Cardiovascular Disease and Dialysis: A Review of the Underlying Mechanisms, Methods of Risk Stratification, and Impact of Dialysis Modality Selection on Cardiovascular Outcomes
Abstract
:1. Introduction
2. Methods
3. Risk Assessment
4. Mechanisms of Increased Cardiovascular Disease
4.1. Volume Overload and Blood Pressure
4.2. Mineral Bone Disorder and Vascular Calcification
4.3. Anemia
4.4. Uremia
5. Cardiovascular Trials
Study | Comparison | Key Results |
---|---|---|
Locatelli et al. (2001) [72] | Comparison of survival and risk of de novo CVD between HD and PD in 3120 patients | No significant difference in 4-year survival or in development of de novo CVD |
Ganesh et al. (2003) [73] | CMS and USRDS data for 107,922 patients starting dialysis 1995–1997 comparing survival between patients with and without CAD on PD vs. HD | Patients with DM on PD w/CAD 23% higher RR for death (95% CI; 1.12 to 1.34) compared to HD Patients presenting as non-DM on PD w/CAD 20% higher RR of death (95% CI; 1.10 to 1.32) compared to patients with HD without CAD had similar survival rates on PD (RR 0.99 CI; 0.9 to 1.05) |
Stack et al. (2003) [74] | Survival risk for 107,922 patients with ESRD with CHF on PD vs. HD | DM patients relative risk for death (1.30, 95% confidence interval 1.20 to 1.41) Patients presenting as non-DM relative risk for death (1.24, 95% CI; 1.14 to 1.35) |
Refaat et al. (2016) [9] | Compared 157 patients with prevalent ESRD on HD vs. PD regarding de novo CVD and survival | Non-statistically significant trend that PD had lower risk of CVD |
Weinhandl et al. (2015) [75] | All-cause mortality, hospitalizations, technique failure in 4201 patients with new-start PD vs 4201 patients with new-start HD | HHD had lower risk than PD for each of these outcomes |
Suri et al. (2015) [76] | Rates of hospitalizations for CVD, infection, access issues, bleeding, modality failure between 1116 HHD and 2784 PD; compared 1187 HHD with 3173 iHD | HHD associated with fewer hospitalizations than PD; fewer CV hospitalizations for HHD than iHD |
6. Conclusions
Funding
Conflicts of Interest
References
- Krediet, R.T.; Balafa, O. Cardiovascular risk in the peritoneal dialysis patient. Nat. Rev. Nephrol. 2010, 6, 451–460. [Google Scholar] [CrossRef] [PubMed]
- Foley, R.N.; Parfrey, P.S.; Sarnak, M.J. Clinical epidemiology of cardiovascular disease in chronic renal disease. Am. J. Kidney Dis. 1998, 32, S112–S119. [Google Scholar] [CrossRef]
- Hutton, H.L.; Levin, A.; Gill, J.; Djurdjev, O.; Tang, M.; Barbour, S.J. Cardiovascular risk is similar in patients with glomerulonephritis compared to other types of chronic kidney disease: A matched cohort study. BMC Nephrol. 2017, 18, 95. [Google Scholar] [CrossRef]
- Lozier, M.R.; Sanchez, A.M.; Lee, J.J.; Tamariz, L.J.; Valle, G.A. Comparison of Cardiovascular Outcomes by Dialysis Modality: A Systematic Review and Meta-Analysis. Perit. Dial. Int. 2019, 39, 306–314. [Google Scholar] [CrossRef]
- Molnar, A.O.; Bota, S.E.; Garg, A.X.; Ouédraogo, A.; Dixon, S.N.; Naylor, K.; Oliver, M.; Sood, M.M. Dialysis Modality and Mortality in Heart Failure: A Retrospective Study of Incident Dialysis Patients. Cardiorenal Med. 2020, 10, 452–461. [Google Scholar] [CrossRef]
- Kwan, B.C.; Szeto, C.C. Is peritoneal dialysis kinder for the heart? Perit. Dial. Int. 2011, 31, 135–137. [Google Scholar] [CrossRef]
- Arnett, D.K.; Blumenthal, R.S.; Albert, M.A.; Buroker, A.B.; Goldberger, Z.D.; Hahn, E.J.; Himmelfarb, C.D.; Khera, A.; Lloyd-Jones, D.; McEvoy, J.W.; et al. 2019 ACC/AHA Guideline on the Primary Prevention of Cardiovascular Disease. J. Am. Coll. Cardiol. 2019, 74, e177–e232. [Google Scholar] [CrossRef]
- ESC Cardiovasc Risk Collaboration; SCORE2 Working Group. SCORE2 risk prediction algorithms: New models to estimate 10-year risk of cardiovascular disease in Europe. Eur. Heart J. 2021, 42, 2439–2454. [Google Scholar] [CrossRef]
- Refaat, H.; Sany, D.; Mohab, A.; Ezzat, H. Comparing Dialysis Modality and Cardiovascular Mortality in Patients on Hemodialysis and Peritoneal Dialysis. Adv. Perit. Dial. 2016, 32, 22–31. [Google Scholar]
- Shreya, D.; Zamora, D.I.; Patel, G.S.; Grossmann, I.; Rodriguez, K.; Soni, M.; Joshi, P.K.; Patel, S.C.; Sange, I. Coronary Artery Calcium Score—A Reliable Indicator of Coronary Artery Disease? Cureus 2021, 13, e20149. [Google Scholar] [CrossRef]
- Grundy, S.M.; Stone, N.J.; Bailey, A.L.; Beam, C.; Birtcher, K.K.; Blumenthal, R.S.; Braun, L.T.; de Ferranti, S.; Faiella-Tommasino, J.; Forman, D.E.; et al. 2018 AHA/ACC/AACVPR/AAPA/ABC/ACPM/ADA/AGS/APhA/ASPC/NLA/PCNA Guideline on the Management of Blood Cholesterol: Executive Summary: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. J. Am. Coll. Cardiol. 2019, 73, 3168–3209. [Google Scholar] [CrossRef] [PubMed]
- Jansz, T.T.; Go, M.H.Y.; Hartkamp, N.S.; Stoger, J.L.; Celeng, C.; Leiner, T.; de Jong, P.A.; Visseren, F.J.L.; Verhaar, M.C.; van Jaarsveld, B.C. Coronary Artery Calcification as a Marker for Coronary Artery Stenosis: Comparing Kidney Failure to the General Population. Kidney Med. 2021, 3, 386–394.e381. [Google Scholar] [CrossRef] [PubMed]
- Ogata, H.; Fukagawa, M.; Hirakata, H.; Kagimura, T.; Fukushima, M.; Akizawa, T. Effect of Treating Hyperphosphatemia with Lanthanum Carbonate vs Calcium Carbonate on Cardiovascular Events in Patients with Chronic Kidney Disease Undergoing Hemodialysis: The LANDMARK Randomized Clinical Trial. JAMA 2021, 325, 1946–1954. [Google Scholar] [CrossRef] [PubMed]
- Kakuta, T.; Tanaka, R.; Hyodo, T.; Suzuki, H.; Kanai, G.; Nagaoka, M.; Takahashi, H.; Hirawa, N.; Oogushi, Y.; Miyata, T.; et al. Effect of sevelamer and calcium-based phosphate binders on coronary artery calcification and accumulation of circulating advanced glycation end products in hemodialysis patients. Am. J. Kidney Dis. 2011, 57, 422–431. [Google Scholar] [CrossRef]
- Winther, S.; Svensson, M.; Jørgensen, H.S.; Bouchelouche, K.; Gormsen, L.C.; Pedersen, B.B.; Holm, N.R.; Bøtker, H.E.; Ivarsen, P.; Bøttcher, M. Diagnostic Performance of Coronary CT Angiography and Myocardial Perfusion Imaging in Kidney Transplantation Candidates. JACC Cardiovasc. Imaging 2015, 8, 553–562. [Google Scholar] [CrossRef]
- Paoletti, E.; Bellino, D.; Cassottana, P.; Rolla, D.; Cannella, G. Left ventricular hypertrophy in nondiabetic predialysis CKD. Am. J. Kidney Dis. 2005, 46, 320–327. [Google Scholar] [CrossRef]
- Foley, R.N.; Parfrey, P.S.; Harnett, J.D.; Kent, G.M.; Murray, D.C.; Barré, P.E. The prognostic importance of left ventricular geometry in uremic cardiomyopathy. J. Am. Soc. Nephrol. 1995, 5, 2024–2031. [Google Scholar] [CrossRef]
- Harnett, J.D.; Murphy, B.; Collingwood, P.; Purchase, L.; Kent, G.; Parfrey, P.S. The reliability and validity of echocardiographic measurement of left ventricular mass index in hemodialysis patients. Nephron 1993, 65, 212–214. [Google Scholar] [CrossRef]
- Ong, J.P.; Wald, R.; Goldstein, M.B.; Leipsic, J.; Kiaii, M.; Deva, D.P.; Kirpalani, A.; Jimenez-Juan, L.; Bello, O.; Azizi, P.M.; et al. Left ventricular strain analysis using cardiac magnetic resonance imaging in patients undergoing in-centre nocturnal haemodialysis. Nephrology 2019, 24, 557–563. [Google Scholar] [CrossRef]
- Rutherford, E.; Talle, M.A.; Mangion, K.; Bell, E.; Rauhalammi, S.M.; Roditi, G.; McComb, C.; Radjenovic, A.; Welsh, P.; Woodward, R.; et al. Defining myocardial tissue abnormalities in end-stage renal failure with cardiac magnetic resonance imaging using native T1 mapping. Kidney Int. 2016, 90, 845–852. [Google Scholar] [CrossRef]
- Rudnick, M.R.; Wahba, I.M.; Leonberg-Yoo, A.K.; Miskulin, D.; Litt, H.I. Risks and Options With Gadolinium-Based Contrast Agents in Patients With CKD: A Review. Am. J. Kidney Dis. 2021, 77, 517–528. [Google Scholar] [CrossRef]
- Woolen, S.A.; Shankar, P.R.; Gagnier, J.J.; MacEachern, M.P.; Singer, L.; Davenport, M.S. Risk of Nephrogenic Systemic Fibrosis in Patients With Stage 4 or 5 Chronic Kidney Disease Receiving a Group II Gadolinium-Based Contrast Agent: A Systematic Review and Meta-analysis. JAMA Intern. Med. 2020, 180, 223–230. [Google Scholar] [CrossRef] [PubMed]
- Willeit, P.; Tschiderer, L.; Allara, E.; Reuber, K.; Seekircher, L.; Gao, L.; Liao, X.; Lonn, E.; Gerstein, H.C.; Yusuf, S.; et al. Carotid Intima-Media Thickness Progression as Surrogate Marker for Cardiovascular Risk. Circulation 2020, 142, 621–642. [Google Scholar] [CrossRef]
- Liu, L.; Pang, J.; Xu, J.; Liu, L.-N.; Liao, M.-Y.; Huang, Q.-X.; Li, Y.-L. Impact of initial dialysis modality on the survival of patients with ESRD: A propensity-score-matched study. BMC Nephrol. 2023, 24, 313. [Google Scholar] [CrossRef]
- Baaten, C.C.F.M.J.; Vondenhoff, S.; Noels, H. Endothelial Cell Dysfunction and Increased Cardiovascular Risk in Patients with Chronic Kidney Disease. Circ. Res. 2023, 132, 970–992. [Google Scholar] [CrossRef]
- Andersen, M.J.; Agarwal, R. Etiology and management of hypertension in chronic kidney disease. Med. Clin. N. Am. 2005, 89, 525–547. [Google Scholar] [CrossRef]
- Savage, T.; Fabbian, F.; Giles, M.; Tomson, C.R.V.; Raine, A.E.G. Interdialytic weight gain and 48-h blood pressure in haemodialysis patients. Nephrol. Dial. Transplant. 1997, 12, 2308–2311. [Google Scholar] [CrossRef]
- Zoccali, C. Left ventricular mass index as an outcome measure in clinical trials in dialysis patients: A word of caution. Am. J. Nephrol. 2011, 33, 370–372. [Google Scholar] [CrossRef]
- Konings, C.J.; Kooman, J.P.; Schonck, M.; Dammers, R.; Cheriex, E.; Palmans Meulemans, A.P.; Hoeks, A.P.; van Kreel, B.; Gladziwa, U.; van der Sande, F.M.; et al. Fluid status, blood pressure, and cardiovascular abnormalities in patients on peritoneal dialysis. Perit. Dial. Int. 2002, 22, 477–487. [Google Scholar] [CrossRef]
- London, G.M.; Pannier, B.; Guerin, A.P.; Blacher, J.; Marchais, S.J.; Darne, B.; Metivier, F.; Adda, H.; Safar, M.E. Alterations of left ventricular hypertrophy in and survival of patients receiving hemodialysis: Follow-up of an interventional study. J. Am. Soc. Nephrol. 2001, 12, 2759–2767. [Google Scholar] [CrossRef]
- Agarwal, R.; Alborzi, P.; Satyan, S.; Light, R.P. Dry-weight reduction in hypertensive hemodialysis patients (DRIP): A randomized, controlled trial. Hypertension 2009, 53, 500–507. [Google Scholar] [CrossRef] [PubMed]
- Flythe, J.E.; Assimon, M.M.; Wang, L. Ultrafiltration Rate Scaling in Hemodialysis Patients. Semin. Dial. 2017, 30, 282–283. [Google Scholar] [CrossRef] [PubMed]
- Fagugli, R.M.; Pasini, P.; Pasticci, F.; Ciao, G.; Cicconi, B.; Buoncristiani, U. Effects of short daily hemodialysis and extended standard hemodialysis on blood pressure and cardiac hypertrophy: A comparative study. J. Nephrol. 2006, 19, 77–83. [Google Scholar] [PubMed]
- Chan, C.T.; Harvey, P.J.; Picton, P.; Pierratos, A.; Miller, J.A.; Floras, J.S. Short-term blood pressure, noradrenergic, and vascular effects of nocturnal home hemodialysis. Hypertension 2003, 42, 925–931. [Google Scholar] [CrossRef]
- Cocchi, R.; Degli Esposti, E.; Fabbri, A.; Lucatello, A.; Sturani, A.; Quarello, F.; Boero, R.; Bruno, M.; Dadone, C.; Favazza, A.; et al. Prevalence of hypertension in patients on peritoneal dialysis: Results of an Italian multicentre study. Nephrol. Dial. Transpl. 1999, 14, 1536–1540. [Google Scholar] [CrossRef]
- Ortega, L.M.; Materson, B.J. Hypertension in peritoneal dialysis patients: Epidemiology, pathogenesis, and treatment. J. Am. Soc. Hypertens. 2011, 5, 128–136. [Google Scholar] [CrossRef]
- Vareta, G.; Georgianos, P.I.; Vaios, V.; Sgouropoulou, V.; Georgianou, E.I.; Leivaditis, K.; Mavromatidis, K.; Dounousi, E.; Papagianni, A.; Balaskas, E.V.; et al. Prevalence of Apparent Treatment-Resistant Hypertension in ESKD Patients Receiving Peritoneal Dialysis. Am. J. Hypertens. 2022, 35, 918–922. [Google Scholar] [CrossRef]
- Kim, I.S.; Kim, S.; Yoo, T.H.; Kim, J.K. Diagnosis and treatment of hypertension in dialysis patients: A systematic review. Clin. Hypertens. 2023, 29, 24. [Google Scholar] [CrossRef]
- Burton, J.O.; Jefferies, H.J.; Selby, N.M.; McIntyre, C.W. Hemodialysis-induced cardiac injury: Determinants and associated outcomes. Clin. J. Am. Soc. Nephrol. 2009, 4, 914–920. [Google Scholar] [CrossRef]
- Morfin, J.A.; Fluck, R.J.; Weinhandl, E.D.; Kansal, S.; McCullough, P.A.; Komenda, P. Intensive Hemodialysis and Treatment Complications and Tolerability. Am. J. Kidney Dis. 2016, 68, S43–S50. [Google Scholar] [CrossRef]
- Shavadia, J.S.; Wilson, J.; Edmonston, D.; Platt, A.; Ephraim, P.; Hall, R.; Goldstein, B.A.; Boulware, L.E.; Peterson, E.; Pendergast, J.; et al. Statins and atherosclerotic cardiovascular outcomes in patients on incident dialysis and with atherosclerotic heart disease. Am. Heart J. 2021, 231, 36–44. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.E.; Park, S.; Kim, M.S.; Kang, S.J.; Lee, J.W.; Kim, K.S.; Kim, Y.C.; Kim, D.K.; Joo, K.W.; Kim, Y.S.; et al. Statin initiation and all-cause mortality in incident statin-naïve dialysis patients. Atherosclerosis 2021, 337, 59–65. [Google Scholar] [CrossRef] [PubMed]
- Wanner, C.; Krane, V.; Marz, W.; Olschewski, M.; Mann, J.F.; Ruf, G.; Ritz, E.; For the German Diabetes and Dialysis Study Investigators. Atorvastatin in patients with type 2 diabetes mellitus undergoing hemodialysis. N. Engl. J. Med. 2005, 353, 238–248. [Google Scholar] [CrossRef] [PubMed]
- Baigent, C.; Landray, M.J.; Reith, C.; Emberson, J.; Wheeler, D.C.; Tomson, C.; Wanner, C.; Krane, V.; Cass, A.; Craig, J.; et al. The effects of lowering LDL cholesterol with simvastatin plus ezetimibe in patients with chronic kidney disease (Study of Heart and Renal Protection): A randomised placebo-controlled trial. Lancet 2011, 377, 2181–2192. [Google Scholar] [CrossRef]
- Fellstrom, B.C.; Jardine, A.G.; Schmieder, R.E.; Holdaas, H.; Bannister, K.; Beutler, J.; Chae, D.W.; Chevaile, A.; Cobbe, S.M.; Gronhagen-Riska, C.; et al. Rosuvastatin and cardiovascular events in patients undergoing hemodialysis. N. Engl. J. Med. 2009, 360, 1395–1407. [Google Scholar] [CrossRef]
- Hu, M.C.; Kuro-o, M.; Moe, O.W. Klotho and chronic kidney disease. Contrib. Nephrol. 2013, 180, 47–63. [Google Scholar] [CrossRef]
- Cannata-Andia, J.B.; Rodriguez-Garcia, M. Hyperphosphataemia as a cardiovascular risk factor—How to manage the problem. Nephrol. Dial. Transpl. 2002, 17 (Suppl. S11), 16–19. [Google Scholar] [CrossRef]
- Batra, J.; Buttar, R.S.; Kaur, P.; Kreimerman, J.; Melamed, M.L. FGF-23 and cardiovascular disease: Review of literature. Curr. Opin. Endocrinol. Diabetes Obes. 2016, 23, 423–429. [Google Scholar] [CrossRef]
- Copland, M.; Komenda, P.; Weinhandl, E.D.; McCullough, P.A.; Morfin, J.A. Intensive Hemodialysis, Mineral and Bone Disorder, and Phosphate Binder Use. Am. J. Kidney Dis. 2016, 68, S24–S32. [Google Scholar] [CrossRef]
- Courivaud, C.; Davenport, A. Phosphate Removal by Peritoneal Dialysis: The Effect of Transporter Status and Peritoneal Dialysis Prescription. Perit. Dial. Int. 2016, 36, 85–93. [Google Scholar] [CrossRef]
- Gutiérrez, O.M.; Mannstadt, M.; Isakova, T.; Rauh-Hain, J.A.; Tamez, H.; Shah, A.; Smith, K.; Lee, H.; Thadhani, R.; Jüppner, H.; et al. Fibroblast growth factor 23 and mortality among patients undergoing hemodialysis. N. Engl. J. Med. 2008, 359, 584–592. [Google Scholar] [CrossRef] [PubMed]
- Saab, G.; Bomback, A.S.; McFarlane, S.I.; Li, S.; Chen, S.C.; McCullough, P.A.; Whaley-Connell, A. The association of parathyroid hormone with ESRD and pre-ESRD mortality in the Kidney Early Evaluation Program. J. Clin. Endocrinol. Metab. 2012, 97, 4414–4421. [Google Scholar] [CrossRef]
- Sarnak, M.J.; Tighiouart, H.; Manjunath, G.; MacLeod, B.; Griffith, J.; Salem, D.; Levey, A.S. Anemia as a risk factor for cardiovascular disease in The Atherosclerosis Risk in Communities (ARIC) study. J. Am. Coll. Cardiol. 2002, 40, 27–33. [Google Scholar] [CrossRef] [PubMed]
- Foley, R.N.; Parfrey, P.S.; Harnett, J.D.; Kent, G.M.; Murray, D.C.; Barre, P.E. The impact of anemia on cardiomyopathy, morbidity, and and mortality in end-stage renal disease. Am. J. Kidney Dis. 1996, 28, 53–61. [Google Scholar] [CrossRef] [PubMed]
- Metivier, F.; Marchais, S.J.; Guerin, A.P.; Pannier, B.; London, G.M. Pathophysiology of anaemia: Focus on the heart and blood vessels. Nephrol. Dial. Transpl. 2000, 15 (Suppl. S3), 14–18. [Google Scholar] [CrossRef]
- Bellinghieri, G.; Condemi, C.G.; Saitta, S.; Trifirò, G.; Gangemi, S.; Savica, V.; Buemi, M.; Santoro, D. Erythropoiesis-stimulating agents: Dose and mortality risk. J. Ren. Nutr. 2015, 25, 164–168. [Google Scholar] [CrossRef]
- Io, H.; Suzuki, Y. Strategy for Prevention of Left Ventricular Remodeling in Predialysis and Dialysis Patients. Contrib. Nephrol. 2018, 196, 13–21. [Google Scholar] [CrossRef]
- Mix, T.C.; Brenner, R.M.; Cooper, M.E.; de Zeeuw, D.; Ivanovich, P.; Levey, A.S.; McGill, J.B.; McMurray, J.J.; Parfrey, P.S.; Parving, H.H.; et al. Rationale--Trial to Reduce Cardiovascular Events with Aranesp Therapy (TREAT): Evolving the management of cardiovascular risk in patients with chronic kidney disease. Am. Heart J. 2005, 149, 408–413. [Google Scholar] [CrossRef]
- Wulczyn, K.E.; Shafi, T.; Anderson, A.; Rincon-Choles, H.; Clish, C.B.; Denburg, M.; Feldman, H.I.; He, J.; Hsu, C.Y.; Kelly, T.; et al. Metabolites Associated with Uremic Symptoms in Patients With CKD: Findings From the Chronic Renal Insufficiency Cohort (CRIC) Study. Am. J. Kidney Dis. 2024, 84, 49–61.e1. [Google Scholar] [CrossRef]
- Vanholder, R.; De Smet, R.; Glorieux, G.; Argilés, A.; Baurmeister, U.; Brunet, P.; Clark, W.; Cohen, G.; De Deyn, P.P.; Deppisch, R.; et al. Review on uremic toxins: Classification, concentration, and interindividual variability. Kidney Int. 2003, 63, 1934–1943. [Google Scholar] [CrossRef]
- Barreto, F.C.; Barreto, D.V.; Liabeuf, S.; Meert, N.; Glorieux, G.; Temmar, M.; Choukroun, G.; Vanholder, R.; Massy, Z.A.; on behalf of the European Uremic Toxin Work Group (EUTox). Serum Indoxyl Sulfate Is Associated with Vascular Disease and Mortality in Chronic Kidney Disease Patients. Clin. J. Am. Soc. Nephrol. 2009, 4, 1551–1558. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.J.; Wu, V.; Wu, P.C.; Wu, C.J. Meta-Analysis of the Associations of p-Cresyl Sulfate (PCS) and Indoxyl Sulfate (IS) with Cardiovascular Events and All-Cause Mortality in Patients with Chronic Renal Failure. PLoS ONE 2015, 10, e0132589. [Google Scholar] [CrossRef] [PubMed]
- Yamada, S.; Giachelli, C.M. Vascular calcification in CKD-MBD: Roles for phosphate, FGF23, and Klotho. Bone 2017, 100, 87–93. [Google Scholar] [CrossRef]
- Witko-Sarsat, V.; Friedlander, M.; Capeillère-Blandin, C.; Nguyen-Khoa, T.; Nguyen, A.T.; Zingraff, J.; Jungers, P.; Descamps-Latscha, B. Advanced oxidation protein products as a novel marker of oxidative stress in uremia. Kidney Int. 1996, 49, 1304–1313. [Google Scholar] [CrossRef]
- Stenvinkel, P.; Heimbürger, O.; Paultre, F.; Diczfalusy, U.; Wang, T.; Berglund, L.; Jogestrand, T. Strong association between malnutrition, inflammation, and atherosclerosis in chronic renal failure. Kidney Int. 1999, 55, 1899–1911. [Google Scholar] [CrossRef]
- Vanholder, R.; De Smet, R.; Jacobs, V.; Van Landschoot, N.; Waterloos, M.A.; Vogeleere, P.; Ringoir, S. Uraemic toxic retention solutes depress polymorphonuclear response to phagocytosis. Nephrol. Dial. Transplant. 1994, 9, 1271–1278. [Google Scholar] [CrossRef]
- Ekdahl, K.N.; Soveri, I.; Hilborn, J.; Fellström, B.; Nilsson, B. Cardiovascular disease in haemodialysis: Role of the intravascular innate immune system. Nat. Rev. Nephrol. 2017, 13, 285–296. [Google Scholar] [CrossRef]
- Sirich, T.L.; Fong, K.; Larive, B.; Beck, G.J.; Chertow, G.M.; Levin, N.W.; Kliger, A.S.; Plummer, N.S.; Meyer, T.W. Limited reduction in uremic solute concentrations with increased dialysis frequency and time in the Frequent Hemodialysis Network Daily Trial. Kidney Int. 2017, 91, 1186–1192. [Google Scholar] [CrossRef]
- Daugirdas, J.T.; Greene, T.; Rocco, M.V.; Kaysen, G.A.; Depner, T.A.; Levin, N.W.; Chertow, G.M.; Ornt, D.B.; Raimann, J.G.; Larive, B.; et al. Effect of frequent hemodialysis on residual kidney function. Kidney Int. 2013, 83, 949–958. [Google Scholar] [CrossRef]
- FHN Trial Group; Chertow, G.M.; Levin, N.W.; Beck, G.J.; Depner, T.A.; Eggers, P.W.; Gassman, J.J.; Gorodetskaya, I.; Greene, T.; James, S.; et al. In-center hemodialysis six times per week versus three times per week. N. Engl. J. Med. 2010, 363, 2287–2300. [Google Scholar] [CrossRef]
- Weinhandl, E.D.; Nieman, K.M.; Gilbertson, D.T.; Collins, A.J. Hospitalization in daily home hemodialysis and matched thrice-weekly in-center hemodialysis patients. Am. J. Kidney Dis. 2015, 65, 98–108. [Google Scholar] [CrossRef] [PubMed]
- Locatelli, F.; Marcelli, D.; Conte, F.; D’Amico, M.; Vecchio, L.D.; Limido, A.; Malberti, F.; Spotti, D. Survival and development of cardiovascular disease by modality of treatment in patients with end-stage renal disease. J. Am. Soc. Nephrol. 2001, 12, 2411–2417. [Google Scholar] [CrossRef] [PubMed]
- Ganesh, S.K.; Hulbert-Shearon, T.; Port, F.K.; Eagle, K.; Stack, A.G. Mortality differences by dialysis modality among incident ESRD patients with and without coronary artery disease. J. Am. Soc. Nephrol. 2003, 14, 415–424. [Google Scholar] [CrossRef]
- Stack, A.G.; Molony, D.A.; Rahman, N.S.; Dosekun, A.; Murthy, B. Impact of dialysis modality on survival of new ESRD patients with congestive heart failure in the United States. Kidney Int. 2003, 64, 1071–1079. [Google Scholar] [CrossRef]
- Weinhandl, E.D.; Gilbertson, D.T.; Collins, A.J. Mortality, Hospitalization, and Technique Failure in Daily Home Hemodialysis and Matched Peritoneal Dialysis Patients: A Matched Cohort Study. Am. J. Kidney Dis. 2016, 67, 98–110. [Google Scholar] [CrossRef]
- Suri, R.S.; Li, L.; Nesrallah, G.E. The risk of hospitalization and modality failure with home dialysis. Kidney Int. 2015, 88, 360–368. [Google Scholar] [CrossRef]
- Shah, S.; Weinhandl, E.; Gupta, N.; Leonard, A.C.; Christianson, A.L.; Thakar, C.V. Cardiovascular Outcomes in Patients on Home Hemodialysis and Peritoneal Dialysis. Kidney360 2024, 5, 205–215. [Google Scholar] [CrossRef]
- McCullough, P.A.; Chan, C.T.; Weinhandl, E.D.; Burkart, J.M.; Bakris, G.L. Intensive Hemodialysis, Left Ventricular Hypertrophy, and Cardiovascular Disease. Am. J. Kidney Dis. 2016, 68, S5–S14. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Richardson, T.; Gardner, M.; Salani, M. Cardiovascular Disease and Dialysis: A Review of the Underlying Mechanisms, Methods of Risk Stratification, and Impact of Dialysis Modality Selection on Cardiovascular Outcomes. Kidney Dial. 2025, 5, 5. https://doi.org/10.3390/kidneydial5010005
Richardson T, Gardner M, Salani M. Cardiovascular Disease and Dialysis: A Review of the Underlying Mechanisms, Methods of Risk Stratification, and Impact of Dialysis Modality Selection on Cardiovascular Outcomes. Kidney and Dialysis. 2025; 5(1):5. https://doi.org/10.3390/kidneydial5010005
Chicago/Turabian StyleRichardson, Trey, Maryn Gardner, and Megha Salani. 2025. "Cardiovascular Disease and Dialysis: A Review of the Underlying Mechanisms, Methods of Risk Stratification, and Impact of Dialysis Modality Selection on Cardiovascular Outcomes" Kidney and Dialysis 5, no. 1: 5. https://doi.org/10.3390/kidneydial5010005
APA StyleRichardson, T., Gardner, M., & Salani, M. (2025). Cardiovascular Disease and Dialysis: A Review of the Underlying Mechanisms, Methods of Risk Stratification, and Impact of Dialysis Modality Selection on Cardiovascular Outcomes. Kidney and Dialysis, 5(1), 5. https://doi.org/10.3390/kidneydial5010005