Kolmogorov–Arnold Networks for Automated Diagnosis of Urinary Tract Infections
Abstract
:1. Introduction
2. Data and Methods
2.1. Data
2.2. Methods
2.2.1. Multi-Layered Perceptrons
- VGG-16 and VGG-19 [21] with 16 and 19 layers, respectively, achieving excellent performance on image recognition tasks.
- Tiny VGG [22], a simplified, lightweight, and efficient version of the VGG architecture.
- Vision Permutator [23], which focuses on permuting the input data across different dimensions, enabling efficient and flexible attention mechanisms for visual tasks.
- Class-Attention in Vision Transformers [25], which incorporates attention weights that emphasize the relevance of image patches to a particular class during the classification process.
2.2.2. Kolmogorov–Arnold Networks
- K2AN (refer to Figure 3a), with a KAN network after the convolution operations made using KAN-Convolution. Herein, the input features are followed by two consecutive layers of KAN-Convolution and a two-dimensional Max-Pooling layer. The result is eventually flattened to pass through a KAN-Linear layer (for any supervised learning problem with a training set, , where are the feature vectors and are the respective targets,
- KAN-C-Norm (refer to Figure 3b), with a batch-normalized version of KAN-Convolution [31] (for any given image , the KAN-Convolution, inheriting from the basics of KAN-Linear is defined as). Herein, the input features are followed by a sequence of two consecutive 2D-Convolution and 2D-Batch-Normalization layers. The result is passed through a two-dimensional Max-Pooling layer, then flattened to pass through a KAN-Linear layer, and finally gives a ternary output on whether the input urine culture image is “positive”, “negative”, or “uncertain”.
- KAN-C-MLP (refer to Figure 3c), with a combination of KAN-Convolution, together with the traditional MLP substructure. Herein, the input features are followed by two consecutive layers of KAN-Convolution and a two-dimensional Max-Pooling layer. The result is eventually flattened to pass through two consecutive Linear layers, and finally gives a ternary output on whether the input urine culture image is “positive”, “negative”, or “uncertain”.
3. Experimental Results
3.1. Metrics
- Accuracy: The ratio of correctly classified instances to the total number of instances evaluated by the classifier. This includes both True Positives and True Negatives among the correctly predicted instances. Mathematically, it is expressed as in Equation (1).
- Precision: The ratio of True Positives evaluated by the classifier to the total number of correctly classified instances. It can also be interpreted as the accuracy of the positive predictions. Mathematically, it is expressed as in Equation (2).
- Recall: The ratio of True Positives evaluated by the classifier to the actual positively classified instances. It can also be interpreted as the ability of the classifier to capture positive predictions. Mathematically, it is expressed as in Equation (3).
- F1-Score: The harmonic mean of precision and recall, balancing the trade-off between them, especially useful when dealing with imbalanced datasets. Mathematically, it is expressed as in Equation (4).
3.2. Comparative Analysis
3.3. Implementation
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lee, J.B.L.; Neild, G.H. Urinary tract infection. Medicine 2007, 35, 423–428. [Google Scholar] [CrossRef]
- Dougnon, V.; Assogba, P.; Anago, E.; Déguénon, E.; Dapuliga, C.; Agbankpè, J.; Zin, S.; Akotègnon, R.; Moussa, L.B.; Bankolé, H. Enterobacteria responsible for urinary infections: A review about pathogenicity, virulence factors and epidemiology. J. Appl. Biol. Biotechnol. 2020, 8, 117–124. [Google Scholar]
- Yu, H.; Yang, L.T.; Zhang, Q.; Armstrong, D.; Deen, M.J. Convolutional neural networks for medical image analysis: State-of-the-art, comparisons, improvement and perspectives. Neurocomputing 2021, 444, 92–110. [Google Scholar] [CrossRef]
- Wang, J.; Cai, P.; Wang, Z.; Zhang, H.; Huang, J. CEST-KAN: Kolmogorov-Arnold Networks for CEST MRI Data Analysis. arXiv 2024, arXiv:2406.16026. [Google Scholar]
- Li, C.; Liu, X.; Li, W.; Wang, C.; Liu, H.; Yuan, Y. U-KAN Makes Strong Backbone for Medical Image Segmentation and Generation. arXiv 2024, arXiv:2406.02918. [Google Scholar]
- Agrawal, S.; Chowdhary, A.; Agarwala, S.; Mayya, V.; Kamath S, S. Content-based medical image retrieval system for lung diseases using deep CNNs. Int. J. Inf. Technol. 2022, 14, 3619–3627. [Google Scholar] [CrossRef]
- Sheikh, I.M.; Chachoo, M.A. An enforced block diagonal low-rank representation method for the classification of medical image patterns. Int. J. Inf. Technol. 2022, 14, 1221–1228. [Google Scholar] [CrossRef]
- Asghari, P. A diagnostic prediction model for colorectal cancer in elderlies via internet of medical things. Int. J. Inf. Technol. 2021, 13, 1423–1429. [Google Scholar] [CrossRef]
- Singh, S.; Kumar, R. Microscopic biopsy image reconstruction using inception block with denoising auto-encoder approach. Int. J. Inf. Technol. 2024, 16, 2413–2423. [Google Scholar] [CrossRef]
- Singh, R.; Agarwal, B.B. An automated brain tumor classification in MR images using an enhanced convolutional neural network. Int. J. Inf. Technol. 2023, 15, 665–674. [Google Scholar] [CrossRef]
- Mahajan, P.; Agarwal, T.; Vekariya, D.; Gupta, R.; Malviya, A.; Anandaraj, S.P.; Jain, G.; Anand, D. OntoMG: A unique and ontological-based intelligent framework for early identification of myasthenia gravis (MG). Int. J. Inf. Technol. 2024, 16, 3847–3853. [Google Scholar] [CrossRef]
- Zering, J.; Stohs, E.J. Urine polymerase chain reaction tests: Stewardship helper or hindrance? Antimicrob. Steward. Healthc. Epidemiol. 2024, 4, e77. [Google Scholar] [CrossRef]
- Marshall, C.W.; Kurs-Lasky, M.; McElheny, C.L.; Bridwell, S.; Liu, H.; Shaikh, N. Performance of Conventional Urine Culture Compared to 16S rRNA Gene Amplicon Sequencing in Children with Suspected Urinary Tract Infection. Microbiol. Spectr. 2021, 9, e0186121. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.F.; Hou, X.; Xiao, M.; Zhang, L.; Cheng, J.W.; Zhou, M.L.; Huang, J.J.; Zhang, J.J.; Xu, Y.C.; Hsueh, P.R. Matrix-Assisted Laser Desorption/Ionization Time of Flight Mass Spectrometry (MALDI-TOF MS) Analysis for the Identification of Pathogenic Microorganisms: A Review. Microorganisms 2021, 9, 1536. [Google Scholar] [CrossRef] [PubMed]
- Goździkiewicz, N.; Zwolińska, D.; Polak-Jonkisz, D. The Use of Artificial Intelligence Algorithms in the Diagnosis of Urinary Tract Infections—A Literature Review. J. Clin. Med. 2022, 11, 2734. [Google Scholar] [CrossRef] [PubMed]
- Shelke, Y.P.; Badge, A.K.; Bankar, N.J. Applications of Artificial Intelligence in Microbial Diagnosis. Cureus 2023, 15, e49366. [Google Scholar] [CrossRef]
- Tsitou, V.M.; Rallis, D.; Tsekova, M.; Yanev, N. Microbiology in the era of artificial intelligence: Transforming medical and pharmaceutical microbiology. Biotechnol. Biotechnol. Equip. 2024, 38, 2349587. [Google Scholar] [CrossRef]
- Da Silva, G.R.; Rosmaninho, I.B.; Zancul, E.; De Oliveira, V.R.; Francisco, G.R.; Dos Santos, N.F.; De Mello Macêdo, K.; Da Silva, A.J.; De Lima, É.K.; Lemo, M.E.B.; et al. Image dataset of urine test results on petri dishes for deep learning classification. Data Brief 2023, 47, 109034. [Google Scholar] [CrossRef]
- Brugger, S.D.; Baumberger, C.; Jost, M.; Jenni, W.; Brugger, U.; Mühlemann, K. Automated counting of bacterial colony forming units on agar plates. PLoS ONE 2012, 7, e33695. [Google Scholar] [CrossRef]
- Vaswani, A. Attention is all you need. arXiv 2017, arXiv:1706.03762. [Google Scholar]
- Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556. [Google Scholar]
- Wang, Z.J.; Turko, R.; Shaikh, O.; Park, H.; Das, N.; Hohman, F.; Kahng, M.; Chau, D.H. CNN 101: Interactive visual learning for convolutional neural networks. In Extended Abstracts of the 2020 CHI Conference on Human Factors in Computing Systems; Association for Computing Machinery: New York, NY, USA, 2020; pp. 1–7. [Google Scholar]
- Hou, Q.; Jiang, Z.; Yuan, L.; Cheng, M.-M.; Yan, S.; Feng, J. Vision permutator: A permutable MLP-like architecture for visual recognition. IEEE Trans. Pattern Anal. Mach. Intell. 2022, 45, 1328–1334. [Google Scholar] [CrossRef] [PubMed]
- Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn, D.; Zhai, X.; Unterthiner, T.; Dehghani, M.; Minderer, M.; Heigold, G.; Gelly, S.; et al. An image is worth 16x16 words: Transformers for image recognition at scale. arXiv 2020, arXiv:2010.11929. [Google Scholar]
- Touvron, H.; Cord, M.; Sablayrolles, A.; Synnaeve, G.; Jégou, H. Going deeper with image transformers. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, BC, Canada, 11–17 October 2021; pp. 32–42. [Google Scholar]
- Huang, G.; Liu, Z.; Van Der Maaten, L.; Weinberger, K.Q. Densely connected convolutional networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 4700–4708. [Google Scholar]
- Chollet, F. Xception: Deep learning with depthwise separable convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 1251–1258. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going deeper with convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 1–9. [Google Scholar]
- Liu, Z.; Wang, Y.; Vaidya, S.; Ruehle, F.; Halverson, J.; Soljačić, M.; Hou, T.Y.; Tegmark, M. Kan: Kolmogorov-Arnold networks. arXiv 2024, arXiv:2404.19756. [Google Scholar]
- Bodner, A.D.; Tepsich, A.S.; Spolski, J.N.; Pourteau, S. Convolutional Kolmogorov-Arnold Networks. arXiv 2024, arXiv:2406.13155. [Google Scholar]
- Alpaydin, E. Machine Learning; MIT Press: Cambridge, MA, USA, 2021. [Google Scholar]
Models | Metrics | |||||
---|---|---|---|---|---|---|
Accuracy | Precision | Recall | F1 Score | TrT (s) | IrT (ms) | |
Tiny VGG | 67.66 | 69.05 | 65.48 | 0.6722 | 512.4 | 4.3 |
(1.5391) | (0.9323) | (0.8235) | (0.0862) | (12.6) | (0.5) | |
VGG-16 | 74.66 | 77.37 | 67.48 | 0.7209 | 923.1 | 6.8 |
(2.7392) | (1.1347) | (1.0925) | (0.0572) | (21.7) | (0.7) | |
VGG-19 | 73.33 | 72.51 | 72.33 | 0.7242 | 1058.6 | 7.4 |
(0.4823) | (1.9723) | (1.8241) | (0.0214) | (18.2) | (0.6) | |
GoogleNet | 78.66 | 80.22 | 74.25 | 0.7712 | 672.9 | 5.1 |
(3.0419) | (1.8452) | (1.8091) | (0.0627) | (14.5) | (0.4) | |
ResNet-18 | 78.01 | 77.57 | 77.05 | 0.7731 | 588.3 | 3.9 |
(1.6528) | (0.7139) | (0.6482) | (0.1012) | (16.9) | (0.3) | |
Vision Permutator | 79.66 | 80.21 | 78.95 | 0.7957 | 734.2 | 6.2 |
(2.0987) | (0.9135) | (0.8925) | (0.0514) | (19.8) | (0.5) | |
DenseNet | 76.01 | 74.74 | 75.40 | 0.7507 | 892.7 | 5.9 |
(1.5763) | (0.8945) | (0.7936) | (0.1128) | (23.4) | (0.4) | |
CAiT | 78.66 | 78.57 | 77.75 | 0.7816 | 1001.4 | 8.1 |
(2.6345) | (1.6345) | (1.8415) | (0.0912) | (27.1) | (0.6) | |
Xception | 76.33 | 75.34 | 75.92 | 0.7563 | 1187.9 | 7.6 |
(1.8724) | (1.3497) | (1.1095) | (0.0785) | (22.5) | (0.5) | |
ViT | 80.33 | 80.51 | 79.08 | 0.7979 | 1403.5 | 9.2 |
(0.9156) | (1.4802) | (1.3496) | (0.0459) | (30.2) | (0.7) | |
K2AN | 75.21 | 75.55 | 73.63 | 0.7458 | 678.5 | 4.7 |
(1.1187) | (0.4921) | (0.2839) | (0.0063) | (12.8) | (0.3) | |
KAN-C-Norm | 86.95 | 75.57 | 74.02 | 0.7479 | 532.9 | 3.5 |
(0.5634) | (0.4283) | (0.3991) | (0.0127) | (11.6) | (0.3) | |
KAN-C-MLP * | 87.16 | 77.03 | 68.01 | 0.7224 | 529.3 | 3.2 |
(0.9654) | (1.2136) | (1.1906) | (0.1921) | (10.4) | (0.2) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dutta, A.; Ramamoorthy, A.; Lakshmi, M.G.; Kumar, P.K. Kolmogorov–Arnold Networks for Automated Diagnosis of Urinary Tract Infections. J. Mol. Pathol. 2025, 6, 6. https://doi.org/10.3390/jmp6010006
Dutta A, Ramamoorthy A, Lakshmi MG, Kumar PK. Kolmogorov–Arnold Networks for Automated Diagnosis of Urinary Tract Infections. Journal of Molecular Pathology. 2025; 6(1):6. https://doi.org/10.3390/jmp6010006
Chicago/Turabian StyleDutta, Anurag, A. Ramamoorthy, M. Gayathri Lakshmi, and Pijush Kanti Kumar. 2025. "Kolmogorov–Arnold Networks for Automated Diagnosis of Urinary Tract Infections" Journal of Molecular Pathology 6, no. 1: 6. https://doi.org/10.3390/jmp6010006
APA StyleDutta, A., Ramamoorthy, A., Lakshmi, M. G., & Kumar, P. K. (2025). Kolmogorov–Arnold Networks for Automated Diagnosis of Urinary Tract Infections. Journal of Molecular Pathology, 6(1), 6. https://doi.org/10.3390/jmp6010006