Dynamics and Stability of Double-Walled Carbon Nanotube Cantilevers Conveying Fluid in an Elastic Medium
Abstract
:1. Introduction
2. Equations of Motion and Boundary Conditions
3. Approximate Solutions
4. Numerical Implementation
5. Results and Discussion
5.1. Geometric and Intertube Interaction Characteristics
- Wall thickness of the tubes h: nm = m;
- Initial distance between the tubes : nm = m;
- Inside radius of the inner tube : nm = m;
- Inside radius of the outer tube : nm = m;
- Length of the tubes L: m ÷ m.
5.2. Material Characteristics
- Young’s modulus of the SWCNTs E: 1 TPa ÷ 4 TPa;
- Mass density of the SWCNTs : kg/m3;
- Mass density of the fluid M: kg/m3.
5.3. Critical Flow Velocity versus the Ratio of the Tube Length L to Its Inner Radius R1
6. Concluding Remarks
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
MEMS | Microelectromechanical systems |
NEMS | Nanoelectromechanical systems |
SWCNT | Single-walled carbon nanotube |
DWCNT | Double-walled carbon nanotube |
MWCNT | Multi-walled carbon nanotube |
References
- Pelesko, J.A.; Bernstein, D.H. Modeling MEMS and NEMS; Chapman & HallCRC: Boca Raton, FL, USA, 2003. [Google Scholar]
- DiVentra, M.; Evoy, S.; Heflin, J.R. (Eds.) Introduction to Nanoscale Science and Technology; Nanostructure Science and Technology; Springer: Boston, MA, USA, 2004. [Google Scholar] [CrossRef]
- Gibson, R.F.; Ayorinde, E.O.; Wen, Y.F. Vibrations of carbon nanotubes and their composites: A review. Compos. Sci. Technol. 2007, 67, 1–28. [Google Scholar] [CrossRef]
- Rafii-Tabar, H. Computational Physics of Carbon Nanotubes; Cambridge University Press: Cambridge, UK, 2008; p. 493. [Google Scholar]
- Magrab, E.B. Vibrations of Elastic Systems with Applications to MEMS and NEMS; Springer: Dordrecht, The Netherlands, 2012. [Google Scholar] [CrossRef]
- Elishakoff, I.; Pentaras, D.; Dujat, K.; Versaci, C.; Muscolino, G.; Storch, J.; Bucas, S.; Challamel, N.; Natsuki, T.; Zhang, Y.; et al. Carbon Nanotubes and Nanosensors; Wiley: Hoboken, NJ, USA, 2012. [Google Scholar] [CrossRef]
- Goddard, W.A.; Brenner, D.; Lyshevski, S.E.; Iafrate, G.J. (Eds.) Handbook of Nanoscience, Engineering, and Technology; CRC Press: Boca Raton, FL, USA, 2018. [Google Scholar] [CrossRef]
- Yakobson, B.I.; Brabec, C.J.; Bernholc, J. Nanomechanics of carbon tubes: Instabilities beyond linear response. Phys. Rev. Lett. 1996, 76, 2511–2514. [Google Scholar] [CrossRef] [PubMed]
- Tuzun, R.E.; Noid, D.W.; Sumpter, B.G.; Merkle, R.C. Dynamics of fluid flow inside carbon nanotubes. Nanotechnology 1996, 7, 241. [Google Scholar] [CrossRef]
- Holt, J.K. Carbon nanotubes and nanofluidic transport. Adv. Mater. 2009, 21, 3542–3550. [Google Scholar] [CrossRef]
- Sears, K.; Dumée, L.; Schütz, J.; She, M.; Huynh, C.; Hawkins, S.; Duke, M.; Gray, S. Recent developments in carbon nanotube membranes for water purification and gas separation. Materials 2010, 3, 127. [Google Scholar] [CrossRef]
- Majumder, M.; Chopra, N.; Andrews, R.; Hinds, B.J. Enhanced flow in carbon nanotubes. Nature 2005, 438, 44. [Google Scholar] [CrossRef] [PubMed]
- Holt, J.K.; Park, H.G.; Wang, Y.; Stadermann, M.; Artyukhin, A.B.; Grigoropoulos, C.P.; Noy, A.; Bakajin, O. Fast mass transport through sub-2-nanometer carbon nanotubes. Science 2006, 312, 1034–1037. [Google Scholar] [CrossRef]
- Whitby, M.; Quirke, N. Fluid flow in carbon nanotubes and nanopipes. Nat. Nanotechnol. 2007, 2, 87–94. [Google Scholar] [CrossRef] [PubMed]
- Yoon, J.; Ru, C.; Mioduchowski, A. Vibration and instability of carbon nanotubes conveying fluid. Compos. Sci. Technol. 2005, 65, 1326–1336. [Google Scholar] [CrossRef]
- Yoon, J.; Ru, C.Q.; Mioduchowski, A. Flow-induced flutter instability of cantilever carbon nanotubes. Int. J. Solids Struct. 2006, 43, 3337–3349. [Google Scholar] [CrossRef]
- Reddy, C.D.; Lu, C.; Rajendran, S.; Liew, K.M. Free vibration analysis of fluid-conveying single-walled carbon nanotubes. Appl. Phys. Lett. 2007, 90, 133122. [Google Scholar] [CrossRef]
- Reddy, C.D.; Lu, C. Does natural frequency quantify the mass flow rate of single-walled carbon nanotubes? J. Appl. Phys. 2008, 103, 123509. [Google Scholar] [CrossRef]
- Wang, L.; Ni, Q.; Li, M. Buckling instability of double-wall carbon nanotubes conveying fluid. Comput. Mater. Sci. 2008, 44, 821–825. [Google Scholar] [CrossRef]
- He, X.Q.; Wang, C.M.; Yan, Y.; Zhang, L.X.; Nie, G.H. Pressure dependence of the instability of multiwalled carbon nanotubes conveying fluids. Arch. Appl. Mech. 2008, 78, 637–648. [Google Scholar] [CrossRef]
- Wang, L. Dynamical behaviors of double-walled carbon nanotubes conveying fluid accounting for the role of small length scale. Comput. Mater. Sci. 2009, 45, 584–588. [Google Scholar] [CrossRef]
- Tounsi, A.; Heireche, H.; Benzair, A.; Mechab, I. Comment on “Vibration analysis of fluid-conveying double-walled carbon nanotubes based on nonlocal elastic theory”. J. Phys. Condens. Matter 2009, 21, 448001. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.L.; Chang, W.J. Vibration analysis of fluid-conveying double-walled carbon nanotubes based on nonlocal elastic theory. J. Phys. Condens. Matter 2009, 21, 115302. [Google Scholar] [CrossRef] [PubMed]
- Yan, Y.; Wang, W.; Zhang, L. Dynamical behaviors of fluid-conveyed multi-walled carbon nanotubes. Appl. Math. Model. 2009, 33, 1430–1440. [Google Scholar] [CrossRef]
- Yan, Y.; He, X.Q.; Zhang, L.X.; Wang, C.M. Dynamic behavior of triple-walled carbon nanotubes conveying fluid. J. Sound Vib. 2009, 319, 1003–1018. [Google Scholar] [CrossRef]
- Kuang, Y.; He, X.; Chen, C.; Li, G. Analysis of nonlinear vibrations of double-walled carbon nanotubes conveying fluid. Comput. Mater. Sci. 2009, 45, 875–880. [Google Scholar] [CrossRef]
- Natsuki, T.; Lei, X.W.; Ni, Q.Q.; Endo, M. Free vibration characteristics of double-walled carbon nanotubes embedded in an elastic medium. Phys. Lett. A 2010, 374, 2670–2674. [Google Scholar] [CrossRef]
- Askari, H.; Younesian, D.; Esmailzadeh, E.; Cveticanin, L. Nonlocal effect in carbon nanotube resonators: A comprehensive review. Adv. Mech. Eng. 2017, 9, 1–24. [Google Scholar] [CrossRef]
- Bourrières, F.J. Sur un Phénomène d’Oscillation Auto-Entretenue en Mécanique des Fluids Réels; Publications Scientifiques et Techniques du Ministère de l’Air; E. Blondel La Rougery: Paris, France, 1939; Volume 147. [Google Scholar]
- Niordson, F. Vibrations of a Cylindrical Tube Containing Flowing Fluid; Kungliga Tekniska Högskolans Handlingar; Lindstahl: Stockholm, Sverige, 1953; Volume 73. [Google Scholar]
- Benjamin, T.B. Dynamics of a system of articulated pipes conveying fluid. I. Theory. Proc. R. Soc. Lond. A 1961, 261, 457–486. [Google Scholar] [CrossRef]
- Gregory, R.W.; Païdoussis, M.P. Unstable oscillation of tubular cantilevers conveying fluid. I. Theory. Proc. R. Soc. Lond. A 1966, 293, 512–527. [Google Scholar] [CrossRef]
- Paidoussis, M.P. Fluid-Structure Interactions. Slender Structures and Axial Flow, 2nd ed.; Academic Press: London, UK, 2014; Volume 1. [Google Scholar]
- Paidoussis, M.P. Fluid-Structure Interactions. Slender Structures and Axial Flow, 2nd ed.; Academic Press: London, UK, 2016; Volume 2. [Google Scholar]
- Ru, C.Q. Column buckling of multiwalled carbon nanotubes with interlayer radial displacements. Phys. Rev. B 2000, 62, 16962–16967. [Google Scholar] [CrossRef]
- Yoon, J.; Ru, C.Q.; Mioduchowski, A. Noncoaxial resonance of an isolated multiwall carbon nanotube. Phys. Rev. B 2002, 66, 233402. [Google Scholar] [CrossRef]
- Lolov, D.; Lilkova-Markova, S. Dynamic stability of double-walled carbon nanotubes. J. Serbian Soc. Comput. Mech. 2018, 12, 1–8. [Google Scholar] [CrossRef]
- Zuo, Q.H.; Schreyer, H.L. Flutter and divergence instability of nonconservative beams and plates. Int. J. Solids Struct. 1996, 33, 1355–1367. [Google Scholar] [CrossRef]
- Elaikh, T.E.H.; Abed, N.M.; Ebrahimi-Mamaghani, A. Free vibration and flutter stability of interconnected double graded micro pipes system conveying fluid. IOP Conf. Ser. Mater. Sci. Eng. 2020, 928, 022128. [Google Scholar] [CrossRef]
- Lolov, D.; Lilkova-Markova, S. The model of interconnected pipes in the investigation of dynamic stability of carbon nanotubes embedded in an elastic medium. Stroj. Časopis J. Mech. Eng. 2023, 73, 93–98. [Google Scholar] [CrossRef]
- Beer, F.P. Vector Mechanics for Engineers: Statics and Dynamics, 11th ed.; McGraw-Hill: New York, NY, USA, 2013; p. 1392. [Google Scholar]
- Fletcher, C.A.J. Computational Galerkin Methods; Springer Series in Computational Physics; Springer: Berlin, Germany, 1984. [Google Scholar]
- Courant, R.; Hilbert, D. Methods of Mathematical Physics; John Wiley & Sons: New York, NY, USA, 1989; Volume I. [Google Scholar]
- Wolfram, S. The Mathematica Book, 5th ed.; Wolfram Media: Champaign, IL, USA, 2003. [Google Scholar]
- Strozzi, M. Applicability and limitations of Ru’s formulation for vibration modelling of double-walled carbon nanotubes. C—J. Carbon Res. 2022, 8, 59. [Google Scholar] [CrossRef]
- Yoon, J.; Ru, C.Q.; Mioduchowski, A. Timoshenko-beam effects on transverse wave propagation in carbon nanotubes. Compos. Part B Eng. 2004, 35, 87–93. [Google Scholar] [CrossRef]
- Wang, C.M.; Tan, V.B.C.; Zhang, Y.Y. Timoshenko beam model for vibration analysis of multi-walled carbon nanotubes. J. Sound Vib. 2006, 294, 1060–1072. [Google Scholar] [CrossRef]
- Liu, R.; Wang, L. Vibration of cantilevered double-walled carbon nanotubes predicted by Timoshenko beam model and molecular dynamics. Int. J. Comput. Methods 2015, 12, 1540017. [Google Scholar] [CrossRef]
- Liu, R.; Zhao, J.; Wang, L. Flexural wave propagation in mass chain-filled carbon nanotubes. Materials 2019, 12, 2986. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vassilev, V.M.; Valchev, G.S. Dynamics and Stability of Double-Walled Carbon Nanotube Cantilevers Conveying Fluid in an Elastic Medium. Dynamics 2024, 4, 222-232. https://doi.org/10.3390/dynamics4020013
Vassilev VM, Valchev GS. Dynamics and Stability of Double-Walled Carbon Nanotube Cantilevers Conveying Fluid in an Elastic Medium. Dynamics. 2024; 4(2):222-232. https://doi.org/10.3390/dynamics4020013
Chicago/Turabian StyleVassilev, Vassil M., and Galin S. Valchev. 2024. "Dynamics and Stability of Double-Walled Carbon Nanotube Cantilevers Conveying Fluid in an Elastic Medium" Dynamics 4, no. 2: 222-232. https://doi.org/10.3390/dynamics4020013
APA StyleVassilev, V. M., & Valchev, G. S. (2024). Dynamics and Stability of Double-Walled Carbon Nanotube Cantilevers Conveying Fluid in an Elastic Medium. Dynamics, 4(2), 222-232. https://doi.org/10.3390/dynamics4020013