Image-Based Phenotyping of Shell Thickness Revealed Strong Association with Kernel Recovery in Macadamia †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials
2.2. Sample Preparation for Nut Characterisation
2.3. Manual Measurements
2.4. Image-Based Measurements
2.5. Trait Correlations
3. Results and Discussion
3.1. Extent of Variation across Genotypes
3.2. Extent of Variation within Genotypes
3.3. Trait Corellations Based on Manual Measurements of Shell Thickness
3.4. Correlations Based on Image-Based Measurements of Shell Thickness
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hardner, C.M.; Peace, C.; Lowe, A.J.; Neal, J.; Pisanu, P.; Powell, M.; Schmidt, A.; Spain, C.; Williams, K. Genetic resources and domestication of macadamia. Hortic. Rev. 2009, 35, 1–125. [Google Scholar]
- Topp, B.L.; Nock, C.J.; Hardner, C.M.; Alam, M.; O’Connor, K.M. Macadamia (Macadamia spp.) breeding. In Advances in Plant Breeding Strategies: Nut and Beverage Crops; Springer Nature: Cham, Switzerland, 2019; pp. 221–251. [Google Scholar]
- Alam, M.; Neal, J.; O’Connor, K.; Kilian, A.; Topp, B. Ultra-high-throughput DArTseq-based silicoDArT and SNP markers for genomic studies in macadamia. PLoS ONE 2018, 13, e0203465. [Google Scholar] [CrossRef] [PubMed]
- Baek, J.; Lee, E.; Kim, N.; Kim, S.L.; Choi, I.; Ji, H.; Chung, Y.S.; Choi, M.-S.; Moon, J.-K.; Kim, K.-H. High throughput phenotyping for various traits on soybean seeds using image analysis. Sensors 2020, 20, 248. [Google Scholar] [CrossRef] [PubMed]
- Whan, A.P.; Smith, A.B.; Cavanagh, C.R.; Ral, J.-P.F.; Shaw, L.M.; Howitt, C.A.; Bischof, L. GrainScan: A low cost, fast method for grain size and colour measurements. Plant Methods 2014, 10, 23. [Google Scholar] [CrossRef]
- Marzulli, M.I.; Raumonen, P.; Greco, R.; Persia, M.; Tartarino, P. Estimating tree stem diameters and volume from smartphone photogrammetric point clouds. For. Int. J. For. Res. 2020, 93, 411–429. [Google Scholar] [CrossRef]
- Schüler, P.; Speck, T.; Bührig-Polaczek, A.; Fleck, C. Structure-function relationships in Macadamia integrifolia seed coats–fundamentals of the hierarchical microstructure. PLoS ONE 2014, 9, e102913. [Google Scholar] [CrossRef]
- Mai, T.T.; Hardner, C.; Alam, M.; Henry, R.; Topp, B. Phenotypic Characterisation for Growth and Nut Characteristics Revealed the Extent of Genetic Diversity in Wild Macadamia Germplasm. Agriculture 2021, 11, 680. [Google Scholar] [CrossRef]
- O’Connor, K.; Hayes, B.; Hardner, C.; Alam, M.; Topp, B. Selecting for nut characteristics in macadamia using a genome-wide association study. HortScience 2019, 54, 629–632. [Google Scholar] [CrossRef]
- Tanabata, T.; Shibaya, T.; Hori, K.; Ebana, K.; Yano, M. SmartGrain: High-throughput phenotyping software for measuring seed shape through image analysis. Plant Physiol. 2012, 160, 1871–1880. [Google Scholar] [CrossRef]
- Komyshev, E.; Genaev, M.; Afonnikov, D. Afonnikov, Evaluation of the SeedCounter, a mobile application for grain phenotyping. Front. Plant Sci. 2017, 7, 1990. [Google Scholar] [CrossRef]
- Akpo, H.A.; Atindogbé, G.; Obiakara, M.C.; Adjinanoukon, A.B.; Gbedolo, M.; Lejeune, P.; Fonton, N.H. Image Data Acquisition for Estimating Individual Trees Metrics: Closer Is Better. Forests 2020, 11, 121. [Google Scholar] [CrossRef]
- Itakura, K.; Hosoi, F. Automatic method for segmenting leaves by combining 2D and 3D image-processing techniques. Appl. Opt. 2020, 59, 545–551. [Google Scholar] [CrossRef] [PubMed]
- Koeser, A.K.; Roberts, J.W.; Miesbauer, J.W.; Lopes, A.B.; Kling, G.J.; Lo, M.; Morgenroth, J. Testing the accuracy of imaging software for measuring tree root volumes. Urban For. Urban Green. 2016, 18, 95–99. [Google Scholar] [CrossRef]
- Liu, W.; Liu, C.; Jin, J.; Li, D.; Fu, Y.; Yuan, X. High-throughput phenotyping of morphological seed and fruit characteristics using X-ray computed tomography. Front. Plant Sci. 2020, 11, 601475. [Google Scholar] [CrossRef]
- Herbert, S.W.; Walton, D.A.; Wallace, H.M. Pollen-parent affects fruit, nut and kernel development of Macadamia. Sci. Hortic. 2019, 244, 406–412. [Google Scholar] [CrossRef]
- Fletcher, A.; Rennenberg, H.; Schmidt, S. Nitrogen partitioning in orchard-grown Macadamia integrifolia. Tree Physiol. 2010, 30, 244–256. [Google Scholar] [CrossRef]
- Arzani, K.; Mansouri-Ardakan, H.; Vezvaei, A.; Roozban, M.R. Morphological variation among Persian walnut (Juglans regia) genotypes from central Iran. N. Z. J. Crop Hortic. Sci. 2008, 36, 159–168. [Google Scholar] [CrossRef]
- Chand, L.; Singh, D.B.; Kumawat, K.L.; Rai, K.M.; Sharma, O.C.; Sharma, A.; Saini, P.; Handa, A.K. Genetic variability, correlation and path-coefficient studies among Persian walnut (Juglans regia) genotypes. Indian J. Agric. Sci. 2020, 90, 28–33. [Google Scholar]
- Chand, L.; Singh, D.B.; Sharma, O.C.; Mir, J.I.; Kumawat, K.L.; Rai, K.M.; Rather, S.A.; Qureshi, I.; Lal, S.; Dev, I. Lateral bearing trait in Indian walnut (Juglans regia L.) germplasm: A potential yield contributing trait in early age of the tree. Int. J. Bioresour. Stress Manag. 2017, 8, 605–6010. [Google Scholar] [CrossRef]
- Bak, T.; Karadeniz, T. Effects of branch number on quality traits and yield properties of European hazelnut (Corylus avellana L.). Agriculture 2021, 11, 437. [Google Scholar] [CrossRef]
- Cheng, W. Automation of Axisymmetric Drop Shape Analysis Using Digital Image Processing. Ph.D. Thesis, University of Toronto, Toronto, ON, Canada, 1990. [Google Scholar]
- Tsaftaris, S.A.; Minervini, M.; Scharr, H. Machine learning for plant phenotyping needs image processing. Trends Plant Sci. 2016, 21, 989–991. [Google Scholar] [CrossRef] [PubMed]
- Ni, X.; Li, C.; Jiang, H.; Takeda, F. Deep learning image segmentation and extraction of blueberry fruit traits associated with harvestability and yield. Hortic. Res. 2020, 7, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Laga, H.; Shahinnia, F.; Fleury, D. Image-based plant stomata phenotyping. In Proceedings of the 2014 13th International Conference on Control Automation Robotics & Vision (ICARCV), Singapore, 10–12 December 2014. [Google Scholar]
- Jayakody, H.; Petrie, P.; de Boer, H.J.; Whitty, M. A generalised approach for high-throughput instance segmentation of stomata in microscope images. Plant Methods 2021, 17, 1–13. [Google Scholar] [CrossRef] [PubMed]
Trait | Minimum | Maximum | Mean | Standard Deviation |
---|---|---|---|---|
WNW (g) | 2.03 | 13.40 | 6.63 | 1.77 |
SW (g) | 1.25 | 8.77 | 3.80 | 1.18 |
KW (g) | 0.28 | 5.89 | 2.85 | 0.79 |
KR (%) | 8.17 | 67.14 | 43.06 | 7.55 |
NLHM (mm) | 15.67 | 34.80 | 23.77 | 2.13 |
NEW (mm) | 16.95 | 36.11 | 24.58 | 2.45 |
STHM1 (mm) | 1.08 | 5.19 | 3.23 | 0.77 |
STHM2(mm) | 1.11 | 5.37 | 3.17 | 0.78 |
STHH1 (mm) | 0.83 | 6.61 | 3.97 | 0.78 |
STHH2 (mm) | 0.91 | 6.46 | 3.82 | 0.84 |
STHE1(mm) | 0.80 | 4.09 | 1.98 | 0.68 |
STHE2 (mm) | 0.83 | 4.62 | 1.92 | 0.70 |
Correlation Coefficient | SW | KW | WNW | KR |
---|---|---|---|---|
NLHM | 0.75 **** | 0.67 **** | 0.82 **** | −0.17 **** |
NEW | 0.69 **** | 0.75 **** | 0.80 **** | −0.03 ns |
STHM1 | 0.69 **** | 0.24 **** | 0.57 **** | −0.54 **** |
STHM2 | 0.71 **** | 024 **** | 0.58 **** | −0.55 **** |
STHH1 | 0.63 **** | 0.12 *** | 0.49 **** | −0.56 **** |
STHH2 | 0.66 **** | 0.14 **** | 0.52 **** | −0.56 **** |
STHE1 | 0.64 **** | 0.05 ns | 0.45 **** | −0.59 **** |
STHE2 | 0.66 **** | 0.06 ns | 0.46 **** | −0.58 **** |
Correlation Coefficient | SW | KW | WNW | KR |
---|---|---|---|---|
OA (mm2) | 0.93 **** | 0.80 **** | 0.97 **** | −0.54 **** |
OP (mm) | 0.93 **** | 0.79 **** | 0.97 **** | −0.56 **** |
OW (mm) | 0.91 **** | 0.79 **** | 0.95 **** | −0.55 **** |
OL (mm) | 0.90 **** | 0.76 **** | 0.94 **** | −0.56 **** |
OC | −0.05 ns | 0.12 ns | 0.01 ns | 0.16 * |
OR | −0.06 ns | −0.02 ns | −0.05 ns | 0.07 ns |
IA (mm2) | 0.58 **** | 0.88 **** | 0.73 **** | −0.06 ns |
IP (mm) | 0.61 **** | 0.88 **** | 0.76 **** | −0.11 ns |
IW (mm) | 0.60 **** | 0.82 **** | 0.73 **** | −0.16 * |
IL (mm) | 0.56 **** | 0.80 **** | 0.70 **** | −0.07 ns |
IC | −0.18 ** | 0.19 ** | −0.07 ns | 0.37 **** |
IR | −0.08 ns | 0.06 ns | −0.04 ns | 0.22 ** |
NSA (mm2) | 0.96 **** | 0.47 **** | 0.88 **** | −0.82 **** |
ANT (mm) | 0.89 **** | 0.30 **** | 0.77 **** | −0.87 **** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nguyen, T.D.; Topp, B.; Alam, M. Image-Based Phenotyping of Shell Thickness Revealed Strong Association with Kernel Recovery in Macadamia. Biol. Life Sci. Forum 2022, 11, 95. https://doi.org/10.3390/IECPS2021-12037
Nguyen TD, Topp B, Alam M. Image-Based Phenotyping of Shell Thickness Revealed Strong Association with Kernel Recovery in Macadamia. Biology and Life Sciences Forum. 2022; 11(1):95. https://doi.org/10.3390/IECPS2021-12037
Chicago/Turabian StyleNguyen, Truong Duc, Bruce Topp, and Mobashwer Alam. 2022. "Image-Based Phenotyping of Shell Thickness Revealed Strong Association with Kernel Recovery in Macadamia" Biology and Life Sciences Forum 11, no. 1: 95. https://doi.org/10.3390/IECPS2021-12037
APA StyleNguyen, T. D., Topp, B., & Alam, M. (2022). Image-Based Phenotyping of Shell Thickness Revealed Strong Association with Kernel Recovery in Macadamia. Biology and Life Sciences Forum, 11(1), 95. https://doi.org/10.3390/IECPS2021-12037