Phenolic Compounds as Biomarkers of Interactions between the Endophyte Klebsiella oxytoca and the Common Duckweed, Lemna minor L. †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Growth Conditions
2.2. Bacterial Strain Klebsiella oxytoca 14bg Access. No. MK212915 and Growth Conditions
2.3. Co-Cultivation of K. oxytoca and Duckweed
2.4. Liquid Chromatography–Mass Spectrometry (LC–MS)
2.5. Bibliographical Analysis
3. Results
3.1. Change of Color of MS Medium
3.2. Bibliographical Analysis
3.3. LC–MS
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Acosta, K.; Appenroth, K.J.; Borisjuk, L.; Edelman, M.; Heinig, U.; Jansen, M.A.K.; Oyama, T.; Pasaribu, B.; Schubert, I.; Sorrels, S.; et al. Return of the Lemnaceae: Duckweed as a model plant system in the genomics and postgenomics era. Plant Cell 2021, 33, 3207–3234. [Google Scholar] [CrossRef] [PubMed]
- Yoneda, Y.; Yamamoto, K.; Makino, A.; Tanaka, Y.; Meng, X.-Y.; Hashimoto, J.; Shin-ya, K.; Satoh, N.; Fujie, M.; Toyama, T.; et al. Novel Plant-Associated Acidobacteria Promotes Growth of Common Floating Aquatic Plants, Duckweeds. Microorganisms 2021, 9, 1133. [Google Scholar] [CrossRef] [PubMed]
- Radulović, O.; Stanković, S.; Stanojević, O.; Vujčić, Z.; Dojnov, B.; Trifunović-Momčilov, M.; Marković, M. Antioxidative Responses of Duckweed (Lemna minor L.) to Phenol and Rhizosphere-Associated Bacterial Strain Hafnia paralvei C32-106/3. Antioxidants 2021, 10, 1719. [Google Scholar] [CrossRef] [PubMed]
- Radulović, O.; Stanković, S.; Uzelac, B.; Tadić, V.; Trifunović-Momčilov, M.; Lozo, J.; Marković, M. Phenol Removal Capacity of the Common Duckweed (Lemna minor L.) and Six Phenol-Resistant Bacterial Strains from Its Rhizosphere: In Vitro Evaluation at High Phenol Concentrations. Plants 2020, 9, 599. [Google Scholar] [CrossRef] [PubMed]
- Harzing, A.W. Publish or Perish. 2007. Available online: http://www.harzing.com/pop.htm (accessed on 22 August 2021).
- Kim, S.; Kim, H.; Park, A.; Park, J.H.; Lee, Y.; Kim, Y.J.; Choi, E.M. The antioxidant response of Lemna paucicostata upon phenol exposure. Toxicol. Environ. Health Sci. 2015, 7, 73–81. [Google Scholar] [CrossRef]
- Bertani, I.; Kojic, M.; Venturi, V. Regulation of the p-hydroxybenzoic acid hydroxylase gene (pobA) in plant growth-promoting Pseudomonas putida WCS358. Microbiology 2001, 147, 1611–1620. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boerjan, W.; Ralph, J.; Baucher, M. Lignin biosynthesis. Annu. Rev. Plant Biol. 2003, 54, 519–546. [Google Scholar] [CrossRef] [PubMed]
- Salehi, B.; Venditti, A.; Sharifi-Rad, M.; Kręgiel, D.; Sharifi-Rad, J.; Durazzo, A.; Martins, N. The Therapeutic Potential of Apigenin. Int. Mol. Sci. 2019, 20, 1305. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ray, S.; Mishra, S.; Bisen, K.; Singh, S.; Sarma, B.K.; Singh, H.B. Modulation in phenolic root exudate profile of Abelmoschus esculentus expressing activation of defense pathway. Microbiol. Res. 2018, 207, 100–107. [Google Scholar] [CrossRef]
- Sudharshana, T.N.; Venkatesh, H.N.; Nayana, B.; Manjunath, K.; Mohana, D.C. Anti-microbial and anti-mycotoxigenic activities of endophytic Alternaria alternata isolated from Catharanthus roseus (L.). Mycology 2019, 10, 40–48. [Google Scholar] [CrossRef] [PubMed] [Green Version]
No. | tR, min | Compound Name | Molecular Formula, [M–H]– | Calculated Mass, [M–H]– | Exact Mass, [M–H]– | Δ ppm | MS2 Fragments, (% Base Peak) | MS3 Fragments, (% Base Peak) | MS4 Fragments, (% Base Peak) |
---|---|---|---|---|---|---|---|---|---|
1 | 5.16 | Luteolin 6,8-di-C-hexoside | C30H25O14– | 609.14611 | 609.14380 | 3.79 | 591(10), 519(30), 489(100), 429(10), 399(20), 369(15) | 471(10), 399(30), 369(100) | 341(100), 313(40), 298(30) |
2 | 5.66 | p-Hydroxybenzoic acid | C7H5O3– | 137.02442 | 137.02415 | 1.97 | 109(10), 93(100) | – | – |
3 | 5.91 | Caffeic acid | C9H7O4– | 179.03498 | 179.03513 | −0.84 | 135(100) | 135(60), 117(15), 107(100), 91(55), 79(15) | – |
4 | 6.24 | Apigenin 6-C-(2′′-pentosyl)hexoside | C26H27O14– | 563.14063 | 563.13922 | 2.50 | 443(10), 431(10), 413(100), 341(10), 311(20), 293(40) | 293(100) | 275(20), 265(60), 249(90), 221(40), 175(100), 173(70) |
5 | 6.60 | p-Coumaric acid | C9H7O3– | 163.04007 | 163.03984 | 1.41 | 119(100) | 119(60), 101(20), 93(25), 91(100), 72(10) | – |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Radulović, O.; Gašić, U.; Marković, M. Phenolic Compounds as Biomarkers of Interactions between the Endophyte Klebsiella oxytoca and the Common Duckweed, Lemna minor L. Biol. Life Sci. Forum 2022, 11, 52. https://doi.org/10.3390/IECPS2021-11924
Radulović O, Gašić U, Marković M. Phenolic Compounds as Biomarkers of Interactions between the Endophyte Klebsiella oxytoca and the Common Duckweed, Lemna minor L. Biology and Life Sciences Forum. 2022; 11(1):52. https://doi.org/10.3390/IECPS2021-11924
Chicago/Turabian StyleRadulović, Olga, Uroš Gašić, and Marija Marković. 2022. "Phenolic Compounds as Biomarkers of Interactions between the Endophyte Klebsiella oxytoca and the Common Duckweed, Lemna minor L." Biology and Life Sciences Forum 11, no. 1: 52. https://doi.org/10.3390/IECPS2021-11924
APA StyleRadulović, O., Gašić, U., & Marković, M. (2022). Phenolic Compounds as Biomarkers of Interactions between the Endophyte Klebsiella oxytoca and the Common Duckweed, Lemna minor L. Biology and Life Sciences Forum, 11(1), 52. https://doi.org/10.3390/IECPS2021-11924