Volatile Organic Compounds Influence Pine Processionary Moth Behavior †
Abstract
:1. Introduction
2. Emission of Tree Volatiles due to Herbivory
3. Reports on Volatiles Involving the Pine Processionary Moth
4. Effect of Tree Volatiles on the Pine Processionary Moth
5. Effect of the Pine Processionary Moth on Tree Volatiles
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Paiva, M.R.; Mateus, E.; Santos, M.H.; Branco, M.R. Pine volatiles mediate host selection for oviposition by Thaumetopoea pityocampa (Lep., Notodontidae). J. Appl. Entomol. 2011, 135, 195–203. [Google Scholar] [CrossRef]
- Masutti, L.; Battisti, A. Thaumetopoea pityocampa (Den. & Schiff.) in Italy Bionomics and perspectives of integrated control. J. Appl. Entomol. 1990, 110, 229–234. [Google Scholar] [CrossRef]
- Faiola, C.; Taipale, D. Impact of insect herbivory on plant stress volatile emissions from trees: A synthesis of quantitative measurements and recommendations for future research. Atmos. Environ. X 2020, 5, 100060. [Google Scholar] [CrossRef]
- López-Goldar, X.; Lundborg, L.; Borg-Karlson, A.K.; Zas, R.; Sampedro, L. Resin acids as inducible chemical defences of pine seedlings against chewing insects. PLoS ONE 2020, 15, e0232692. [Google Scholar] [CrossRef]
- Faria, J.M.S. Control of Thaumetopoea pityocampa and T. wilkinsoni with essential oils and respective volatile monoterpenoids. In Proceedings of the 1st International Electronic Conference on Agronomy, Online, 3–17 May 2021. [Google Scholar]
- Zhang, Q.H.; Schlyter, F.; Battisti, A.; Birgersson, G.; Anderson, P. Electrophysiological responses of Thaumetopoea pityocampa females to host volatiles: Implications for host selection of active and inactive terpenes. Anzeiger Schadlingskd. 2003, 76, 103–107. [Google Scholar] [CrossRef]
- Tiberi, R.; Niccoli, A.; Curini, M.; Epifano, F.; Marcotullio, M.C.; Rosati, O. The role of the monoterpene composition in Pinus spp. needles, in host selection by the pine processionary caterpillar, Thaumetopoea pityocampa. Phytoparasitica 1999, 27, 263–272. [Google Scholar] [CrossRef]
- Panzavolta, T.; Tellini Florenzano, G.; Tiberi, R. Pine monoterpene deterrence of pine processionary moth oviposition. Urban For. Urban Green. 2015, 14, 538–543. [Google Scholar] [CrossRef]
- Jactel, H.; Birgersson, G.; Andersson, S.; Schlyter, F. Non-host volatiles mediate associational resistance to the pine processionary moth. Oecologia 2011, 166, 703–711. [Google Scholar] [CrossRef] [PubMed]
- Petrakis, P.V.; Roussis, V.; Papadimitriou, D.; Vagias, C.; Tsitsimpikou, C. The effect of terpenoid extracts from 15 pine species on the feeding behavioural sequence of the late instars of the pine processionary caterpillar Thaumetopoea pityocampa. Behav. Processes 2005, 69, 303–322. [Google Scholar] [CrossRef] [PubMed]
- Moreira, X.; Lundborg, L.; Zas, R.; Carrillo-Gavilán, A.; Borg-Karlson, A.K.; Sampedro, L. Inducibility of chemical defences by two chewing insect herbivores in pine trees is specific to targeted plant tissue, particular herbivore and defensive trait. Phytochemistry 2013, 94, 113–122. [Google Scholar] [CrossRef] [PubMed]
- Foti, V.; Araniti, F.; Manti, F.; Alicandri, E.; Giuffrè, A.M.; Bonsignore, C.P.; Castiglione, E.; Sorgonà, A.; Covino, S.; Paolacci, A.R.; et al. Profiling volatile terpenoids from calabrian pine stands infested by the pine processionary moth. Plants 2020, 9, 1362. [Google Scholar] [CrossRef] [PubMed]
- Achotegui-Castells, A.; Llusià, J.; Hódar, J.A.; Peñuelas, J. Needle terpene concentrations and emissions of two coexisting subspecies of Scots pine attacked by the pine processionary moth (Thaumetopoea pityocampa). Acta Physiol. Plant. 2013, 35, 3047–3058. [Google Scholar] [CrossRef]
Compound | Activity 1 |
---|---|
Monoterpene hydrocarbon | |
cis-β-ocimene | Weak antennae response |
trans-β-ocimene | Strong antennae response |
(−)-limonene | Weak antennae response, inhibited oviposition, may influence feeding |
(+)-limonene | No antennae response, inhibited oviposition, may influence feeding |
terpinolene | Strong antennae response, may influence feeding |
α-pinene | No antennae response, may influence feeding |
β-myrcene | Strong antennae response, may influence feeding |
β-phellandrene | Strong antennae response |
(−)-β-pinene | No antennae response, inhibited oviposition, may influence feeding |
(+)-β-pinene | No antennae response, may influence feeding |
γ-terpinene | Weak antennae response |
δ-3-carene | <no antennae response |
Sesquiterpene hydrocarbon | |
germacrene D | May influence feeding |
β-caryophyllene | May influence feeding |
Oxygenated sesquiterpene | |
caryophyllene oxide | May influence feeding |
eudesmol | May influence feeding |
Branched chiral alcohol | |
2-ethyl-1-hexanol | Weak antennae response |
Phenylpropanoid | |
methyl salicylate | Strong antennae response, inhibited male attraction to pheromones |
Compound | Pine Species 1 |
---|---|
Increase | |
limonene | P. pinaster |
β-pinene | P. pinaster and P. radiata |
cis-β-ocimene | P. nigra |
bornyl acetate | P. pinaster and P. nigra |
Decrease | |
limonene | P. radiata |
β-caryophyllene | P. sylvestris |
germacrene D | P. sylvestris |
bicyclogermacrene | P. sylvestris |
α-pinene | P. sylvestris |
cis-β-ocimene | P. sylvestris |
borneol | P. sylvestris |
Epi-bicyclosesquiphelandrene | P. sylvestris |
γ-muurolene | P. sylvestris |
δ-cadinene | P. sylvestris |
τ-cadinol | P. sylvestris |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Faria, J.M.S.; Rodrigues, A.M.; Bhattacharya, S. Volatile Organic Compounds Influence Pine Processionary Moth Behavior. Biol. Life Sci. Forum 2022, 10, 4. https://doi.org/10.3390/IECE-10527
Faria JMS, Rodrigues AM, Bhattacharya S. Volatile Organic Compounds Influence Pine Processionary Moth Behavior. Biology and Life Sciences Forum. 2022; 10(1):4. https://doi.org/10.3390/IECE-10527
Chicago/Turabian StyleFaria, Jorge M. S., Ana M. Rodrigues, and Sriradha Bhattacharya. 2022. "Volatile Organic Compounds Influence Pine Processionary Moth Behavior" Biology and Life Sciences Forum 10, no. 1: 4. https://doi.org/10.3390/IECE-10527
APA StyleFaria, J. M. S., Rodrigues, A. M., & Bhattacharya, S. (2022). Volatile Organic Compounds Influence Pine Processionary Moth Behavior. Biology and Life Sciences Forum, 10(1), 4. https://doi.org/10.3390/IECE-10527