Assessment of Function Limitations in People with Chronic Kidney Disease for Implementation in Clinical Practice
Abstract
:1. Introduction
2. Physical Function as an Outcome of Clinical Importance in CKD
3. Function Limitations Measurement Instruments for Clinical Implementation
3.1. Function Limitations—Which Measurement Instruments?
3.2. Walking Mobility
3.3. Body Posture Transfers
3.4. Handgrip Strength (HGS)
4. Summary and Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bikbov, B.; Purcell, C.A.; Levey, A.S.; Smith, M.; Abdoli, A.; Abebe, M.; Owolabi, M.O. Global, regional, and national burden of chronic kidney disease, 1990–2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet 2020, 395, 709–733. [Google Scholar] [CrossRef] [Green Version]
- Ng Fat, L.; Mindell, J.; Roderick, P. Key Findings Health Survey for England 2016 Kidney and Liver Disease; Health and Social Care Information Centre: London, UK, 2017. [Google Scholar]
- UK Renal Registry 22nd Annual Report–Data to 31/12/2018. 2020. Available online: https://ukkidney.org/audit-research/annual-report/22nd-annual-report-data-31122018 (accessed on 7 March 2022).
- Koufaki, P.; Mercer, T. Assessment and Monitoring of Physical Function for People With CKD. Adv. Chronic Kidney Dis. 2009, 16, 410–419. [Google Scholar] [CrossRef] [PubMed]
- Koufaki, P.; Kouidi, E. Current best evidence recommendations on measurement and interpretation of physical function in patients with chronic kidney disease. Sports Med. 2010, 40, 1055–1074. [Google Scholar] [CrossRef] [PubMed]
- Johansen, K.L.; Delgado, C.; Kaysen, G.A.; Chertow, G.M.; Chiang, J.; Dalrymple, L.S.; Segal, M.R.; Grimes, B.A. Frailty Among Patients Receiving Hemodialysis: Evolution of Components and Associations With Mortality. J. Gerontol. Ser. A 2019, 74, 380–386. [Google Scholar] [CrossRef] [PubMed]
- Kallenberg, M.H.; Kleinveld, H.A.; Dekker, F.W.; van Munster, B.C.; Rabelink, T.J.; van Buren, M.; Mooijaart, S.P. Functional and Cognitive Impairment, Frailty, and Adverse Health Outcomes in Older Patients Reaching ESRD—A Systematic Review. Clin. J. Am. Soc. Nephrol. 2016, 11, 1624–1639. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- MacKinnon, H.J.; Wilkinson, T.J.; Clarke, A.L.; Gould, D.W.; O’Sullivan, T.F.; Xenophontos, S.; Watson, E.L.; Singh, S.J.; Smith, A.C. The association of physical function and physical activity with all-cause mortality and adverse clinical outcomes in nondialysis chronic kidney disease: A systematic review. Ther. Adv. Chronic Dis. 2018, 9, 209–226. [Google Scholar] [CrossRef]
- Blake, C.; O’Meara, Y.M. Subjective and objective physical limitations in high-functioning renal dialysis patients. Nephrol. Dial. Transplant. 2004, 19, 3124–3129. [Google Scholar] [CrossRef] [Green Version]
- Painter, P.; Marcus, R. Assessing Physical Function and Physical Activity in Patients with CKD. Clin. J. Am. Soc. Nephrol. 2013, 8, 861–872. [Google Scholar] [CrossRef]
- Greenwood, S.A.; Lindup, H.; Taylor, K.; Koufaki, P.; Rush, R.; MacDougall, I.C.; Mercer, T.H. Evaluation of a pragmatic exercise rehabilitation programme in chronic kidney disease. Nephrol. Dial. Transplant. 2012, 27 (Suppl. 3), iii126–iii134. [Google Scholar] [CrossRef] [Green Version]
- Kurella Tamura, M.; Covinsky, K.E.; Chertow, G.M.; Yaffe, K.; Landefeld, C.S.; McCulloch, C.E. Functional Status of Elderly Adults before and after Initiation of Dialysis. N. Engl. J. Med. 2009, 361, 1539–1547. [Google Scholar] [CrossRef] [Green Version]
- McAdams-DeMarco, M.A.; Suresh, S.; Law, A.; Salter, M.L.; Gimenez, L.F.; Jaar, B.G.; Walston, J.D.; Segev, D.L. Frailty and falls among adult patients undergoing chronic hemodialysis: A prospective cohort study. BMC Nephrol. 2013, 14, 224. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Painter, P.; Roshanravan, B. The association of physical activity and physical function with clinical outcomes in adults with chronic kidney disease. Curr. Opin. Nephrol. Hypertens. 2013, 22, 615–623. [Google Scholar] [CrossRef] [PubMed]
- Roshanravan, B.; Robinson-Cohen, C.; Patel, K.V.; Ayers, E.; Littman, A.J.; de Boer, I.H.; Ikizler, T.A.; Himmelfarb, J.; Katzel, L.I.; Kestenbaum, B.; et al. Association between Physical Performance and All-Cause Mortality in CKD. J. Am. Soc. Nephrol. 2013, 24, 822–830. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jassal, S.V.; Karaboyas, A.; Comment, L.A.; Bieber, B.; Morgenstern, H.; Sen, A.; Gillespie, B.W.; De Sequera, P.; Marshall, M.R.; Fukuhara, S.; et al. Functional Dependence and Mortality in the International Dialysis Outcomes and Practice Patterns Study (DOPPS). Am. J. Kidney Dis. 2016, 67, 283–292. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carrero, J.J.; Johansen, K.L.; Lindholm, B.; Stenvinkel, P.; Cuppari, L.; Avesani, C. Screening for muscle wasting and dysfunction in patients with chronic kidney disease. Kidney Int. 2016, 90, 53–66. [Google Scholar] [CrossRef] [PubMed]
- Koufaki, P.; Greenwood, S.; Painter, P.; Mercer, T. The BASES expert statement on exercise therapy for people with chronic kidney disease. J. Sports Sci. 2015, 33, 1902–1907. [Google Scholar] [CrossRef] [PubMed]
- Wong, L.; Duque, G.; McMahon, L.P. Sarcopenia and Frailty: Challenges in Mainstream Nephrology Practice. Kidney Int. Rep. 2021, 6, 2554–2564. [Google Scholar] [CrossRef]
- Nixon, A.C.; Bampouras, T.M.; Pendleton, N.; Mitra, S.; Brady, M.E.; Dhaygude, A.P. Frailty is independently associated with worse health-related quality of life in chronic kidney disease: A secondary analysis of the Frailty Assessment in Chronic Kidney Disease study. Clin. Kidney J. 2020, 13, 85–94. [Google Scholar] [CrossRef]
- Zanotto, T.; Mercer, T.H.; van der Linden, M.L.; Koufaki, P. Screening tools to expedite assessment of frailty in people receiving haemodialysis: A diagnostic accuracy study. BMC Geriatr. 2021, 21, 411. [Google Scholar] [CrossRef]
- Ju, A.; Chow, B.Y.; Ralph, A.F.; Howell, M.; Josephson, M.A.; Ahn, C.; Butt, Z.; Dobbels, F.; Fowler, K.; Jowsey-Gregoire, S.; et al. Patient-reported outcome measures for life participation in kidney transplantation: A systematic review. Am. J. Transplant. 2019, 19, 2306–2317. [Google Scholar] [CrossRef]
- Fried, L.P.; Tangen, C.M.; Walston, J.; Newman, A.B.; Hirsch, C.; Gottdiener, J.; McBurnie, M.A. Frailty in Older AdultsEvidence for a Phenotype. J. Gerontol. Ser. A 2001, 56, M146–M157. [Google Scholar] [CrossRef] [PubMed]
- Leal, V.O.; Mafra, D.; Fouque, D.; Anjos, L. Use of handgrip strength in the assessment of the muscle function of chronic kidney disease patients on dialysis: A systematic review. Nephrol. Dial. Transplant. 2011, 26, 1354–1360. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Neto, M.G.; de Lacerda, F.F.R.; Lopes, A.A.; Martinez, B.P.; Saquetto, M.B. Intradialytic exercise training modalities on physical functioning and health-related quality of life in patients undergoing maintenance hemodialysis: Systematic review and meta-analysis. Clin. Rehabil. 2018, 32, 1189–1202. [Google Scholar] [CrossRef] [PubMed]
- Clarkson, M.J.; Bennett, P.N.; Fraser, S.F.; Warmington, S.A. Exercise interventions for improving objective physical function in patients with end-stage kidney disease on dialysis: A systematic review and meta-analysis. Am. J. Physiol. Physiol. 2019, 316, F856–F872. [Google Scholar] [CrossRef]
- Koufaki, P.; Greenwood, S.A.; Macdougall, I.C.; Mercer, T.H. Exercise Therapy in Individuals With Chronic Kidney Disease: A Systematic Review and Synthesis of the Research Evidence. Annu. Rev. Nurs. Res. 2013, 31, 235–275. [Google Scholar] [CrossRef]
- Baker, L.A.; March, D.S.; Wilkinson, T.J.; Billany, R.E.; Bishop, N.C.; Castle, E.M.; Chilcot, J.; Davies, M.D.; Graham-Brown, M.P.M.; Greenwood, S.A.; et al. Clinical practice guideline exercise and lifestyle in chronic kidney disease. BMC Nephrol. 2022, 23, 75. [Google Scholar] [CrossRef]
- Guideline Development Group; Bilo, H.J.G.; Coentrão, L.; Couchoud, C.; Covic, A.; De Sutter, J.; Drechsler, C.; Gnudi, L.; Goldsmith, D.J.; Heaf, J.G.; et al. Clinical Practice Guideline on management of patients with diabetes and chronic kidney disease stage 3b or higher (eGFR < 45 mL/min). Nephrol. Dial. Transplant. 2015, 30 (Suppl. 2), ii1–ii142. [Google Scholar] [CrossRef] [Green Version]
- Prinsen, C.A.; Vohra, S.; Rose, M.R.; Boers, M.; Tugwell, P.; Clarke, M.; Terwee, C.B. Guideline for Selecting Outcome Measurement Instruments for Outcomes Included in a Core Outcome Set. Trials 2016. [Google Scholar] [CrossRef] [Green Version]
- COSMIN Taxonomy of Measurement Properties. Available online: https://www.cosmin.nl/tools/cosmin-taxonomy-measurement-properties/ (accessed on 7 March 2022).
- Hsieh, R.-L.; Lee, W.-C.; Chang, C.-H. Maximal Cardiovascular Fitness and Its Correlates in Ambulatory Hemodialysis Patients. Am. J. Kidney Dis. 2006, 48, 21–27. [Google Scholar] [CrossRef]
- Kohl, L.D.M.; Signori, L.U.; Ribeiro, R.A.; Silva, A.M.V.; Moreira, P.R.; Dipp, T.; Sbruzzi, G.; Lukrafka, J.L.; Plentz, R.D.M. Prognostic value of the six-minute walk test in end-stage renal disease life expectancy: A prospective cohort study. Clinics 2012, 67, 581–586. [Google Scholar] [CrossRef]
- Padilla, J.; Krasnoff, J.; Da Silva, M.; Hsu, C.-Y.; Frassetto, L.; Johansen, K.L.; Painter, P. Physical functioning in patients with chronic kidney disease. J. Nephrol. 2008, 21, 550–559. [Google Scholar] [PubMed]
- Huang, K.S.; O’Connor, E.; Tuffnell, R.; Lindup, H.; MacDougall, I.C.; Greenwood, S.A. Reliability and validity of the five-repetition sit-to-stand test in adult kidney transplant recipients. Int. J. Ther. Rehabil. 2018, 25, 158–166. [Google Scholar] [CrossRef]
- Wilkinson, T.J.; Xenophontos, S.; Gould, D.W.; Vogt, B.P.; Viana, J.L.; Smith, A.C.; Watson, E.L. Test–retest reliability, validation, and “minimal detectable change” scores for frequently reported tests of objective physical function in patients with non-dialysis chronic kidney disease. Physiother. Theory Pract. 2019, 35, 565–576. [Google Scholar] [CrossRef]
- Bohannon, R.W.; Smith, J.; Hull, D.; Palmeri, D.; Barnhard, R. Deficits in lower extremity muscle and gait performance among renal transplant candidates. Arch. Phys. Med. Rehabil. 1995, 76, 547–551. [Google Scholar] [CrossRef]
- Abdulan, I.M.; Ștefăniu, R.; Maștaleru, A.; Lefter, N.; Alexa, I.D.; Mocanu, V. Cut-off values of anthropometric measurements, handgrip strength, physical activity and geriatric scores for the malnutrition risk among older patients with chronic kidney disease. Med. Surg. J. Rev. Med. Chir. Soc. Med. Nat. 2020, 124, 19–26. [Google Scholar]
- Hadjiioannou, I.; Wong, K.; Lindup, H.; Mayes, J.; Castle, E.; Greenwood, S. Test–Retest Reliability for Physical Function Measures in Patients with Chronic Kidney Disease. J. Ren. Care 2020, 46, 25–34. [Google Scholar] [CrossRef]
- Mesquita, R.; Janssen, D.J.; Wouters, E.F.; Schols, J.M.; Pitta, F.; Spruit, M.A. Within-Day Test-Retest Reliability of the Timed Up & Go Test in Patients With Advanced Chronic Organ Failure. Arch. Phys. Med. Rehabil. 2013, 94, 2131–2138. [Google Scholar] [CrossRef]
- Ortega-Pérez de Villar, L.; Martínez-Olmos, F.J.; Junqué-Jiménez, A.; Amer-Cuenca, J.J.; Martínez-Gramage, J.; Mercer, T.; Segura-Ortí, E. Test-retest reliability and minimal detectable change scores for the short physical performance battery, one-legged standing test and timed up and go test in patients undergoing hemodialysis. PLoS ONE 2018, 13, e0201035. [Google Scholar] [CrossRef] [Green Version]
- Overend, T.; Anderson, C.; Sawant, A.; Perryman, B.; Locking-Cusolito, H. Relative and Absolute Reliability of Physical Function Measures in People with End-Stage Renal Disease. Physiother. Can. 2010, 62, 122–128. [Google Scholar] [CrossRef] [Green Version]
- Segura-Ortí, E.; Martínez-Olmos, F.J. Test-Retest Reliability and Minimal Detectable Change Scores for Sit-to-Stand-to-Sit Tests, the Six-Minute Walk Test, the One-Leg Heel-Rise Test, and Handgrip Strength in People Undergoing Hemodialysis. Phys. Ther. 2011, 91, 1244–1252. [Google Scholar] [CrossRef] [Green Version]
- Koufaki, P.; Mercer, T.H.; Naish, P.F. Effects of exercise training on aerobic and functional capacity of end-stage renal disease patients. Clin. Physiol. Funct. Imaging 2002, 22, 115–124. [Google Scholar] [CrossRef] [PubMed]
- Macdonald, J.H.; Marcora, S.M.; Jibani, M.; Phanish, M.K.; Holly, J.; Lemmey, A.B. Intradialytic exercise as anabolic therapy in haemodialysis patients–A pilot study. Clin. Physiol. Funct. Imaging 2005, 25, 113–118. [Google Scholar] [CrossRef] [PubMed]
- Laupacis, A.; Wong, C.; Churchill, D. The use of generic and specific quality-of-life measures in hemodialysis patients treated with erythropoietin. Control. Clin. Trials 1991, 12, S168–S179. [Google Scholar] [CrossRef]
- Wilkinson, T.J.; Watson, E.L.; Xenophontos, S.; Gould, D.W.; Smith, A.C. The “Minimum Clinically Important Difference” in Frequently Reported Objective Physical Function Tests After a 12-Week Renal Rehabilitation Exercise Intervention in Nondialysis Chronic Kidney Disease. Am. J. Phys. Med. Rehabil. 2019, 98, 431–437. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Painter, P.; Kuskowski, M. A closer look at frailty in ESRD: Getting the measure right. Hemodial. Int. 2013, 17, 41–49. [Google Scholar] [CrossRef]
- Kittiskulnam, P.; Chertow, G.M.; Carrero, J.J.; Delgado, C.; Kaysen, G.A.; Johansen, K.L. Sarcopenia and its individual criteria are associated, in part, with mortality among patients on hemodialysis HHS Public Access. Kidney Int. 2017, 92, 238–247. [Google Scholar] [CrossRef]
- Kutner, N.G.; Zhang, R.; Huang, Y.; Painter, P. Gait Speed and Mortality, Hospitalization, and Functional Status Change Among Hemodialysis Patients: A US Renal Data System Special Study. Am. J. Kidney Dis. 2015, 66, 297–304. [Google Scholar] [CrossRef] [Green Version]
- Lorenz, E.C.; Cheville, A.L.; Amer, H.; Kotajarvi, B.R.; Stegall, M.D.; Petterson, T.M.; Kremers, W.K.; Cosio, F.G.; LeBrasseur, N. Relationship between pre-transplant physical function and outcomes after kidney transplant. Clin. Transplant. 2017, 31, e12952. [Google Scholar] [CrossRef] [Green Version]
- Nastasi, A.J.; McAdams-DeMarco, M.A.; Schrack, J.; Ying, H.; Olorundare, I.; Warsame, F.; Segev, D.L. Pre-Kidney Transplant Lower Extremity Impairment and Post-Transplant Mortality HHS Public Access. Am. J. Transplant. 2018, 18, 189–196. [Google Scholar] [CrossRef] [Green Version]
- Tsai, Y.-C.; Chen, H.-M.; Hsiao, S.-M.; Chen, C.-S.; Lin, M.-Y.; Chiu, Y.-W.; Hwang, S.-J.; Kuo, M.-C. Association of physical activity with cardiovascular and renal outcomes and quality of life in chronic kidney disease. PLoS ONE 2017, 12, e0183642. [Google Scholar] [CrossRef] [Green Version]
- Lopes, M.B.; Silva, L.F.; Dantas, M.A.; Matos, C.M.; Lopes, G.B.; Lopes, A.A. Sex-age-specific handgrip strength and mortality in an incident hemodialysis cohort: The risk explained by nutrition and comorbidities. Int. J. Artif. Organs 2018, 41, 825–832. [Google Scholar] [CrossRef] [PubMed]
- Matos, C.M.; Silva, L.F.; Santana, L.D.; Santos, L.S.; Protásio, B.M.; Rocha, M.T.; Ferreira, V.L.; Azevedo, M.F.; Martins, M.T.S.; Lopes, G.B.; et al. Handgrip Strength at Baseline and Mortality Risk in a Cohort of Women and Men on Hemodialysis: A 4-Year Study. J. Ren. Nutr. 2014, 24, 157–162. [Google Scholar] [CrossRef] [PubMed]
- Isoyama, N.; Qureshi, A.R.; Avesani, C.M.; Lindholm, B.; Bàràny, P.; Heimbürger, O.; Cederholm, T.; Stenvinkel, P.; Carrero, J.J. Comparative Associations of Muscle Mass and Muscle Strength with Mortality in Dialysis Patients. Clin. J. Am. Soc. Nephrol. 2014, 9, 1720–1728. [Google Scholar] [CrossRef] [PubMed]
- Chan, W.; Chin, S.H.; Whittaker, A.C.; Jones, D.; Kaur, O.; Bosch, J.A.; Borrows, R. The Associations of Muscle Strength, Muscle Mass, and Adiposity With Clinical Outcomes and Quality of Life in Prevalent Kidney Transplant Recipients. J. Ren. Nutr. 2019, 29, 536–547. [Google Scholar] [CrossRef]
- Jamal, S.A.; Leiter, R.E.; Jassal, V.; Hamilton, C.J.; Bauer, D.C. Impaired muscle strength is associated with fractures in hemodialysis patients. Osteoporos. Int. 2006, 17, 1390–1397. [Google Scholar] [CrossRef]
- Cruz-Jentoft, A.J.; Bahat, G.; Bauer, J.; Boirie, Y.; Bruyère, O.; Cederholm, T.; Cooper, C.; Landi, F.; Rolland, Y.; Sayer, A.A.; et al. Sarcopenia: Revised European consensus on definition and diagnosis. Age Ageing 2019, 48, 16–31. [Google Scholar] [CrossRef] [Green Version]
- Dodds, R.M.; Syddall, H.E.; Cooper, R.; Benzeval, M.; Deary, I.J.; Dennison, E.M.; Der, G.; Gale, C.R.; Inskip, H.M.; Jagger, C.; et al. Grip Strength across the Life Course: Normative Data from Twelve British Studies. PLoS ONE 2014, 9, e113637. [Google Scholar] [CrossRef] [Green Version]
- Wilkinson, T.J.; Gabrys, I.; Lightfoot, C.J.; Lambert, K.; Baker, L.A.; Billany, R.E.; Kanavaki, A.; Palmer, J.; Robinson, K.A.; Nixon, D.; et al. A Systematic Review of Handgrip Strength Measurement in Clinical and Epidemiological Studies of Kidney Disease: Toward a Standardized Approach. J. Ren. Nutr. 2021. [Google Scholar] [CrossRef]
- Yang, D.; Robinson, L.; Selinski, C.; Bajakian, T.; Mejia, C.; Harhay, M.N. Physical Function in Kidney Transplantation: Current Knowledge and Future Directions. Curr. Transplant. Rep. 2020, 7, 46–55. [Google Scholar] [CrossRef]
- Chen, J.L.; Godfrey, S.; Ng, T.T.; Moorthi, R.; Liangos, O.; Ruthazer, R.; Castaneda-Sceppa, C. Effect of intra-dialytic, low-intensity strength training on functional capacity in adult haemodialysis patients: A randomized pilot trial. Nephrol. Dial. Transplant. 2010, 25, 1936–1943. [Google Scholar] [CrossRef] [Green Version]
- López-Soto, P.J.; De Giorgi, A.; Senno, E.; Tiseo, R.; Ferraresi, A.; Canella, C.; Rodríguez-Borrego, M.A.; Manfredini, R.; Fabbian, F. Renal disease and accidental falls: A review of published evidence. BMC Nephrol. 2015, 16, 176. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Torino, C.; Manfredini, F.; Bolignano, D.; Aucella, F.; Baggetta, R.; Barillà, A.; Battaglia, Y.; Bertoli, S.; Bonanno, G.; Castellino, P.; et al. Physical Performance and Clinical Outcomes in Dialysis Patients: A Secondary Analysis of the Excite Trial. Kidney Blood Press. Res. 2014, 39, 205–211. [Google Scholar] [CrossRef] [PubMed]
- Cook, W.; Jassal, S. Functional dependencies among the elderly on hemodialysis. Kidney Int. 2008, 73, 1289–1295. [Google Scholar] [CrossRef] [Green Version]
- Losa-Reyna, J.; Alcazar, J.; Rodríguez-Gómez, I.; Alfaro-Acha, A.; Alegre, L.M.; Rodríguez-Mañas, L.; Ara, I.; García-García, F.J. Low relative mechanical power in older adults: An operational definition and algorithm for its application in the clinical setting. Exp. Gerontol. 2020, 142, 111141. [Google Scholar] [CrossRef]
- Wilkinson, T.J.; Gore, E.F.; Baker, L.A.; Watson, E.L.; Smith, A.C. Muscle power and physical dysfunction: A model for tailoring rehabilitation in chronic kidney disease. Nephrology 2021, 26, 790–797. [Google Scholar] [CrossRef]
- Brodin, E.; Ljungman, S.; Sunnerhagen, K.S. Rising from a chair A simple screening test for physical function in predialysis patients. Scand. J. Urol. Nephrol. 2009, 42, 293–300. [Google Scholar] [CrossRef]
- Hwang, S.-H.; Lee, D.H.; Min, J.; Jeon, J.Y. Handgrip Strength as a Predictor of All-Cause Mortality in Patients With Chronic Kidney Disease Undergoing Dialysis: A Meta-Analysis of Prospective Cohort Studies. J. Ren. Nutr. 2019, 29, 471–479. [Google Scholar] [CrossRef]
- Stenvinkel, P.; Barany, P.; Chung, S.H.; Lindholm, B.; Heimbürger, O. A comparative analysis of nutritional parameters as predictors of outcome in male and female ESRD patients. Nephrol. Dial. Transplant. 2002, 17, 1266–1274. [Google Scholar] [CrossRef]
Walking Mobility | STS Transfers | HGS (Kg.m.s −1 or Max Kg Achieved) | ||
---|---|---|---|---|
Why | Criterion/ structural validity | 6MWT vs. VO2 peak Regression CC: 0.62 (p = 0.008) [32] 6MWT vs. VO2 peak r = 0.508 (p < 0.0001) [33] r = 0.703 [34] Gait speed vs. Fried’s frailty AUC: 0.97 (95%CI: 0.93–1.00) [20] AUC: 0.89 (95%CI: 0.81–0.98) [21] Gait speed vs. VO2 peak r = 0.636 [34] TUG vs. Fried’s frailty AUC: 0.90 (95%CI: 0.80–0.99) [21] | STS-5 vs. VO2 peak Regression CC: −0.58 (p = 0.002) [32] STS-5 vs. isometric KEF Spearman’s Rho: (not significant) [35] STS-5 vs. e1RM r = 0.47, (p = 0.003) STS-5 vs. ISWT r = 0.74, (p < 0.001) [36] STS-5 vs. Fried’s frailty AUC: 0.86 (95%CI: 0.75–0.96) [21] STS-10 vs. KEF Pearson’s correlation coefficient for NDKEF%: R = 0.644 [95%CI: 0.52 to 0.74] [37] DKEF% R = 0.590 [95%CI: 0.45 to 0.70] STS-60 vs. isometric KEF Spearman’s Rho: −0.90 (p = 0.000) [35] | HGS vs. VO2 peak Regression CC: 0.55 (p = 0.003) [32] HGS vs. Fried’s frailty: CC: −0.62 (95%CI: −0.73 to −0.48) AUC: 0.87 (95%CI: 0.78–0.96) [20] AUC: 0.71 (95%CI:0.59–0.83) [21] HGS vs. malnutrition from MNA AUC 0.766 (95%CI: 0.658–0.854) MNA <= 13.5 (sens 71.43%, spec 76.71%) [38] |
Reliability | TUG ICC: 0.96 (95%CI: 0.92–0.98) SEM(%): 12.5 MDC90–95: 2.90 s [39] ICC: 0.91 (95%CI: 0.78–0.86) LOA: −3.82, 2.05 MDC95: 3.44 s [40] ICC: 0.96 (95%CI: 0.94–0.98) MDC90: 2.9 s (95%CI: 2.2–3.7) [41] 6MWT ICC: 0.93 (95%CI: 0.82–0.97) SEM(%): 7.6 MDC95:77 m [42] ICC: 0.94 (95%CI: 0.89–0.97) SEM(%): 28.4 MDC90: 66.3 m [43] | STS-5 ICC: 0.67 (95%CI: 0.468–0.813 CV%: 8.3–15.1 SEM: 2.7 s MDC95: 0.8–7.5 s [35,36,44] STS-10 ICC = 0.84 [95%CI: 0.68 to 0.93] [37] ICC: 0.88 (0.78–0.94) MDC90: 8.4 s [43] STS-30 CV%:5.5 [45] ICC: 0.93 (95%CI: 0.58 to 0.98) MDC95: 2.6 reps [42] STS-60 ICC: 0.89 (95%CI: 0.80–0.94)CV%: 12.8–14.1 SEM: 1.3–3.5 reps MDC90: 4–8.3 reps [36,39,43,44] | MDC90: 3.4 kg [43] | |
Responsiveness | 6MWT vs. VO2 peak correlation of change scores: 0.68, (p < 0.001) [46] | STS-5 MCID: 3.3 s (95%CI: −0.7–7.3) STS60: 1 rep (95%CI:−4–6) [47] | ||
Interpretability | 6MWT: <350–400 m walked Gait speed < 0.85–0.6 m/s 3mTUAG > 10 s associated with significantly higher risk of death, disability, physical frailty [15,20,21,48,49,50] | STS-5 and early admission to hospital post KTx (not significant) [51] STS-5 1 point reduction produced 1.28-fold higher risk of death (95%CI: 1.02–1.60) [52] STS-5 > 15s significantly discriminates frail from non-frail individuals [21] STS-30 35% decreased risk of CV events 16% decreased risk of all-cause hospitalisation [53] | HGS and early admission to hospital post KTx (not significant) [51] HGS predicts mortality [54,55] better than measures of muscle mass and other measures of sarcopenia [49,56,57] and hospitalisations [9,57] HGS and fractures (not significant [58] | |
Who | In all adult people with CKD in any stage | In all adult people with CKD in any stage | In all adult people with CKD in any stage | |
Impact/Value | Cut off points for sarcopenia classification [59] | Cut-off points for frailty phenotype [23] Cut off points for sarcopenia [59] Normative data from UK population exists [60] | ||
Expertise | No specialist training required but standardised assessment protocol needs to be followed [5] | No specialist training required but standardised assessment protocol needs to be followed [61] | ||
Equipment | Standard height chair (height of 42–46 cm) and stopwatch | Hand-held dynamometer at cost | ||
Purpose | Physical function outcome (and possibly screening) | Screening and physical function outcome | ||
Feasibility | Safety/suitability | No adverse events reported in supervised set ups | No adverse events reported in supervised set ups | |
Not suitable for people who cannot stand independently | Suitable for non-mobile individuals | |||
No floor or ceiling effects | No floor or ceiling effects | |||
Comprehensibility and setting | No language barriers and time efficient as it can be completed in <5 min | No language barriers and time efficient as it can be completed in <5 min | ||
Any location in clinical or research environment | Any location in clinical or research environment |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Koufaki, P. Assessment of Function Limitations in People with Chronic Kidney Disease for Implementation in Clinical Practice. Kidney Dial. 2022, 2, 234-244. https://doi.org/10.3390/kidneydial2020024
Koufaki P. Assessment of Function Limitations in People with Chronic Kidney Disease for Implementation in Clinical Practice. Kidney and Dialysis. 2022; 2(2):234-244. https://doi.org/10.3390/kidneydial2020024
Chicago/Turabian StyleKoufaki, Pelagia. 2022. "Assessment of Function Limitations in People with Chronic Kidney Disease for Implementation in Clinical Practice" Kidney and Dialysis 2, no. 2: 234-244. https://doi.org/10.3390/kidneydial2020024