Is HIF-PHI the Answer to Tackle ESA Hyporesponsiveness in the Elderly?
Abstract
:1. Introduction
2. Clinical Significance and Challenges of ESA Hyporesponsiveness in the Elderly
3. Potential Benefits of HIF-PHI for the Elderly
4. Safety Concerns of HIF-PHI Use in the Elderly
5. Future Directions to Consider HIF-PHI Use in the Elderly
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Coresh, J.; Astor, B.C.; Greene, T.; Eknoyan, G.; Levey, A.S. Prevalence of chronic kidney disease and decreased kidney function in the adult US population: Third National Health and Nutrition Examination Survey. Am. J. Kidney Dis. 2003, 41, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Canaud, B.; Tong, L.; Tentori, F.; Akiba, T.; Karaboyas, A.; Gillespie, B.; Akizawa, T.; Pisoni, R.L.; Bommer, J.; Port, F.K. Clinical practices and outcomes in elderly hemodialysis patients: Results from the Dialysis Outcomes and Practice Patterns Study (DOPPS). Clin. J. Am. Soc. Nephrol. 2011, 6, 1651–1662. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Astor, B.C.; Muntner, P.; Levin, A.; Eustace, J.A.; Coresh, J. Association of kidney function with anemia: The Third National Health and Nutrition Examination Survey (1988–1994). Arch. Intern. Med. 2002, 162, 1401–1408. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stauffer, M.E.; Fan, T. Prevalence of anemia in chronic kidney disease in the United States. PLoS ONE 2014, 9, e84943. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Besarab, A.; Bolton, W.K.; Browne, J.K.; Egrie, J.C.; Nissenson, A.R.; Okamoto, D.M.; Schwab, S.J.; Goodkin, D.A. The effects of normal as compared with low hematocrit values in patients with cardiac disease who are receiving hemodialysis and epoetin. N. Engl. J. Med. 1998, 339, 584–590. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.K.; Szczech, L.; Tang, K.L.; Barnhart, H.; Sapp, S.; Wolfson, M.; Reddan, D. Correction of anemia with epoetin alfa in chronic kidney disease. N. Engl. J. Med. 2006, 355, 2085–2098. [Google Scholar] [CrossRef] [Green Version]
- Wish, J.B. Erythropoiesis-stimulating agent hyporesponsiveness and adverse outcomes: Guilty as charged? Kidney Med. 2020, 2, 526–528. [Google Scholar] [CrossRef]
- Rossert, J.; Gassmann-Mayer, C.; Frei, D.; McClellan, W. Prevalence and predictors of epoetin hyporesponsiveness in chronic kidney disease patients. Nephrol. Dial. Transpl. 2007, 22, 794–800. [Google Scholar] [CrossRef]
- Kuragano, T.; Mizusaki, K.; Kimura, T.; Nakanishi, T. Anemia management considering the pathophysiology of elderly chronic kidney disease patients. In CKD-Associated Complications: Progress in the Last Half Century; Nakanishi, T., Ed.; Karger: Basel, Switzerland, 2019; pp. 135–143. [Google Scholar]
- Solomon, S.D.; Uno, H.; Lewis, E.F.; Eckardt, K.-U.; Lin, J.; Burdmann, E.A.; de Zeeuw, D.; Ivanovich, P.; Levey, A.S.; Parfrey, P.; et al. Erythropoietic response and outcomes in kidney disease and type 2 diabetes. N. Engl. J. Med. 2010, 363, 1146–1155. [Google Scholar] [CrossRef] [Green Version]
- Panichi, V.; Rosati, A.; Bigazzi, R.; Paoletti, S.; Mantuano, E.; Beati, S.; Marchetti, V.; Bernabini, G.; Grazi, G.; Rizza, G.M.; et al. Anaemia and resistance to erythropoiesis-stimulating agents as prognostic factors in haemodialysis patients: Results from the RISCAVID study. Nephrol. Dial. Transplant. 2011, 26, 2641–2648. [Google Scholar] [CrossRef] [Green Version]
- Nair, S.; Trivedi, M. Anemia management in dialysis patients: A PIVOT and a new path? Curr. Opin. Nephrol. Hypertens. 2020, 29, 351–355. [Google Scholar] [CrossRef] [PubMed]
- Weir, M.R. Managing anemia across the stages of kidney disease in those hyporesponsive to erythropoiesis-stimulating agents. Am. J. Nephrol. 2021, 52, 450–466. [Google Scholar] [CrossRef]
- Del Vecchio, L.; Longhi, S.; Locatelli, F. Safety concerns about intravenous iron therapy in patients with chronic kidney disease. Clin. Kidney J. 2016, 9, 260–267. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bacchetta, J.; Zaritsky, J.J.; Sea, J.L.; Chun, R.; Lisse, T.S.; Zavala, K.; Nayak, A.; Wesseling-Perry, K.; Westerman, M.; Hollis, B.W.; et al. Suppression of iron-regulatory hepcidin by vitamin D. J. Am. Soc. Nephrol. 2014, 25, 564–572. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ketteler, M.; Block, G.A.; Evenepoel, P.; Fukagawa, M.; Herzog, C.A.; McCann, L.; Moe, S.M.; Shroff, R.; Tonelli, M.A.; Toussaint, N.D.; et al. Executive summary of the 2017 KDIGO Chronic Kidney Disease–Mineral and Bone Disorder (CKD-MBD) Guideline Update: What’s changed and why it matters. Kidney Int. 2017, 92, 26–36. [Google Scholar] [CrossRef] [Green Version]
- Kuwahara, M.; Mandai, S.; Kasagi, Y.; Kusaka, K.; Tanaka, T.; Shikuma, S.; Akita, W. Responsiveness to erythropoiesis-stimulating agents and renal survival in patients with chronic kidney disease. Clin. Exp. Nephrol. 2015, 19, 598–605. [Google Scholar] [CrossRef]
- Panichi, V.; Scatena, A.; Rosati, A.; Giusti, R.; Ferro, G.; Malagnino, E.; Capitanini, A.; Piluso, A.; Conti, P.; Bernabini, G.; et al. High-volume online haemodiafiltration improves erythropoiesis-stimulating agent (ESA) resistance in comparison with low-flux bicarbonate dialysis: Results of the REDERT study. Nephrol. Dial. Transplant. 2015, 30, 682–689. [Google Scholar] [CrossRef] [Green Version]
- Chirakarnjanakorn, S.; Navaneethan, S.D.; Francis, G.S.; Tang, W.W. Cardiovascular impact in patients undergoing maintenance hemodialysis: Clinical management considerations. Int. J. Cardiol. 2017, 232, 12–23. [Google Scholar] [CrossRef] [Green Version]
- Song, S.N.; Tomosugi, N.; Kawabata, H.; Ishikawa, T.; Nishikawa, T.; Yoshizaki, K. Down-regulation of hepcidin resulting from long-term treatment with an anti–IL-6 receptor antibody (tocilizumab) improves anemia of inflammation in multicentric Castleman disease. Blood 2010, 116, 3627–3634. [Google Scholar] [CrossRef] [Green Version]
- Johnson, D.W.; Pascoe, E.M.; Badve, S.V.; Dalziel, K.; Cass, A.; Clarke, P.; Ferrari, P.; McDonald, S.P.; Morrish, A.T.; Pedagogos, E.; et al. A randomized, placebo-controlled trial of pentoxifylline on erythropoiesis-stimulating agent hyporesponsiveness in anemic patients with CKD: The Handling Erythropoietin Resistance with Oxpentifylline (HERO) trial. Am. J. Kidney Dis. 2015, 65, 49–57. [Google Scholar] [CrossRef]
- Rosenberger, C.; Mandriota, S.; Jürgensen, J.S.; Wiesener, M.S.; Hörstrup, J.H.; Frei, U.; Ratcliffe, P.J.; Maxwell, P.H.; Bachmann, S.; Eckardt, K.U. Expression of hypoxia-inducible factor-1α and-2α in hypoxic and ischemic rat kidneys. J. Am. Soc. Nephrol. 2002, 13, 1721–1732. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kular, D.; Macdougall, I.C. HIF stabilizers in the management of renal anemia: From bench to bedside to pediatrics. Pediatr. Nephrol. 2019, 34, 365–378. [Google Scholar] [CrossRef] [Green Version]
- Kaplan, J.M.; Sharma, N.; Dikdan, S. Hypoxia-inducible factor and its role in the management of anemia in chronic kidney disease. Int. J. Mol. Sci. 2018, 19, 389. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lok, C.N.; Ponka, P. Identification of a hypoxia response element in the transferrin receptor gene. J. Biol. Chem. 1999, 274, 24147–24152. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rolfs, A.; Kvietikova, I.; Gassmann, M.; Wenger, R.H. Oxygen-regulated transferrin expression is mediated by hypoxia-inducible factor-1. J. Biol. Chem. 1997, 272, 20055–20062. [Google Scholar] [CrossRef] [Green Version]
- Tacchini, L.; Bianchi, L.; Bernelli-Zazzera, A.; Cairo, G. Transferrin receptor induction by hypoxia, HIF-1-mediated transcriptional activation and cell-specific post-transcriptional regulation. J. Biol. Chem. 1999, 274, 24142–24146. [Google Scholar] [CrossRef] [Green Version]
- Mukhopadhyay, C.K.; Mazumder, B.; Fox, P.L. Role of hypoxia-inducible factor-1 in transcriptional activation of ceruloplasmin by iron deficiency. J. Biol. Chem. 2000, 275, 21048–21054. [Google Scholar] [CrossRef] [Green Version]
- Haase, V.H. Regulation of erythropoiesis by hypoxia-inducible factors. Blood Rev. 2013, 27, 41–53. [Google Scholar] [CrossRef] [Green Version]
- Liu, Q.; Davidoff, O.; Niss, K.; Haase, V.H. Hypoxia-inducible factor regulates hepcidin via erythropoietin-induced erythropoiesis. J. Clin. Investig. 2012, 122, 4635–4644. [Google Scholar] [CrossRef] [Green Version]
- Kautz, L.; Jung, G.; Valore, E.V.; Rivella, S.; Nemeth, E.; Ganz, T. Identification of erythroferrone as an erythroid regulator of iron metabolism. Nat. Genet. 2014, 46, 678–684. [Google Scholar] [CrossRef] [Green Version]
- Zhong, H.; Zhou, T.; Li, W.; Zhong, Z. The role of hypoxia-inducible factor stabilizers in the treatment of anemia in patients with chronic kidney disease. Drug Des. Dev. Ther. 2018, 12, 3003. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coyne, D.W.; Goldsmith, D.; Macdougall, I.C. New options for the anemia of chronic kidney disease. Kidney Int. Suppl. 2017, 7, 157–163. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barratt, J.; Sulowicz, W.; Schömig, M.; Esposito, C.; Reusch, M.; Young, J.; Csiky, B. Efficacy and cardiovascular safety of roxadustat in dialysis-dependent chronic kidney disease: Pooled analysis of four phase 3 studies. Adv. Ther. 2021, 38, 5345–5360. [Google Scholar] [CrossRef]
- Akizawa, T.; Iwasaki, M.; Yamaguchi, Y.; Majikawa, Y.; Reusch, M. Phase 3, randomized, double-blind, active-comparator (darbepoetin alfa) study of oral roxadustat in CKD patients with anemia on hemodialysis in Japan. J. Am. Soc. Nephrol. 2020, 31, 1628–1639. [Google Scholar] [CrossRef] [PubMed]
- Shutov, E.; Sułowicz, W.; Esposito, C.; Tataradze, A.; Andric, B.; Reusch, M.; Valluri, U.; Dimkovic, N. Roxadustat for the treatment of anemia in chronic kidney disease patients not on dialysis: A Phase 3, randomized, double-blind, placebo-controlled study (ALPS). Nephrol. Dial. Transplant. 2021, 36, 1629–1639. [Google Scholar] [CrossRef]
- Chertow, G.M.; Pergola, P.E.; Farag, Y.M.; Agarwal, R.; Arnold, S.; Bako, G.; Block, G.A.; Burke, S.; Castillo, F.P.; Jardine, A.G.; et al. Vadadustat in patients with anemia and non–dialysis-dependent CKD. N. Engl. J. Med. 2021, 384, 1589–1600. [Google Scholar] [CrossRef] [PubMed]
- Eckardt, K.-U.; Agarwal, R.; Aswad, A.; Awad, A.; Block, G.A.; Bacci, M.R.; Farag, Y.M.; Fishbane, S.; Hubert, H.; Jardine, A.; et al. Safety and efficacy of vadadustat for anemia in patients undergoing dialysis. N. Engl. J. Med. 2021, 384, 1601–1612. [Google Scholar] [CrossRef]
- Singh, A.K.; Carroll, K.; McMurray, J.J.; Solomon, S.; Jha, V.; Johansen, K.L.; Lopes, R.D.; Macdougall, I.C.; Obrador, G.T.; Waikar, S.S.; et al. Daprodustat for the treatment of anemia in patients not undergoing dialysis. N. Engl. J. Med. 2021, 385, 2313–2324. [Google Scholar] [CrossRef]
- Singh, A.K.; Carroll, K.; Perkovic, V.; Solomon, S.; Jha, V.; Johansen, K.L.; Lopes, R.D.; Macdougall, I.C.; Obrador, G.T.; Waikar, S.S.; et al. Daprodustat for the treatment of anemia in patients undergoing dialysis. N. Engl. J. Med. 2021, 385, 2325–2335. [Google Scholar] [CrossRef]
- Yamamoto, H.; Nobori, K.; Matsuda, Y.; Hayashi, Y.; Hayasaki, T.; Akizawa, T. Molidustat for Renal Anemia in Nondialysis Patients Previously Treated with Erythropoiesis-Stimulating Agents: A Randomized, Open-Label, Phase 3 Study. Am. J. Nephrol. 2021, 52, 884–893. [Google Scholar] [CrossRef]
- Akizawa, T.; Yamada, T.; Nobori, K.; Matsuda, Y.; Hayashi, Y.; Hayasaki, T.; Yamamoto, H. Molidustat for Japanese patients with renal anemia receiving dialysis. Kidney Int. Rep. 2021, 6, 2604–2616. [Google Scholar] [CrossRef] [PubMed]
- Akizawa, T.; Nangaku, M.; Yamaguchi, T.; Koretomo, R.; Maeda, K.; Miyazawa, Y.; Hirakata, H. A Phase 3 Study of Enarodustat in anemic patients with CKD not requiring dialysis: The SYMPHONY ND Study. Kidney Int. Rep. 2021, 6, 1840–1849. [Google Scholar] [CrossRef] [PubMed]
- Akizawa, T.; Nangaku, M.; Yamaguchi, T.; Koretomo, R.; Maeda, K.; Miyazawa, Y.; Hirakata, H. A phase 3 study of enarodustat (JTZ-951) in Japanese hemodialysis patients for treatment of anemia in chronic kidney disease: SYMPHONY HD study. Kidney Dis. 2021, 7, 494–502. [Google Scholar] [CrossRef]
- Agrawal, D.; Varade, D.; Shah, H.; Nazar, A.; Krishnan, J.; Shukla, V.; Ramakrishna, C.; Galahitiyawa, M.C.B.; Mavani, S.B.; Rajanna, S.; et al. Desidustat in Anemia due to Non-Dialysis-Dependent Chronic Kidney Disease: A Phase 3 Study (DREAM-ND). Am. J. Nephrol. 2022, 53, 352–360. [Google Scholar] [CrossRef] [PubMed]
- Gang, S.; Khetan, P.; Varade, D.; Chinta, V.R.; Mavani, S.; Gupta, U.; Reddy, S.V.K.; Rajanna, S.; Jeloka, T.; Ruhela, V.; et al. Desidustat in Anemia due to Dialysis-Dependent Chronic Kidney Disease: A Phase 3 Study (DREAM-D). Am. J. Nephrol. 2022, 53, 343–351. [Google Scholar] [CrossRef]
- Wish, J.B. Hypoxia-Inducible Factor–Prolyl Hydroxylase Inhibitors for the Treatment of Anemia in CKD: Additional Pieces of the Jigsaw Puzzle. Kidney Int. Rep. 2021, 6, 1751–1754. [Google Scholar] [CrossRef]
- Yap, D.Y.H.; McMahon, L.P.; Hao, C.; Hu, N.; Okada, H.; Suzuki, Y.; Kim, S.G.; Lim, S.K.; Vareesangthip, K.; Hung, C.; et al. Recommendations by the Asian Pacific society of nephrology (APSN) on the appropriate use of HIF-PH inhibitors. Nephrology 2021, 26, 105–118. [Google Scholar] [CrossRef] [PubMed]
- Ogawa, C.; Tsuchiya, K.; Tomosugi, N.; Maeda, K. Threshold of Serum Ferritin to Discriminate against Those at Greater Risk of Platelet Increase during Treatment with Hypoxia-Inducible Factor Prolyl Hydroxylase Domain Inhibitor. Acta Haematol. 2022, 145, 412–418. [Google Scholar] [CrossRef]
- Li, Z.; Bao, S.; Wu, Q.; Wang, H.; Eyler, C.; Sathornsumetee, S.; Shi, Q.; Cao, Y.; Lathia, J.; McLendon, R.E.; et al. Hypoxia-inducible factors regulate tumorigenic capacity of glioma stem cells. Cancer Cell 2009, 15, 501–513. [Google Scholar] [CrossRef] [Green Version]
- Pullamsetti, S.S.; Mamazhakypov, A.; Weissmann, N.; Seeger, W.; Savai, R. Hypoxia-inducible factor signaling in pulmonary hypertension. J. Clin. Investig. 2020, 130, 5638–5651. [Google Scholar] [CrossRef]
- Chen, N.; Hao, C.; Peng, X.; Lin, H.; Yin, A.; Hao, L.; Tao, Y.; Liang, X.; Liu, Z.; Xing, C.; et al. Roxadustat for anemia in patients with kidney disease not receiving dialysis. N. Engl. J. Med. 2019, 381, 1001–1010. [Google Scholar] [CrossRef] [PubMed]
- Chen, N.; Hao, C.; Liu, B.-C.; Lin, H.; Wang, C.; Xing, C.; Liang, X.; Jiang, G.; Liu, Z.; Li, X.; et al. Roxadustat treatment for anemia in patients undergoing long-term dialysis. N. Engl. J. Med. 2019, 381, 1011–1022. [Google Scholar] [CrossRef] [PubMed]
- MacDougall, I.C.; Akizawa, T.; Berns, J.S.; Bernhardt, T.; Krueger, T. Effects of molidustat in the treatment of anemia in CKD. Clin. J. Am. Soc. Nephrol. 2019, 14, 28–39. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Akizawa, T.; Iwasaki, M.; Otsuka, T.; Yamaguchi, Y.; Reusch, M. Phase 3 study of roxadustat to treat anemia in non–dialysis-dependent CKD. Kidney Int. Rep. 2021, 6, 1810–1828. [Google Scholar] [CrossRef]
- Khan, J.; O’Connor, E.; Moore, R.; Lewis, C.; Fletcher-Louis, M. Renal Anemia Treatment in the Us-How Payer Policies and Physician Preferences Drive Prescribing and How will the Emerging Oral HIF-PH Inhibitors Influence Payers and Physicians? Value Health 2016, 19, A520. [Google Scholar] [CrossRef]
- Pollock, C.A.; Provenzano, R.; Rastogi, A.; Pecoits-Filho, R.; Liu, C.S.; Szczech, L. PO0455 Roxadustat in Elderly Patients with Anemia of CKD. J. Am. Soc. Nephrol. 2021, 32, A182. [Google Scholar]
Potential Benefits | Remaining Safety Concerns |
---|---|
Suitable alternative option for elderly individuals who are experiencing difficulties in achieving satisfactory erythropoiesis due to ESA hyporesponsiveness | Documented risks of MACE and thrombotic (e.g., when prescribed for those with iron deficiency without sufficient iron supplementation) events following prescription of the various HIF-PHIs, despite early pooled data analysis suggesting Roxadustat’s comparable cardiovascular safety to ESA. Pooled data analysis is required for other HIF-PHIs (Vadadustat, Daprodustat, Molidustat, Enarodustat and Desidustat) individually to provide greater clarity regarding its extent of cardiovascular safety. Elderly individuals with CKD or kidney failure are at greater risk due to likely increased multi-morbid status. |
May potentially avoid requirements for excess iron and ESA administration in elderly individuals, due to the ability of HIF-PHI on increasing iron absorption, and improving functional iron utilization. | Increased VEGF gene transcription activity elevates the risk of neoplasia and proliferative diabetic retinopathy even further for elderly people with CKD. |
Ease of orally administered treatment for elderly individuals instead of regular injections. | Increased risk of pulmonary hypertension, metabolic acidosis, arterial hypertension, liver dysfunction, hyperkalemia and upper respiratory tract infections. |
Polypharmacy drug-drug interactions, with concerns regarding compliance and drug cost-effectiveness particularly for the elderly patient population living with multi-morbidities in addition to CKD. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, H.H.L.; Chinnadurai, R.; Walker, R.J. Is HIF-PHI the Answer to Tackle ESA Hyporesponsiveness in the Elderly? Kidney Dial. 2022, 2, 446-453. https://doi.org/10.3390/kidneydial2030040
Wu HHL, Chinnadurai R, Walker RJ. Is HIF-PHI the Answer to Tackle ESA Hyporesponsiveness in the Elderly? Kidney and Dialysis. 2022; 2(3):446-453. https://doi.org/10.3390/kidneydial2030040
Chicago/Turabian StyleWu, Henry H. L., Rajkumar Chinnadurai, and Robert J. Walker. 2022. "Is HIF-PHI the Answer to Tackle ESA Hyporesponsiveness in the Elderly?" Kidney and Dialysis 2, no. 3: 446-453. https://doi.org/10.3390/kidneydial2030040