Comparison of GATA3, GCDFP15, Mammaglobin and SOX10 Immunocytochemistry in Aspirates of Metastatic Breast Cancer
Abstract
:1. Introduction
2. Methodology
2.1. Case Collection
2.2. Immunocytochemistry
2.3. Fine Needle Aspiration Cytology Procedure
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Poon, I.K.; Chan, R.C.K.; Choi, J.S.H.; Ng, J.K.M.; Tang, K.T.; Wong, Y.Y.H.; Chan, K.P.; Yip, W.H.; Tse, G.M.; Li, J.J.X. A comparative study of diagnostic accuracy in 3026 pleural biopsies and matched pleural effusion cytology with clinical correlation. Cancer Med. 2022, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Tsang, J.Y.S.; Tse, G.M. Molecular Classification of Breast Cancer. Adv. Anat. Pathol. 2020, 27, 27–35. [Google Scholar] [CrossRef] [PubMed]
- Allison, K.H.; Hammond, M.E.H.; Dowsett, M.; McKernin, S.E.; Carey, L.A.; Fitzgibbons, P.L.; Hayes, D.F.; Lakhani, S.R.; Chavez-MacGregor, M.; Perlmutter, J.; et al. Estrogen and Progesterone Receptor Testing in Breast Cancer: American Society of Clinical Oncology/College of American Pathologists Guideline Update. Arch. Pathol. Lab. Med. 2020, 144, 545–563. [Google Scholar] [CrossRef] [Green Version]
- Riggio, A.I.; Varley, K.E.; Welm, A.L. The lingering mysteries of metastatic recurrence in breast cancer. Br. J. Cancer 2021, 124, 13–26. [Google Scholar] [CrossRef] [PubMed]
- López, F.; Rodrigo, J.P.; Silver, C.E.; Haigentz, M., Jr.; Bishop, J.A.; Strojan, P.; Hartl, D.M.; Bradley, P.J.; Mendenhall, W.M.; Suárez, C.; et al. Cervical lymph node metastases from remote primary tumor sites. Head Neck 2016, 38 (Suppl. S1), E2374–E2385. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cappelli, C.; Pirola, I.; Agosti, B.; Tironi, A.; Gandossi, E.; Incardona, P.; Marini, F.; Guerini, A.; Castellano, M. Complications after fine-needle aspiration cytology: A retrospective study of 7449 consecutive thyroid nodules. Br. J. Oral Maxillofac. Surg. 2017, 55, 266–269. [Google Scholar] [CrossRef] [PubMed]
- Jhala, D.; Wee, A.; Tse, G.; Baloch, Z. Fine-Needle Aspiration Cytology: An Advancing Horizon. Pathol. Res. Int. 2011, 2011, 281930. [Google Scholar] [CrossRef] [Green Version]
- Chan, R.C.K.; Lee, A.L.S.; To, C.C.K.; Cheung, T.L.H.; Ho, C.T.; Choi, J.S.H.; Li, J.J.X. The role of cytokeratin 7/20 coordination revisited-Machine learning identifies improved interpretative algorithms for cell block immunohistochemistry in aspirates of metastatic carcinoma. Cancer Cytopathol. 2022, 130, 455–468. [Google Scholar] [CrossRef] [PubMed]
- Pedersen, R.N.; Esen, B.Ö.; Mellemkjær, L.; Christiansen, P.; Ejlertsen, B.; Lash, T.L.; Nørgaard, M.; Cronin-Fenton, D. The Incidence of Breast Cancer Recurrence 10-32 Years After Primary Diagnosis. JNCI J. Natl. Cancer Inst. 2021, 114, 391–399. [Google Scholar] [CrossRef] [PubMed]
- Weigelt, B.; Geyer, F.C.; Reis-Filho, J.S. Histological types of breast cancer: How special are they? Mol. Oncol. 2010, 4, 192–208. [Google Scholar] [CrossRef] [PubMed]
- Li, J.J.X.; Tse, G.M. Marker assessments in ER-positive breast cancers: Old markers, new applications? Histopathology 2022. [Google Scholar] [CrossRef] [PubMed]
- Jamidi, S.K.; Hu, J.; Aphivatanasiri, C.; Tsang, J.Y.; Poon, I.K.; Li, J.J.; Chan, S.K.; Cheung, S.Y.; Tse, G.M. Sry-related high-mobility-group/HMG box 10 (SOX10) as a sensitive marker for triple-negative breast cancer. Histopathology 2020, 77, 936–948. [Google Scholar] [CrossRef] [PubMed]
- Ni, Y.B.; Tsang, J.Y.S.; Shao, M.M.; Chan, S.K.; Cheung, S.Y.; Tong, J.; To, K.F.; Tse, G.M. GATA-3 is superior to GCDFP-15 and mammaglobin to identify primary and metastatic breast cancer. Breast Cancer Res. Treat. 2018, 169, 25–32. [Google Scholar] [CrossRef] [PubMed]
- Yoon, E.C.; Wang, G.; Parkinson, B.; Huo, L.; Peng, Y.; Wang, J.; Salisbury, T.; Wu, Y.; Chen, H.; Albarracin, C.T.; et al. TRPS1, GATA3, and SOX10 expression in triple-negative breast carcinoma. Hum. Pathol. 2022, 125, 97–107. [Google Scholar] [CrossRef] [PubMed]
- Aphivatanasiri, C.; Li, J.; Chan, R.; Jamidi, S.K.; Tsang, J.Y.; Poon, I.K.; Shao, Y.; Tong, J.; To, K.-F.; Chan, S.-K.; et al. Combined SOX10 GATA3 is most sensitive in detecting primary and metastatic breast cancers: A comparative study of breast markers in multiple tumors. Breast Cancer Res. Treat. 2020, 184, 11–21. [Google Scholar] [CrossRef] [PubMed]
- Sasaki, E.; Tsunoda, N.; Hatanaka, Y.; Mori, N.; Iwata, H.; Yatabe, Y. Breast-specific expression of MGB1/mammaglobin: An examination of 480 tumors from various organs and clinicopathological analysis of MGB1-positive breast cancers. Mod. Pathol. 2007, 20, 208–214. [Google Scholar] [CrossRef] [Green Version]
- Wick, M.R.; Lillemoe, T.J.; Copland, G.T.; Swanson, P.E.; Manivel, J.C.; Kiang, D.T. Gross cystic disease fluid protein-15 as a marker for breast cancer: Immunohistochemical analysis of 690 human neoplasms and comparison with alpha-lactalbumin. Hum. Pathol. 1989, 20, 281–287. [Google Scholar] [CrossRef]
- Kuukasjärvi, T.; Kononen, J.; Helin, H.; Holli, K.; Isola, J. Loss of estrogen receptor in recurrent breast cancer is associated with poor response to endocrine therapy. J. Clin. Oncol. 1996, 14, 2584–2589. [Google Scholar] [CrossRef] [PubMed]
Number of cases | 115 |
Number of patients | 107 |
Age | 60.11 (32–95) |
Histological types of primary breast carcinoma | |
Invasive breast carcinoma, no special type (includes ductal carcinoma) | 77 |
Invasive lobular carcinoma | 2 |
Metaplastic carcinoma | 2 |
Neuroendocrine carcinoma | 2 |
Micropapillary carcinoma | 1 |
Mucinous carcinoma | 1 |
Carcinoma, not specified | 22 |
Site of aspiration | |
Lymph node | 89 |
Chest wall | 14 |
Lung | 7 |
Soft tissue | 4 |
Thyroid | 1 |
Not specified | 2 |
GATA3 | GCDFP15 | MMG | SOX10 | |
---|---|---|---|---|
Case number | 107 | 102 | 107 | 107 |
≥1% tumor cell positivity, any intensity (+/−) | 91/16 | 40/62 | 55/52 | 8/99 |
≥5% tumor cell positivity, any intensity (+/−) | 90/17 | 23/79 | 35/72 | 7/100 |
≥5% tumor cell positivity, moderate/strong staining intensity (+/−) | 76/31 | 21/81 | 35/72 | 5/102 |
Mean percentage of tumor cell expression (any intensity) (ER+/ER−) | 76.6 (58.8/87.2) | 20.4 (26.6/15.4) | 29.4 (32.3/27.5) | 60.8 (−/60.8) |
Median percentage of tumor cell expression (any intensity) (ER+/ER−) | 90 (60/98) | 5 (15/4.5) | 20 (27.5/8) | 62.5 |
(a) | (b) | (c) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
GATA3 | GCDFP15 | MMG | SOX10 | All | ER− | ER+ | All | ER− | ER+ | All | ER− | ER+ |
− | − | − | − | 6 * | 5 | 0 | 9 | 8 | 0 | 16 | 12 | 3 |
+ | − | − | − | 23 | 7 | 16 | 39 | 10 | 29 | 35 | 9 | 26 |
− | + | − | − | 0 | − | − | 0 | − | − | 3 | 2 | 1 |
+ | + | − | − | 14 | 6 | 8 | 14 | 6 | 8 | 10 | 3 | 7 |
− | − | + | − | 5 | 4 | 1 | 5 | 4 | 1 | 7 | 5 | 2 |
+ | − | + | − | 20 | 2 | 18 | 19 | 3 | 16 | 18 | 3 | 15 |
− | + | + | − | 1 | 1 | 0 | − | − | − | 1 | 1 | 0 |
+ | + | + | − | 25 | 11 | 14 | 9 | 6 | 3 | 7 | 4 | 3 |
− | − | − | + | 5 | 5 | 0 | 4 | 4 | 0 | 4 | 4 | 0 |
+ | − | − | + | 3 | 3 | 0 | 3 | 3 | 0 | 1 | 1 | 0 |
GATA3 | GCDFP15 | MMG | SOX10 | ||||||
---|---|---|---|---|---|---|---|---|---|
− | + | − | + | − | + | − | + | ||
ER | − | 15 | 33 | 27 | 18 | 27 | 21 | 39 | 8 |
+ | 1 | 58 | 35 | 22 | 25 | 34 | 60 | 0 | |
p-value | <0.001 | 0.885 | 0.153 | 0.001 | |||||
MMG | − | 45 | 9 | ||||||
+ | 55 | 0 | |||||||
p-value | 0.001 | ||||||||
GCDFP15 | − | 38 | 26 | 54 | 9 | ||||
+ | 14 | 27 | 42 | 0 | |||||
p-value | 0.012 | 0.010 | |||||||
GATA3 | − | 16 | 1 | 11 | 6 | 12 | 5 | ||
+ | 47 | 40 | 41 | 49 | 88 | 3 | |||
p-value | 0.002 | 0.147 | 0.002 |
GATA3 | GCDFP15 | MMG | SOX10 | ||||||
---|---|---|---|---|---|---|---|---|---|
− | + | − | + | − | + | − | + | ||
ER | − | 15 | 18 | 20 | 12 | 20 | 15 | 28 | 7 |
+ | 2 | 64 | 40 | 26 | 31 | 37 | 66 | 1 | |
p-value | <0.001 | 0.857 | 0.267 | 0.002 | |||||
PR | − | 15 | 26 | 24 | 17 | 21 | 22 | 35 | 7 |
+ | 2 | 51 | 34 | 19 | 28 | 27 | 54 | 1 | |
p-value | <0.001 | 0.579 | 1.00 | 0.020 | |||||
HER2 | − | 11 | 57 | 46 | 23 | 39 | 32 | 63 | 7 |
+ | 6 | 23 | 13 | 14 | 11 | 19 | 29 | 1 | |
p-value | 0.592 | 0.094 | 0.093 | 0.429 | |||||
Ki67 | Low (<20%) | 0 | 11 | 3 | 8 | 3 | 8 | 11 | 0 |
High (≥20%) | 9 | 28 | 25 | 12 | 24 | 14 | 32 | 6 | |
p-value | 0.070 | 0.017 | 0.042 | 0.315 | |||||
Subtype | HR+/HER2− | 1 | 50 | 31 | 20 | 26 | 27 | 52 | 0 |
HR+/HER2+ | 1 | 12 | 8 | 5 | 5 | 8 | 12 | 1 | |
HR−/HER2+ | 5 | 10 | 5 | 9 | 6 | 10 | 16 | 0 | |
HR−/HER2− | 10 | 7 | 15 | 3 | 13 | 5 | 11 | 7 | |
p-value | <0.001 | 0.056 | 0.153 | <0.001 |
Reference ER+ | Reference ER− | |
---|---|---|
Cell block ER+ | 56 | 0 |
Cell block ER− | 12 | 27 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, J.J.X.; Ng, J.K.M.; Lee, C.H.C.; Tang, C.-Y.; Tsang, J.Y.S.; Tse, G.M. Comparison of GATA3, GCDFP15, Mammaglobin and SOX10 Immunocytochemistry in Aspirates of Metastatic Breast Cancer. J. Mol. Pathol. 2022, 3, 219-227. https://doi.org/10.3390/jmp3040019
Li JJX, Ng JKM, Lee CHC, Tang C-Y, Tsang JYS, Tse GM. Comparison of GATA3, GCDFP15, Mammaglobin and SOX10 Immunocytochemistry in Aspirates of Metastatic Breast Cancer. Journal of Molecular Pathology. 2022; 3(4):219-227. https://doi.org/10.3390/jmp3040019
Chicago/Turabian StyleLi, Joshua J. X., Joanna K. M. Ng, Conrad H. C. Lee, Cheuk-Yin Tang, Julia Y. S. Tsang, and Gary M. Tse. 2022. "Comparison of GATA3, GCDFP15, Mammaglobin and SOX10 Immunocytochemistry in Aspirates of Metastatic Breast Cancer" Journal of Molecular Pathology 3, no. 4: 219-227. https://doi.org/10.3390/jmp3040019
APA StyleLi, J. J. X., Ng, J. K. M., Lee, C. H. C., Tang, C. -Y., Tsang, J. Y. S., & Tse, G. M. (2022). Comparison of GATA3, GCDFP15, Mammaglobin and SOX10 Immunocytochemistry in Aspirates of Metastatic Breast Cancer. Journal of Molecular Pathology, 3(4), 219-227. https://doi.org/10.3390/jmp3040019