Quercus suber Transcriptome Analyses: Identification of Genes and SNPs Related to Cork Quality †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and RNA Isolation
2.2. Reads Pre-Processing and Mapping
2.3. Differential Expression Analysis
2.4. Variant Calling and Annotation
3. Results and Discussion
3.1. Differential Expression Analysis
3.2. SNPs analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Silva, V.M.C.; Sabino, M.A.; Fernandes, E.; Correlo, V.M.; Boesel, L.F.; Reis, R.L. Cork: Properties, capabilities and applications. Int. Mater. Rev. 2005, 50, 345–365. [Google Scholar] [CrossRef] [Green Version]
- Pereira, H. Variability of the chemical composition of cork. BioResources 2013, 8, 2246–2256. [Google Scholar] [CrossRef]
- Soler, M.; Serra, O.; Molinas, M.; Huguet, G.; Fluch, S.; Figueras, M. A Genomic Approach to Suberin Biosynthesis and Cork Differentiation. Plant Physiol. 2007, 144, 419–431. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pereira, H.; Lopes, F.; Graça, J. The Evaluation of the Quality of Cork Planks by Image Analysis. Holzforschung 1996, 50, 111–115. [Google Scholar] [CrossRef]
- Teixeira, R.T.; Fortes, A.M.; Pinheiro, C.; Pereira, H. Comparison of good- and bad-quality cork: Application of high-throughput sequencing of phellogenic tissue. J. Exp. Bot. 2014, 65, 4887–4905. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ricardo, C.P.; Martins, I.; Francisco, R.; Sergeant, K.; Pinheiro, C.; Campos, A.; Renaut, J.; Fevereiro, P. Proteins associated with cork formation in Quercus suber L. stem tissues. J. Proteom. 2011, 74, 1266–1278. [Google Scholar] [CrossRef] [PubMed]
- Ramos, A.; Usié, A.; Barbosa, P.; Barros, P.M.; Capote, T.; Chaves, I.; Simões, F.; Abreu, I.; Carrasquinho, I.; Faro, C.; et al. The draft genome sequence of cork oak. Sci. Data 2018, 5, 180069. [Google Scholar] [CrossRef] [PubMed]
- Almeida, T.; Pinto, G.; Correia, B.; Santos, C.; Gonçalves, S. QsMYB1 expression is modulated in response to heat and drought stresses and during plant recovery in Quercus suber. Plant Physiol. Biochem. 2013, 73, 274–281. [Google Scholar] [CrossRef]
- Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 2014, 30, 2114–2120. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dobin, A.; Davis, C.A.; Schlesinger, F.; Drenkow, J.; Zaleski, C.; Jha, S.; Batut, P.; Chaisson, M.; Gingeras, T.R. STAR: Ultrafast universal RNA-seq aligner. Bioinformatics 2013, 29, 15–21. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Handsaker, B.; Wysoker, A.; Fennell, T.; Ruan, J.; Homer, N.; Marth, G.; Abecasis, G.; Durbin, R.; 1000 Genome Project Data Processing Subgroup. The Sequence Alignment/Map format and SAMtools. Bioinformatics 2009, 25, 2078–2079. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Robinson, M.D.; McCarthy, D.J.; Smyth, G.K. edgeR: A Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 2010, 26, 139–140. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N.S.; Wang, J.T.; Ramage, D.; Amin, N.; Schwikowski, B.; Ideker, T. Cytoscape: A Software Environment for Integrated Models of Biomolecular Interaction Networks. Genome Res. 2003, 13, 2498–2504. [Google Scholar] [CrossRef]
- Maere, S.; Heymans, K.; Kuiper, M. BiNGO: A Cytoscape plugin to assess overrepresentation of Gene Ontology categories in Biological Networks. Bioinformatics 2005, 21, 3448–3449. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, K.; Li, M.; Hakonarson, H. ANNOVAR: Functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res. 2010, 38, e164. [Google Scholar] [CrossRef] [PubMed]
- Pla, M.; Huguet, G.; Verdaguer, D.; Puigderrajols, P.; Llompart, B.; Nadal, A.; Molinas, M. Stress proteins co-expressed in suberized and lignified cells and in apical meristems. Plant Sci. 1998, 139, 49–57. [Google Scholar] [CrossRef]
- Puigderrajols, P.; Jofré, A.; Mir, G.; Pla, M.; Verdaguer, D.; Huguet, G.; Molinas, M. Developmentally and stress-induced small heat shock proteins in cork oak somatic embryos. J. Exp. Bot. 2002, 53, 1445–1452. [Google Scholar] [CrossRef] [Green Version]
- Lin, B.L.; Wang, J.S.; Liu, H.C.; Chen, R.W.; Meyer, Y.; Barakat, A.; Delseny, M. Genomic analysis of the Hsp70 superfamily in Arabidopsis thaliana. Cell Stress Chaperones 2001, 6, 201–208. [Google Scholar] [CrossRef]
- Javot, H.; Lauvergeat, V.; Santoni, V.; Martin-Laurent, F.; Güçlü, J.; Vinh, J.; Heyes, J.; Franck, K.I.; Schäffner, A.R.; Bouchez, D.; et al. Role of a Single Aquaporin Isoform in Root Water Uptake. Plant Cell 2003, 15, 509–522. [Google Scholar] [CrossRef] [Green Version]
- Yoshida, N.; Yanai, Y.; Chen, L.; Kato, Y.; Hiratsuka, J.; Miwa, T.; Sung, Z.R.; Takahashi, S. EMBRYONIC FLOWER2, a Novel Polycomb Group Protein Homolog, Mediates Shoot Development and Flowering in Arabidopsis. Plant Cell 2001, 13, 2471–2481. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, D.-H.; Kang, J.-G.; Yang, S.-S.; Chung, K.-S.; Song, P.-S.; Park, C.-M. A Phytochrome-Associated Protein Phosphatase 2A Modulates Light Signals in Flowering Time Control in Arabidopsis. Plant Cell 2002, 14, 3043–3056. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, C.-K.; Lo, P.-C.; Huang, L.-F.; Wu, S.-J.; Yeh, C.-H.; Lu, C.-A. A single-repeat MYB transcription repressor, MYBH, participates in regulation of leaf senescence in Arabidopsis. Plant Mol. Biol. 2015, 88, 269–286. [Google Scholar] [CrossRef] [PubMed]
- Dai, M.; Xue, Q.; Mccray, T.; Margavage, K.; Chen, F.; Lee, J.-H.; Nezames, C.D.; Guo, L.; Terzaghi, W.; Wan, J.; et al. The PP6 Phosphatase Regulates ABI5 Phosphorylation and Abscisic Acid Signaling in Arabidopsis. Plant Cell 2013, 25, 517–534. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pinheiro, C.; Wienkoop, S.; de Almeida, J.F.; Brunetti, C.; Zarrouk, O.; Planchon, S.; Gori, A.; Tattini, M.; Ricardo, C.P.; Renaut, J.; et al. Phellem Cell-Wall Components Are Discriminants of Cork Quality in Quercus suber. Front. Plant Sci. 2019, 10, 944. [Google Scholar] [CrossRef] [PubMed] [Green Version]
gBQ | gGQ | Common | Total | |
---|---|---|---|---|
Biological Process | 24 | 34 | 7 | 50 |
Cellular Component | 8 | 17 | 5 | 20 |
Molecular Function | 13 | 11 | 6 | 18 |
Annotation | LogFC | Exclusive Expression |
---|---|---|
thiamine thiazole synthase, chloroplastic (THI 1) | 5.53 | NO |
late embryogenesis abundant protein (LEA5) | 2.46 | NO |
dehydrin (ERD10) | 2.56 | NO |
17.5 kda class I heat shock protein (HSP17.5-E) | 3.73 | NO |
17.6 kda class I heat shock protein 3 (HSP17.6C) | 2.27 | NO |
26.5 kda heat shock protein, mitochondrial (HSP26.5) | 2.18 | NO |
22.7 kda class iv heat shock protein (HSP22.7) | 2.57 | NO |
heat shock 70 kda protein 15 (HSP70-15) | −7.18 | NO |
Protein srg1 (SRG1) | 8.21 | YES |
Aquaporin PIP2.2 (PIP2-2) | 8.32 | YES |
Polycomb group protein embryonic flower (2EMF2) | −8.63 | YES |
Phytochrome-associated serine/threonine-protein phosphatase 3 (FYPP-3) | −9.57 | YES |
Transcription factor KUA1 | −9.56 | YES |
Acetyl-coenzyme A carboxylase carboxyl transferase subunit beta (AccD) | −4.31 and −4.52 | NO |
Nr. of SNPs | |
---|---|
SNPs | 1,296,640 |
SNPs filtered Q30-DP7 (High-quality SNPs) | 159,248 |
SNPs in DEGs | 8078 (in 149 genes) |
Exonic and Non-synonymous SNPs | 879 (in 124 genes) |
SNPs in DEGs in BQ | 469 (in 67 genes) |
SNPs in DEGs in GQ | 410 (in 40 genes) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mendes, B.; Usié, A.; Capote, T.; Meireles, B.; Almeida, T.; Marum, L.; Gonçaves, S.; Ramos, A. Quercus suber Transcriptome Analyses: Identification of Genes and SNPs Related to Cork Quality. Biol. Life Sci. Forum 2022, 11, 76. https://doi.org/10.3390/IECPS2021-11916
Mendes B, Usié A, Capote T, Meireles B, Almeida T, Marum L, Gonçaves S, Ramos A. Quercus suber Transcriptome Analyses: Identification of Genes and SNPs Related to Cork Quality. Biology and Life Sciences Forum. 2022; 11(1):76. https://doi.org/10.3390/IECPS2021-11916
Chicago/Turabian StyleMendes, Bruna, Ana Usié, Tiago Capote, Brígida Meireles, Tânia Almeida, Liliana Marum, Sónia Gonçaves, and António Ramos. 2022. "Quercus suber Transcriptome Analyses: Identification of Genes and SNPs Related to Cork Quality" Biology and Life Sciences Forum 11, no. 1: 76. https://doi.org/10.3390/IECPS2021-11916
APA StyleMendes, B., Usié, A., Capote, T., Meireles, B., Almeida, T., Marum, L., Gonçaves, S., & Ramos, A. (2022). Quercus suber Transcriptome Analyses: Identification of Genes and SNPs Related to Cork Quality. Biology and Life Sciences Forum, 11(1), 76. https://doi.org/10.3390/IECPS2021-11916