Exact Solutions to Navier–Stokes Equations Describing a Gradient Nonuniform Unidirectional Vertical Vortex Fluid Flow
Abstract
:1. Introduction
2. Problem Statement
3. Exact Solution Class
4. Arbitrary-Order Polynomial Exact Solutions
5. Discussion of Boundary Conditions
6. Vorticity and Tangential Stresses
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Poiseuille, J. Recherches expérimenteles sur le mouvement des liquides dans les tubes de très petits diamètres. Comptes Rendus Hebdomadaires Des Séances de L’académie Des Sci. 1840, 11, 961–967; 1041–1048. [Google Scholar]
- Poiseuille, J. Recherches expérimentales sur le mouvement des liquides dans les tubes de très petits diamètres. Comptes Rendus Hebdomadaires Des Séances de L’académie Des Sci. 1841, 12, 112–115. [Google Scholar]
- Khayrislamov, K.Z. Poiseuille flow of a fluid with variable viscosity. Vestn. Yuzhno-Ural. Gos. Un-ta. Ser. Matem. Mekh. Fiz. 2013, 5, 170–173. [Google Scholar]
- Georgiou, G.C. The time-independent, compressible Poiseuille and extrudate-swell flows of a Carreau fluid with slip at the wall. J. Non-Newton. Fluid Mech. 2003, 109, 93–114. [Google Scholar] [CrossRef]
- Damianou, Y.; Georgiou, G.C.; Moulitsas, I. Combined effects of compressibility and slip in flows of a Herschel-Bulkley fluid. J. Non-Newton. Fluid Mech. 2013, 193, 89–102. [Google Scholar] [CrossRef]
- Kalogirou, A.; Poyiadji, S.; Georgiou, G.C. Incompressible Poiseuille flows of Newtonian liquids with a pressure-dependent viscosity. J. Non-Newton. Fluid Mech. 2011, 166, 413–419. [Google Scholar] [CrossRef]
- Fyrillas, M.M.; Georgiou, G.C.; Vlassopoulos, D.; Hatzikiriakos, S.G. Mechanism for extrusion instabilities in polymer melts. Polym. Eng. Sci. 1999, 39, 2498–2504. [Google Scholar] [CrossRef]
- Takeshi Kano Density Oscillators. In Pattern Formations and Oscillatory Phenomena; Kinoshita, S. (Ed.) Elsevier: Amsterdam, The Netherlands, 2013; pp. 119–163. [Google Scholar] [CrossRef]
- David, T.; Brown, R.G. Models of Cerebrovascular Perfusion. In Transport in Biological Media; Becker, S.M., Kuznetsov, A.V., Eds.; Elsevier: Amsterdam, The Netherlands, 2013; pp. 253–273. [Google Scholar] [CrossRef]
- Drazin, P.G. Introduction to Hydrodynamic Stability; Cambridge University Press: Cambridge, UK, 2002; 258p. [Google Scholar]
- Popov, D.I.; Sagalakov, A.M.; Nikitenko, N.G. On sufficient stability conditions of the Couette-Poiseuille flow of monodisperse mixture. Thermophys. Aeromech. 2011, 18, 223–233. [Google Scholar] [CrossRef]
- Proskurin, A.V.; Sagalakov, A.M. Stability of the Poiseuille flow in a longitudinal magnetic field. Technol. Phys. 2012, 57, 608–614. [Google Scholar] [CrossRef]
- Yudovich, V.I. The Linearization Method in Hydrodynamical Stability Theory; American Mathematical Society: Providence, RI, USA, 1989. [Google Scholar]
- Henningson, D.S.; Schmid, P.J. Stability and Transition in Shear Flows; Springer: New York, NY, USA, 2001. [Google Scholar]
- Kondratiev, A.S.; Ogorodnikov, K.F. Determining critical flow parameters for the Poiseuille, Couette and Taylor–Couette flows. Engineer. J. Sci. Innov. 2020, 6, 1–17. [Google Scholar] [CrossRef]
- Ayvazyan, O.M. Universal Energy Criterion for the Stability of Uniform Laminar Flows of a Viscous Incompressible Fluid; NITs «Regulyarnaya i khaoticheskaya dinamika» IKI Publ.: Moscow, Russia; Izhevsk, Russia, 2008; 128p. [Google Scholar]
- Reynolds, О. On the dynamical theory of turbulent incompressible viscous fluids and the determination of the criterion. Philosoph. Trans. R. Soc. A 1894, 186, 123–161. [Google Scholar]
- Robertson, J.M.; Johnson, H.F. Turbulence Structure in plane Couette flow. ASME J. Eng. Mech. Div. 1970, 96, 1171–1182. [Google Scholar] [CrossRef]
- Bech, К.H.; Tillmark, N.; Alfredsson, P.H.; Andersson, H.I. An investigation of turbulent plane Couette flow at low Reynolds numbers. J. Fluid Mech. 1995, 286, 291–325. [Google Scholar] [CrossRef] [Green Version]
- Batchelor, G. Introduction to Fluid Mechanics; Cambridge University Press: Cambridge, UK, 2000; 615p. [Google Scholar]
- Eames, I.; Flor, J.B. New developments in understanding interfacial processes in turbulent flows. Philosoph. Trans. R. Soc. A 1937, 369, 702–705. [Google Scholar] [CrossRef]
- Pope, S. Turbulent Flows; Cambridge University Press: Cambridge, UK, 2000. [Google Scholar] [CrossRef]
- Lesieur, M. Introduction to Turbulence in Fluid Mechanics. In Turbulence in Fluids; Springer Science+Business Media B.V.: Berlin/Heidelberg, Germany, 1990; pp. 1–18. [Google Scholar] [CrossRef]
- Frisch, U. Turbulence: The Legacy of A.N. Kolmogorov, 1st ed.; Cambridge University Press: Cambridge, UK, 1996. [Google Scholar]
- Burmasheva, N.V.; Prosviryakov, E.Y. Unidirectional Marangoni–Poiseuille flows of a viscous incompressible fluid with the Navier boundary condition. AIP Conf. Proc. 2019, 2176, 030021. [Google Scholar] [CrossRef]
- Burmasheva, N.V.; Prosviryakov, E.Y. Exact solutions to the Navier–Stokes equations describing stratified fluid flows. J. Samara State Tech. Univ. Ser. Phys. Math. Sci. 2021, 25, 491–507. [Google Scholar] [CrossRef]
- Burmasheva, N.V.; Prosviryakov, E.Y. Exact solutions for steady convective layered flows with a spatial acceleration. Russ. Math. 2021, 65, 8–16. [Google Scholar] [CrossRef]
- Burmasheva, N.V.; Prosviryakov, E.Y. Exact solutions to the Oberbeck–Boussinesq equations for shear flows of a viscous binary fluid with allowance made for the Soret effect. Bull. Irkutsk State Univ. Ser. Math. 2021, 37, 17–30. [Google Scholar] [CrossRef]
- Baranovskii, E.S.; Burmasheva, N.V.; Prosviryakov, E.Y. Exact solutions to the Navier–Stokes equations with couple stresses. Symmetry 2021, 13, 1355. [Google Scholar] [CrossRef]
- Burmasheva, N.V.; Privalova, V.V.; Prosviryakov, E.Y. Layered Marangoni convection with the Navier slip condition. Sādhanā 2021, 46, 55. [Google Scholar] [CrossRef]
- Burmasheva, N.V.; Prosviryakov, E.Y. Exact solution for Couette-type steady convective concentration flows. J. Appl. Mech. Tech. Phys. 2021, 62, 1199–1210. [Google Scholar] [CrossRef]
- Sherief, H.H.; Faltas, M.S.; El-Sapa, S. Interaction between two rigid spheres moving in a micropolar fluid with slip surfaces. J. Mol. Liq. 2019, 290, 111165. [Google Scholar] [CrossRef]
- Mahmood, A.; Chen, B.; Ghaffari, A. Hydromagnetic Hiemenz flow of micropolar fluid over a nonlinearly stretching/shrinking sheet: Dual solutions by using Chebyshev spectral newton iterative scheme. J. Magn. Magn. Mater. 2016, 416, 329–334. [Google Scholar] [CrossRef]
- Rashidi, S.; Esfahani, J.A.; Maskaniyan, M. Applications of magnetohydrodynamics in biological systems-a review on the numerical studies. J. Magn. Magn. Mater. 2017, 439, 358–372. [Google Scholar] [CrossRef]
- Burmasheva, N.V.; Prosviryakov, E.Y. Exact solutions of the Navier–Stokes equations for describing an isobaric one-directional vertical vortex flow of a fluid [Electronic resource]. DREAM 2021, 2, 30–51. [Google Scholar] [CrossRef]
- Landau, L.D.; Lifshitz, E.M. Fluid Mechanics: Volume 6 (Course of Theoretical Physics), 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2013; 556p. [Google Scholar]
- Drazin, P.G.; Riley, N. The Navier–Stokes Equations: A Classification of Flows and Exact Solutions; Cambridge University Press: Cambridge, UK, 2006; 196p. [Google Scholar]
- Polyanin, A.D.; Zaitsev, V.F. Handbook of Nonlinear Partial Differential Equations; Chapman & Hall/CRC Press: Boca Raton, FL, USA, 2004; 840p. [Google Scholar]
- Aristov, S.N.; Polyanin, A.D. New classes of exact solutions and some transformations of the Navier–Stokes equations. Russ. J. Math. Phys. 2010, 17, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Meleshko, S.V. A particular class of partially invariant solutions of the Navier–Stokes equations. Nonlinear Dyn. 2004, 36, 47–68. [Google Scholar] [CrossRef]
- Polyanin, A.D.; Zhurov, A.I. Methods of Separation of Variables and Exact Solutions of Nonlinear Equations of Mathematical Physics; Izd-vo IPMekh RAN: Moscow, Russia, 2020; 384p. [Google Scholar]
- Polyanin, A.D. Exact generalized separable solutions of the Navier–Stokes equations. Dokl. RAN 2001, 380, 491–496. [Google Scholar]
- Aristov, S.N.; Polyanin, A.D. Exact solutions of unsteady three-dimensional Navier–Stokes equations. Dokl. Phys. 2009, 54, 316–321. [Google Scholar] [CrossRef]
- Polyanin, A.D.; Aristov, S.N. Systems of hydrodynamic type equations: Exact solutions, transformations, and nonlinear stability. Dokl. Phys. 2009, 54, 429–434. [Google Scholar] [CrossRef]
- Couette, M. Etudes sur le frottement des liquids. Ann. Chim. Phys. 1890, 21, 433–510. [Google Scholar]
- Burmasheva, N.V.; Larina, E.A.; Prosviryakov, E.Y. Features of selecting boundary conditions when describing flows of stratified fluids. Procedia Struct. Integr. 2022, 40, 75–81. [Google Scholar] [CrossRef]
- Wang, C.Y. Exact solution of the Navier–Stokes equations-the generalized Beltrami flows, review and extension. Acta Mech. 1990, 81, 69–74. [Google Scholar] [CrossRef]
- Wang, C.Y. Exact solutions of the steady-state Navier–Stokes equations. Annu. Rev. Fluid Mech. 1991, 23, 159–177. [Google Scholar] [CrossRef]
- Wang, C.Y. Exact solutions of the unsteady Navier–Stokes equations. Appl. Mech. Rev. 1989, 42, 269–282. [Google Scholar] [CrossRef]
- Aristov, S.N.; Knyazev, D.V.; Polyanin, A.D. Exact solutions of the Navier–stokes equations with the linear dependence of velocity components on two space variables. Theor. Found. Chem. Eng. 2009, 43, 642–662. [Google Scholar] [CrossRef]
- Berker, R. Sur Quelques Cas D’lntegration des Equations du Mouvement d’un Fluide Visquex Incomprcssible; Taffin_Lefort: Paris-Lille, France, 1936. [Google Scholar]
- Berker, R. Integration des Equations du Mouvement d’un Fluide Visqueux Incompressible; Springer: Berlin/Heidelberg, Germany, 1963; Volume VIII/2, 384p. [Google Scholar]
- Whitham, G.B. The Navier–Stokes equations of motion. In Laminar Boundary Layers; Rosenhead, L., Ed.; Clarendon: Oxford, UK, 1963; pp. 114–162. [Google Scholar]
- Dryden, H.L.; Murnaghan, F.D.; Bateman, H. Report of the Committee on Hydrodynamics, Division of Physical Sciences, National Research Council; Bull. Natl. Res. Counc.: New York, NY, USA, 1932; Volume 84, pp. 155–332. [Google Scholar]
- Pukhnachev, V.V. Symmetries in the Navier–Stokes equations. Uspekhi Mekhaniki 2006, 1, 6–76. [Google Scholar]
- Arnold, V.I.; Khesin, B.A. Topological Methods in Hydrodynamics; Springer: New York, NY, USA, 1998. [Google Scholar]
- Zinyakov, T.A.; Petrosyan, A.S. Spectra of decaying two-dimensional magnetohydrodynamic turbulence on a β-plane. JETP Lett. 2020, 111, 76–84. [Google Scholar] [CrossRef]
- Petrosyan, A.; Klimachkov, D.; Fedotova, M.; Zinyakov, T. Shallow water magnetohydrodynamics in plasma astrophysics. Waves, turbulence, and zonal flows. Atmosphere 2020, 11, 314. [Google Scholar] [CrossRef] [Green Version]
- Khomasuridze, N.G.; Zirakashvili, N. Study of multilayer flow of viscous incompressible fluid and application of its results for capillary blood flow simulation. Int. J. Math. Comput. Sci. 2015, 1, 76–86. [Google Scholar]
- Polyanin, A.D.; Kutepov, A.M.; Kazenin, D.A.; Vyazmin, A.V. Hydrodynamics, Mass and Heat Transfer in Chemical Engineering; Taylor & Francis: London, UK, 2002. [Google Scholar]
- Li, X.; Yu, Z.T.F.; Geraldo, D.; Weng, S.; Alve, N.; Dun, W.; Kini, A.; Patel, K.; Shu, R.; Zhang, F.; et al. Desktop aligner for fabrication of multilayer microfluidic devices. Rev. Sci. Instrum. 2015, 86, 075008. [Google Scholar] [CrossRef] [Green Version]
- Dietrich, P.; Helmig, R.; Sauter, M.; Hötzl, H.; Köngeter, J.; Teutsch, G. (Eds.) Flow and transport in fractured porous media. In Fractured Porous Media; Springer: Berlin, Germany, 2005; 447p. [Google Scholar] [CrossRef]
- Pedlosky, J. Geophysical Fluid Dynamics, 2nd ed.; Springer: New York, NY, USA, 1987; Volume XIV, 710p. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Burmasheva, N.; Prosviryakov, E. Exact Solutions to Navier–Stokes Equations Describing a Gradient Nonuniform Unidirectional Vertical Vortex Fluid Flow. Dynamics 2022, 2, 175-186. https://doi.org/10.3390/dynamics2020009
Burmasheva N, Prosviryakov E. Exact Solutions to Navier–Stokes Equations Describing a Gradient Nonuniform Unidirectional Vertical Vortex Fluid Flow. Dynamics. 2022; 2(2):175-186. https://doi.org/10.3390/dynamics2020009
Chicago/Turabian StyleBurmasheva, Natalya, and Evgeniy Prosviryakov. 2022. "Exact Solutions to Navier–Stokes Equations Describing a Gradient Nonuniform Unidirectional Vertical Vortex Fluid Flow" Dynamics 2, no. 2: 175-186. https://doi.org/10.3390/dynamics2020009
APA StyleBurmasheva, N., & Prosviryakov, E. (2022). Exact Solutions to Navier–Stokes Equations Describing a Gradient Nonuniform Unidirectional Vertical Vortex Fluid Flow. Dynamics, 2(2), 175-186. https://doi.org/10.3390/dynamics2020009