics for improving cropping behavior, soil biological properties, nutrient content and quality attributes of apricot. Commun. Soil Sci. Plant Anal. 2011, 42, 1659–1674. [Google Scholar] [CrossRef]
- Sharma, S.D.; Kumar, P.; Bhardwaj, S.K.; Chandel, A. Symbiotic effectiveness of arbuscular mycorrhizal technology and Azotobacterization for citrus nursery management under soil disinfestations and moisture conservation mulch practices. Sci. Hortic. 2011, 132, 27–36. [Google Scholar] [CrossRef]
- Zhou, X.G.; Yu, G.B.; Wu, F.Z. Effects of intercropping cucumber with onion or garlic on soil enzyme activities, microbial communities and cucumber yield. Eur. J. Soil Bio. 2011, 47, 279–287. [Google Scholar] [CrossRef]
Treatment | Survival (%) | Plant Height (cm) | Stem Diameter (mm) | Leaf Number Transplanted Layer−1 | Leaf Area (cm2) |
---|---|---|---|---|---|
T1 | 69.9 | 52.1 | 34.2 | 25.5 | 48.8 |
T2 | 89.2 | 62.5 | 42.8 | 31.2 | 53.6 |
T3 | 85.7 | 52.9 | 35.3 | 26.1 | 46.9 |
T4 | 78.2 | 55.6 | 32.8 | 22.4 | 42.8 |
T5 | 81.2 | 50.6 | 38.8 | 22.8 | 47.3 |
T6 | 78.3 | 53.2 | 31.4 | 20.6 | 42.8 |
Control (T7) | 66.2 | 46.9 | 22.3 | 16.2 | 39.2 |
LSD (p ≤ 0.05) | 9.03 | 4.08 | 5.82 | 2.97 | 3.22 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kumar, P.; Joshi, A.K.; Lata, S.; Gupta, B.K.; Sharma, N. Biological Amendments Improved Survival, Growth Traits, and Microbial Properties of Air-Layered Litchi chinensis Sonn. cv. Early Large Red Saplings. Biol. Life Sci. Forum 2022, 16, 34. https://doi.org/10.3390/IECHo2022-12491
Kumar P, Joshi AK, Lata S, Gupta BK, Sharma N. Biological Amendments Improved Survival, Growth Traits, and Microbial Properties of Air-Layered Litchi chinensis Sonn. cv. Early Large Red Saplings. Biology and Life Sciences Forum. 2022; 16(1):34. https://doi.org/10.3390/IECHo2022-12491
Chicago/Turabian StyleKumar, Pramod, Ajay Kumar Joshi, Suman Lata, Bhupesh Kumar Gupta, and Nisha Sharma. 2022. "Biological Amendments Improved Survival, Growth Traits, and Microbial Properties of Air-Layered Litchi chinensis Sonn. cv. Early Large Red Saplings" Biology and Life Sciences Forum 16, no. 1: 34. https://doi.org/10.3390/IECHo2022-12491
APA StyleKumar, P., Joshi, A. K., Lata, S., Gupta, B. K., & Sharma, N. (2022). Biological Amendments Improved Survival, Growth Traits, and Microbial Properties of Air-Layered Litchi chinensis Sonn. cv. Early Large Red Saplings. Biology and Life Sciences Forum, 16(1), 34. https://doi.org/10.3390/IECHo2022-12491