Transarterial Chemoembolization in Locally Advanced Rectal Cancer: A Systematic Review
Simple Summary
Abstract
1. Introduction
2. Methods
2.1. Study Design and Reporting Guidelines
2.2. Search Strategy
2.3. Eligibility Criteria
2.4. Study Selection, Data Extraction, and Critical Appraisal
2.5. Statistical Analysis
2.6. Systematic Review Registration
3. Results
- i.
- Pathological Response:
- ii.
- Tumor Reduction and Response Rates:
- iii.
- Survival Outcomes:
- iv.
- Clinical Success and Metastasis Control:
Quality of Studies
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Meng, W.; Yang, B.; Huang, B.; Chen, C.; Zhu, J.; Jian, D.; Zhong, L.; Wang, D.; Li, C.; Bai, L. Impact of preoperative transcatheter rectal arterial chemoembolization with concurrent chemoradiotherapy on surgery and prognosis of patients with locally advanced rectal cancer. J. Surg. Oncol. 2021, 124, 1451–1458. [Google Scholar] [CrossRef] [PubMed]
- Piątkowski, J.; Jagielski, M.; Szeliga, J.; Nowak, M.; Jackowski, M. Transanal total mesorectal excision (TaTME) in rectal cancer treatment within an expert center. Sci. Rep. 2023, 13, 17084. [Google Scholar] [CrossRef] [PubMed]
- Cercek, A.; Lumish, M.; Sinopoli, J.; Weiss, J.; Shia, J.; Lamendola-Essel, M.; El Dika, I.H.; Segal, N.; Shcherba, M.; Sugarman, R.; et al. PD-1 Blockade in Mismatch Repair–Deficient, Locally Advanced Rectal Cancer. N. Engl. J. Med. 2022, 386, 2363–2376. [Google Scholar] [CrossRef] [PubMed]
- NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines). Rectal Cancer. 30 April 2024. Available online: https://www.nccn.org/professionals/physician_gls/pdf/rectal.pdf (accessed on 3 June 2024).
- Wang, Z.; Tao, J.; Chen, J.; Mei, S.; Shen, H.; Zhao, F.; Liu, Q. Intraoperative intraperitoneal chemotherapy increases the incidence of anastomotic leakage after anterior resection of rectal tumors. World J. Gastrointest. Oncol. 2019, 11, 538–550. [Google Scholar] [CrossRef]
- Daprà, V.; Airoldi, M.; Bartolini, M.; Fazio, R.; Mondello, G.; Tronconi, M.C.; Prete, M.G.; D’Agostino, G.; Foppa, C.; Spinelli, A.; et al. Total Neoadjuvant Treatment for Locally Advanced Rectal Cancer Patients: Where Do We Stand? Int. J. Mol. Sci. 2023, 24, 12159. [Google Scholar] [CrossRef]
- Couwenberg, A.M.; Varvoglis, D.N.; Grieb, B.C.; Marijnen, C.A.; Ciombor, K.K.; Guillem, J.G. New Opportunities for Minimizing Toxicity in Rectal Cancer Management. Am. Soc. Clin. Oncol. Educ. Book 2023, 43, e389558. [Google Scholar] [CrossRef]
- Ochiai, K.; Bhutiani, N.; Ikeda, A.; Uppal, A.; White, M.G.; Peacock, O.; Messick, C.A.; Bednarski, B.K.; You, Y.-Q.N.; Skibber, J.M.; et al. Total Neoadjuvant Therapy for Rectal Cancer: Which Regimens to Use? Cancers 2024, 16, 2093. [Google Scholar] [CrossRef]
- Miyayama, S. Treatment Strategy of Transarterial Chemoembolization for Hepatocellular Carcinoma. Appl. Sci. 2020, 10, 7337. [Google Scholar] [CrossRef]
- Yang, B.; Shan, J.; Feng, Y.; Dai, N.; Li, M.; Chen, C.; He, S.; Wang, G.; Xiao, H.; Li, C.; et al. Transcatheter rectal arterial chemoembolization with oxaliplatin plus S-1 concurrent chemoradiotherapy can improve the pathological remission rate in locally advanced rectal cancer: A comparative study. Radiat. Oncol. 2020, 15, 94. [Google Scholar] [CrossRef]
- Peng, D.; Zhang, B.; Yuan, C.; Tong, Y.; Zhang, W. Gastric transcatheter chemoembolization can resolve advanced gastric cancer presenting with obstruction. Front. Surg. 2022, 9, 1004064. [Google Scholar] [CrossRef]
- Williams, N.S.; Johnston, D. The quality of life after rectal excision for low rectal cancer. Br. J. Surg. 1983, 70, 460–462. [Google Scholar] [CrossRef] [PubMed]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef] [PubMed]
- Covidence Systematic Review Software. Veritas Health Innovation, Melbourne, Australia. Available online: www.covidence.org (accessed on 2 July 2024).
- Wells, G.A.; Shea, B.; O’Connell, D.; Peterson, J.; Welch, V.; Losos, M.; Tugwell, P. The Newcastle-Ottawa Scale (NOS) for Assessing the Quality of Nonrandomised Studies in Meta-Analyses [Internet]; The Ottawa Hospital Research Institute: Ottawa, ON, Canada, 2013; Available online: http://www.ohri.ca/programs/clinical_epidemiology/oxford.asp (accessed on 16 May 2024).
- Hozo, S.P.; Djulbegovic, B.; Hozo, I. Estimating the mean and variance from the median, range, and the size of a sample. BMC Med. Res. Methodol. 2005, 5, 13. [Google Scholar] [CrossRef] [PubMed]
- Bini, R.; Comelli, S.; Leli, R.; Vaudano, G.P.; Savio, D.; Viora, T.; Addeo, A. A novel approach to inoperable or recurrent rectal cancer by chemoembolization. A New Arrow Our Quiver? Oncotarget 2016, 7, 45275–45282. [Google Scholar] [CrossRef]
- Gao, Y.; Xiao, H.; Meng, W.; Liao, J.; Chen, Q.; Zhao, G.; Li, C.; Bai, L. Locally advanced rectal cancer patients with mismatch repair protein deficiency can obtain better pathological response after regional chemoembolization. Front. Oncol. 2023, 13, 1131690. [Google Scholar] [CrossRef]
- Huang, W.; Huang, P.; Guo, H.; Huang, Z.; Wei, M.; Guo, J.; Lin, C.; Li, Y.; Luo, B.; Lin, J.; et al. Single-arm, phase II study of intra-arterial chemotherapy plus total neoadjuvant therapy to optimise complete response in distal rectal cancer: A study protocol. BMJ Open 2023, 13, e075023. [Google Scholar] [CrossRef]
- Yang, W.; Qian, C.; Luo, J.; Chen, C.; Feng, Y.; Dai, N.; Li, X.; Xiao, H.; Yang, Y.; Li, M.; et al. Efficacy and Safety of Preoperative Transcatheter Rectal Arterial Chemoembolisation in Patients with Locally Advanced Rectal Cancer: Results from a Prospective, Phase II PCAR Trial. Clin. Oncol. 2024, 36, 233–242. [Google Scholar] [CrossRef]
- Meng, W.J.; Liu, C.H.; Zheng, R.J.; Li, C.X. Regional transarterial chemoembolization combined with chemoradiotherapy for locally advanced rectal cancer: A retrospective study of a new combination. Front. Oncol. 2023, 13. [Google Scholar] [CrossRef]
- Ding, X.; Ma, Y.; Yin, M.; Liu, T.; Jin, S.; Li, C.; Li, X.; Zhang, C.; Zhou, G.; Wu, G. Transcatheter arterial perfusion chemotherapy combined with lipiodol chemoembolization for advanced colorectal cancer complicated by obstruction. Front. Oncol. 2024, 14, 1369829. [Google Scholar] [CrossRef]
- Schmid, P.; Cortes, J.; Pusztai, L.; McArthur, H.; Kümmel, S.; Bergh, J.; Denkert, C.; Park, Y.H.; Hui, R.; Harbeck, N.; et al. Pembrolizumab for early triple-negative breast cancer. N. Engl. J. Med. 2020, 382, 810–821. [Google Scholar] [CrossRef]
- Forde, P.M.; Chaft, J.E.; Smith, K.N.; Anagnostou, V.; Cottrell, T.R.; Hellmann, M.D.; Zahurak, M.; Yang, S.C.; Jones, D.R.; Broderick, S.; et al. Neoadjuvant PD-1 blockade in resectable lung cancer. N. Engl. J. Med. 2018, 378, 1976–1986. [Google Scholar] [CrossRef] [PubMed]
- Chanza, N.M.; Soukane, L.; Barthelemy, P.; Carnot, A.; Gil, T.; Casert, V.; Vanhaudenarde, V.; Sautois, B.; Staudacher, L.; Brande, J.V.D.; et al. Avelumab as neoadjuvant therapy in patients with urothelial non-metastatic muscle invasive bladder cancer: A multicenter, randomized, non-comparative, phase II study (Oncodistinct 004—AURA trial). BMC Cancer 2021, 21, 1292. [Google Scholar] [CrossRef]
- Amaria, R.N.; Reddy, S.M.; Tawbi, H.A.; Davies, M.A.; Ross, M.I.; Glitza, I.C.; Cormier, J.N.; Lewis, C.; Hwu, W.-J.; Hanna, E.; et al. Neoadjuvant immune checkpoint blockade in high-risk resectable melanoma. Nat. Med. 2018, 24, 1649–1654. [Google Scholar] [CrossRef] [PubMed]
- Latkauskas, T.; Paskauskas, S.; Dambrauskas, Z.; Gudaityte, J.; Saladzinskas, S.; Tamelis, A.; Pavalkis, D. Preoperative chemoradiation vs radiation alone for stage II and III resectable rectal cancer: A meta-analysis. Color. Dis. 2010, 12, 1075–1083. [Google Scholar] [CrossRef]
- De Caluwé, L.; Van Nieuwenhove, Y.; Ceelen, W.P. Preoperative chemoradiation versus radiation alone for stage II and III resectable rectal cancer. Cochrane Database Syst. Rev. 2013, 71, Cd006041. [Google Scholar] [CrossRef]
- Bahadoer, R.R.; Dijkstra, E.A.; van Etten, B.; Marijnen, C.A.M.; Putter, H.; Kranenbarg, E.M.-K.; Roodvoets, A.G.H.; Nagtegaal, I.D.; Beets-Tan, R.G.H.; Blomqvist, L.K.; et al. Short course radiotherapy followed by chemotherapy before total mesorectal excision (TME) versus preoperative chemoradiotherapy, TME, and optional adjuvant chemotherapy in locally advanced rectal cancer (RAPIDO): A randomised, open-label, phase 3 trial. Lancet Oncol. 2021, 22, 29–42. [Google Scholar] [CrossRef]
- Rosen, S.A.; Buell, J.F.; Yoshida, A.; Kazsuba, S.; Hurst, R.; Michelassi, F.; Millis, J.M.; Posner, M.C. Initial presentation with stage IV colorectal cancer: How aggressive should we be? Arch. Surg. 2000, 135, 530–534. [Google Scholar] [CrossRef]
- Greenlee, R.T.; Murray, T.; Bolden, S.; Wingo, P.A. Cancer statistics 2000. CA Cancer J Clin 2000, 50, 7–33. [Google Scholar] [CrossRef]
- Le, D.T.; Durham, J.N.; Smith, K.N.; Wang, H.; Bartlett, B.R.; Aulakh, L.K.; Lu, S.; Kemberling, H.; Wilt, C.; Luber, B.S.; et al. Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade. Science 2017, 357, 409–413. [Google Scholar] [CrossRef]
Author | Year | Country | Sample Size | Study Design | Male: Female | Median Age | Study Period |
---|---|---|---|---|---|---|---|
Bini et al. | 2010 | Italy | 12 | Prospective mono-institutional cohort study | 10:2 | 71 | Not specified |
Gao et al. | 2023 | China | 77 | Retrospective study | 30:10 pMMR protein group 24:13 dMMR protein group | pMMR 58.2 dMMR 59.7 | 2013 to 2021 |
Meng et al. | 2021 | China | 118 | Non-randomized prospective study | 43:17 TRACE-CRT group 40:18 CRT group | TRACE-CRT: 59 CRT group: 58 | 2013 to 2020 |
Huang et al. | 2023 | China | 32 | Prospective, monocentric, open-label, single-arm phase II study | Not specified | Not Specified | Not specified |
Yang et al. | 2024 | China | 111 | Single-center, prospective, phase II trial | 73:38 | 59 | Not specified |
Meng et al. | 2023 | China | 44 | Retrospective cohort study | 31:13 | 56.6 | 2013 to 2018 |
Bo Yang et al. | 2020 | China | 95 | Prospective, monocentric, non-randomized clinical study | NATRACE-CRT: 35:15 NA-CRT: 34:11 | NATRACE-CRT: 62 NA-CRT: 57 | Not specified |
Ding et al. | 2024 | China | 54 | Retrospective analysis | 33:22 | 58.6 | Not specified |
Author | Study Goal | Type of Cancer | Definition of LARC | Comorbidities | Imaging Modalities in Study | Follow-Up Period |
---|---|---|---|---|---|---|
Bini et al. | Assess the feasibility, safety and efficacy of TACE with irinotecan-loaded microparticles (DEBIRI) with inoperable or recurrent rectal cancer | LARC | Not defined | COPD, CAD, essential HTN, chronic atrial fibrillation, asthma, chronic CCF, DCM | Abdominal quadriphasic CT scan, diagnostic angiography, venous phase CT, MASS, RECIST, mChoi criteria | Not specified |
Gao et al. | Evaluate the effect of dMMR status on the response to neoadjuvant therapy in patients with LARC | LARC | T3-4N0M0 or T1-4N1-2M0 | No serious heart, lung, liver or kidney dysfunction or immune deficiency disease were included | Digital subtraction angiography, iodixanol angiography | Follow-up time for both groups was 5 years |
Meng et al. (2021) | To analyze and evaluate the impact of preoperative TACE + CRT on surgery and prognosis of LARC | LARC | cT3~4N0M0 or cT1~4N1~2M0 | Not specified | MRI staging, digital subtraction angiography (DSA) | Mean follow-up time: TRACE-CRT (42.0 ± 19.7 months) vs. CRT (40.6 ± 24.7 months) |
Huang et al. | To assess the safety and efficacy of IAC plus CRT and FOLFIRINOX consolidation chemotherapy to optimize complete response and survival in distal rectal cancer | Distal rectal adenocarcinoma | cT3-4 N +/− any M0 | Excludes patients with severe comorbidities such as heart failure, uncontrolled diabetes, renal failure, liver failure | Pelvic MRI, chest and abdomen CT, digital rectal examination, endoscopy | Conducted according to the OPRA trial protocol, every 3 months for the first 2 years and every 6 months for the following 3 years. All patients followed for at least 5 years |
Yang et al. | To assess the efficacy and safety of preoperative TACE in patients with LARC | LARC | T3-4 | Severe comorbidities were exclusion criteria | MRI, endoscopy | Median follow-up duration of 38 months |
Meng et al. (2023) | To compare the effect of preoperative regional TACE + CRT versus standard CRT on preventing distant metastasis in patients with LARC | LARC | T3-4 | Exclusion criteria included uncontrolled serious heart, renal, or liver failure, among others | Digital subtraction angiography | Follow-up carried out every 1–3 months during the interventional treatment period and every 3–6 months thereafter. All patients had a complete record of at least 3 years of follow-up. |
Bo Yang et al. | To explore the efficacy and safety of TACE with oxaliplatin and S-1 concurrent CRT as neoadjuvant therapy for LARC | LARC | T3-4 | Patients with serious complications who could not complete treatment regimen were excluded | MRI | Median 33 months for NATRACE-CRT group, median 27 months for NA-CRT group |
Ding et al. | To investigate the safety, efficacy, and feasibility of TACE combined with lipiodol chemoembolization for treating advanced colorectal cancer complicated by obstruction | LARC with obstruction | T3-4 | Coronary heart disease, hypertension, diabetes, cerebral infarction among others | Abdominal and pelvic enhanced computed tomography (CT) or magnetic resonance imaging (MRI) | The median follow-up time was 11.5 months |
Author | Access Used | Artery Targeted | Treatment |
---|---|---|---|
Bini et al. | Femoral artery puncture | Arteries leading to lesion via SMA and IMA; in one case, the hypogastric artery was targeted. | TACE with irinotecan-loaded microparticles (DEBIRI) |
Gao et al. | Femoral artery puncture | Superior and inferior rectal arteries | TRACE-CRT |
Meng et al. | Femoral artery puncture | Superior rectal artery | TRACE-CRT vs. CRT |
Huang et al. | Femoral artery puncture | Superior rectal artery and bilateral internal iliac arteries | IAC (irinotecan, raltitrexed, oxaliplatin) followed by CRT (50 Gy/25 fractions with capecitabine) and six cycles of FOLFIRINOX (leucovorin, 5-fluorouracil, oxaliplatin, irinotecan) |
Yang et al. | Femoral artery puncture | Superior rectal artery and inferior rectal artery | TRACE with oxaliplatin, followed by radiotherapy (45 Gy) and oral S1 capsules, total mesorectal excision, and mFOLFOX6 or CAPOX regimens post-surgery |
Meng et al. (2023) | Femoral artery puncture | Superior rectal artery | Preoperative TRACE with oxaliplatin combined with CRT (interventional group) vs. NA-CRT (control group) |
Bo Yang et al. | Femoral artery puncture | Superior rectal artery and inferior rectal artery | TRACE with oxaliplatin and S-1 concurrent chemoradiotherapy (NATRACE-CRT) vs. standard fluorouracil-based chemoradiotherapy (NA-CRT) |
Ding et al. | Femoral artery puncture | Tumor-supplying arterial branch via IMA and SMA | Transcatheter arterial infusion (TAI) chemotherapy combined with lipiodol chemoembolization |
Author | Adverse Reactions |
---|---|
Bini et al. | Mild fever, procedure-related pain, increased WBC, LDH, AST/ALT, reactive C protein within 48 h |
Gao et al. | Leukopenia, anemia, radiation enteritis, anastomotic leakage, incision infection, intestinal obstruction, incisional hernia |
Meng et al. | No significant differences in postoperative complications between the groups, except for mean operation time, which was shorter in TRACE-CRT group (165.8 vs. 196.6 min, p < 0.001) |
Huang et al. | Toxicity graded according to NCI criteria, surgical complications according to Clavien–Dindo classification, fecal incontinence according to Wexner score |
Yang et al. | Grade 3–4 toxicities in 29 patients (26.13%), postoperative complication rate of 21.62% |
Meng et al. (2023) | No significant differences in toxicities and complications between the two groups |
Bo Yang et al. | No significant difference in incidence of preoperative toxic side effects and surgical complications between the groups |
Complications | N = 397 | % | SIR Classification |
---|---|---|---|
Leukopenia | 85 | 21.4 | A |
Nausea/Vomiting | 74 | 18.6 | A |
Anemia | 54 | 13.6 | B |
Radiation Proctitis/Enteritis | 50 | 12.6 | B |
Neutropenia | 35 | 8.8 | B |
Fatigue | 31 | 7.8 | A |
Loss of Appetite | 31 | 7.8 | A |
Thrombocytopenia | 31 | 7.8 | A |
Diarrhea | 28 | 7.1 | B |
Liver Dysfunction/Deranged LFTs | 28 | 7.1 | A |
Gastrointestinal Reactions | 19 | 4.8 | B |
Intestinal Obstruction | 12 | 3 | D |
Fever | 10 | 2.5 | B |
Tenesmus | 7 | 1.8 | A |
Incision Infection | 6 | 1.5 | D |
Anastomotic Leakage | 6 | 1.5 | D |
Hand–Foot Syndrome | 5 | 1.3 | B |
Complication | N |
---|---|
SIR A | |
Leukopenia | 85 |
Nausea/Vomiting | 74 |
Fatigue | 31 |
Loss of Appetite | 31 |
Thrombocytopenia | 31 |
Liver Dysfunction/Deranged LFTs | 28 |
Tenesmus | 7 |
SIR B | |
Anemia | 54 |
Radiation Proctitis/Enteritis | 50 |
Neutropenia | 35 |
Fever | 10 |
Diarrhea | 28 |
Gastrointestinal Reactions | 19 |
Hand–Foot Syndrome | 5 |
SIR C | 0 |
SIR D | |
Intestinal Obstruction | 12 |
Anastomotic Leakage | 6 |
Incision Infection | 6 |
SIR E | 0 |
SIR F | 0 |
Author | Main Oncological Outcomes | Overall Survival | Disease-Free Survival |
---|---|---|---|
Bini et al. |
| Median 12 Months | Not Specified |
Gao et al. |
| 36 Months: 79.2% (pMMR) 5.7% (dMMR) | 1 year: 89% (pMMR) vs. 92% (dMMR) 3 years: 82% (both groups) |
Meng et al. |
| Not Specified | Not Specified |
Huang et al. |
| Not Specified | Not Specified |
Yang et al. |
| 5-Year Overall Survival 74.8% | 5-Year Disease-Free Survival 61.89% |
Meng et al. (2023) |
| Not Specified | Not Specified |
Bo Yang et al. |
| Not Specified | NATRACE-CRT Group 1-year 88% NA-CRT 1-year—92% NATRACE-CRT Group—3-year 76% NA-CRT 3-year 58% |
Ding et al. |
| 13 Months | Not Specified |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Temperley, H.C.; Bell, J.; Cuddihy, T.O.; O’Sullivan, N.J.; Mac Curtain, B.M.; Dolan, S.; McEniff, N.; Brennan, I.; Sheahan, K.; Marshal, M.; et al. Transarterial Chemoembolization in Locally Advanced Rectal Cancer: A Systematic Review. Onco 2024, 4, 412-426. https://doi.org/10.3390/onco4040029
Temperley HC, Bell J, Cuddihy TO, O’Sullivan NJ, Mac Curtain BM, Dolan S, McEniff N, Brennan I, Sheahan K, Marshal M, et al. Transarterial Chemoembolization in Locally Advanced Rectal Cancer: A Systematic Review. Onco. 2024; 4(4):412-426. https://doi.org/10.3390/onco4040029
Chicago/Turabian StyleTemperley, Hugo C., Jack Bell, Tom O. Cuddihy, Niall J. O’Sullivan, Benjamin M. Mac Curtain, Steven Dolan, Niall McEniff, Ian Brennan, Kevin Sheahan, Martin Marshal, and et al. 2024. "Transarterial Chemoembolization in Locally Advanced Rectal Cancer: A Systematic Review" Onco 4, no. 4: 412-426. https://doi.org/10.3390/onco4040029
APA StyleTemperley, H. C., Bell, J., Cuddihy, T. O., O’Sullivan, N. J., Mac Curtain, B. M., Dolan, S., McEniff, N., Brennan, I., Sheahan, K., Marshal, M., Kelly, M. E., & Ng, Z. Q. (2024). Transarterial Chemoembolization in Locally Advanced Rectal Cancer: A Systematic Review. Onco, 4(4), 412-426. https://doi.org/10.3390/onco4040029