A Review on Scaling Mobile Sensing Platforms for Human Activity Recognition: Challenges and Recommendations for Future Research
Abstract
:1. Introduction
2. Related Work
3. Behavior Characterization: Activity Recognition
3.1. Analysis of Selected Mobile Sensing Tools
3.2. Main Sensors Being Used to Perform Pervasive and Non-Intrusive Behavior Recognition
3.3. Preferred Sensing Approaches
3.4. Classification of Activities and Their Placement
3.5. Current Applied Classification Metrics
4. Discussion: Challenges for Mobile Sensing Infrastructures
4.1. Sensing
4.2. Adequate Contextualization
4.3. Privacy and Anonymity
4.4. Classification
4.5. Categorization of the Different Approaches
5. Recommendations for Future Research
- The data collected should to be kept private and anonymous, as mandated today by privacy regulations, such as General Data Regulation Protection (GDPR). This aspect requires adequate data treatment and filtering, and must ensure that feedback and visualization do not endanger individuals in any way. For that purpose, the network architecture should consider that data should be treated as much as possible in end-user devices or closer to the end-user as much as possible (edge of the network). The discussion of aspects concerning privacy and anonymity is covered in Section 4.3.
- The analysis described in this paper based on the extensive related work shows that behavior inference for simple activities—as well as for complex activities, as demonstrated by the middleware NSense—can be at least partially located on the edge. Furthermore, Edge AI [134] is addressing this aspect today via the distribution of artificial intelligence applications across the cloud–edge continuum. Therefore, whenever feasible (due to the associated computational cost), classification and inference mechanisms should be made available, thus reducing the need for users to always be on. The possibility to export data should be given to the user, but not be an underlying assumption. Moreover, the selection of specific classification models needs to take data fusion into consideration. Data fusion can provide a lighter software design. Data fusion is also relevant for providing finer-grained behavior inference. Classification and behavior inference aspects and today’s approaches have been discussed in Section 4.4.
- Mobile sensing platforms need to be designed with the consideration of energy consumption aspects. In pervasive sensing platforms, the use of multiple sensors implies heavy energy consumption, thus limiting the potential of these solutions in large-scale scenarios. From this perspective, which has been discussed in Section 4.2, it is also important to highlight the role of opportunistic wireless routing approaches that take energy consumption into consideration [103,135,136].
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Ma, H.; Zhao, D.; Yuan, P. Opportunities in mobile crowd sensing. IEEE Commun. Mag. 2014, 52, 29–35. [Google Scholar] [CrossRef]
- Guo, B.; Wang, Z.; Yu, Z.; Wang, Y.; Yen, N.Y.; Huang, R.; Zhou, X. Mobile crowd sensing and computing: The review of an emerging human-powered sensing paradigm. ACM Comput. Surv. (CSUR) 2015, 48, 1–31. [Google Scholar] [CrossRef]
- Hänsel, K. Wearable and ambient sensing for well-being and emotional awareness in the smart workplace. In Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing: Adjunct, New York, NY, USA, 12–16 September 2016; pp. 411–416. [Google Scholar]
- García-Gil, D.; Luengo, J.; García, S.; Herrera, F. Enabling smart data: Noise filtering in big data classification. Inf. Sci. 2019, 479, 135–152. [Google Scholar] [CrossRef]
- Sofia, R.C.; Carvalho, L.I.; Pereira, F.M. The Role of Smart Data in Inference of Human Behavior and Interaction, Smart Data: State-of-the-Art Perspectives in Computing and Applications; Li, K.-C., Di Martino, B., Yang, L.T., Zhang, Q., Eds.; CRC Press: Boca Raton, FL, USA, 2019. [Google Scholar]
- Pantic, M.; Pentland, A.; Nijholt, A.; Huang, T.S. Human computing and machine understanding of human behavior: A survey. In Artifical Intelligence for Human Computing; Springer: Berlin, Germany, 2007; pp. 47–71. [Google Scholar]
- Li, J.; de Ridder, H.; Vermeeren, A.; Conrado, C.; Martella, C. Designing for crowd well-being: Current designs, strategies and future design suggestions. In Proceedings of the 5th International Congress of International Association of Societies of Design Research, Tokyo, Japan, 26–30 August 2013; pp. 2278–2289. [Google Scholar]
- Wang, J.; Chen, Y.; Hao, S.; Peng, X.; Hu, L. Deep learning for sensor-based activity recognition: A survey. Pattern Recognit. Lett. 2019, 119, 3–11. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Chen, M.; Mao, S.; Hu, L.; Leung, V.C. CAP: Community activity prediction based on big data analysis. IEEE Netw. 2014, 28, 52–57. [Google Scholar] [CrossRef]
- Hinckley, K.; Pierce, J.; Sinclair, M.; Horvitz, E. Sensing techniques for mobile interaction. In Proceedings of the 13th annual ACM Symposium on User Interface Software and Technology, San Diego, CA, USA, 6–8 November 2000; pp. 91–100. [Google Scholar]
- Srivastava, M.; Abdelzaher, T.; Szymanski, B. Human-centric sensing. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2012, 370, 176–197. [Google Scholar] [CrossRef]
- Hong, X.; Nugent, C.; Mulvenna, M.; McClean, S.; Scotney, B.; Devlin, S. Evidential fusion of sensor data for activity recognition in smart homes. Pervasive Mob. Comput. 2009, 5, 236–252. [Google Scholar] [CrossRef]
- Dernbach, S.; Das, B.; Krishnan, N.C.; Thomas, B.L.; Cook, D.J. Simple and complex activity recognition through smart phones. In Proceedings of the IEEE 2012 Eighth International Conference on Intelligent Environments, Guanajuato, Mexico, 26–29 June 2012; pp. 214–221. [Google Scholar]
- Satyanarayanan, M.; Simoens, P.; Xiao, Y.; Pillai, P.; Chen, Z.; Ha, K.; Hu, W.; Amos, B. Edge analytics in the internet of things. IEEE Pervasive Comput. 2015, 14, 24–31. [Google Scholar] [CrossRef] [Green Version]
- Garcia Lopez, P.; Montresor, A.; Epema, D.; Datta, A.; Higashino, T.; Iamnitchi, A.; Barcellos, M.; Felber, P.; Riviere, E. Edge-Centric Computing: Vision and Challenges. In Proceedings of the ACM SIGCOMM Computer Communication Review, London, UK, 17–21 August 2015; Volume 45, pp. 37–42. [Google Scholar]
- Bellavista, P.; Chessa, S.; Foschini, L.; Gioia, L.; Girolami, M. Human-enabled edge computing: Exploiting the crowd as a dynamic extension of mobile edge computing. IEEE Commun. Mag. 2018, 56, 145–155. [Google Scholar] [CrossRef] [Green Version]
- Lane, N.D.; Miluzzo, E.; Lu, H.; Peebles, D.; Choudhury, T.; Campbell, A.T. A survey of mobile phone sensing. IEEE Commun. Mag. 2010, 48, 140–150. [Google Scholar] [CrossRef]
- Atallah, L.; Yang, G.Z. The use of pervasive sensing for behaviour profiling—A survey. Pervasive Mob. Comput. 2009, 5, 447–464. [Google Scholar] [CrossRef]
- Atallah, L.; Lo, B.; Yang, G.Z. Can pervasive sensing address current challenges in global healthcare? J. Epidemiol. Glob. Health 2012, 2, 1–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Draghici, A.; Steen, M.V. A survey of techniques for automatically sensing the behavior of a crowd. ACM Comput. Surv. (CSUR) 2018, 51, 1–40. [Google Scholar] [CrossRef] [Green Version]
- Rosi, A.; Mamei, M.; Zambonelli, F.; Dobson, S.; Stevenson, G.; Ye, J. Social sensors and pervasive services: Approaches and perspectives. In Proceedings of the 2011 IEEE International Conference on Pervasive Computing and Communications Workshops (PERCOM Workshops), Seattle, WA, USA, 21–25 March 2011; pp. 525–530. [Google Scholar]
- Shoaib, M.; Bosch, S.; Incel, O.D.; Scholten, H.; Havinga, P.J. A survey of online activity recognition using mobile phones. Sensors 2015, 15, 2059–2085. [Google Scholar] [CrossRef] [PubMed]
- Avci, A.; Bosch, S.; Marin-Perianu, M.; Marin-Perianu, R.; Havinga, P. Activity recognition using inertial sensing for healthcare, wellbeing and sports applications: A survey. In Proceedings of the 23th International Conference on Architecture of Computing Systems, Hannover, Germany, 22–25 February 2010; pp. 1–10. [Google Scholar]
- Lockhart, J.W.; Pulickal, T.; Weiss, G.M. Applications of mobile activity recognition. In Proceedings of the 2012 ACM Conference on Ubiquitous Computing, Pittsburgh, PA, USA, 5–8 September 2012; pp. 1054–1058. [Google Scholar]
- Lara, O.D.; Labrador, M.A. A survey on human activity recognition using wearable sensors. IEEE Commun. Surv. Tutor. 2012, 15, 1192–1209. [Google Scholar] [CrossRef]
- Incel, O.D.; Kose, M.; Ersoy, C. A review and taxonomy of activity recognition on mobile phones. BioNanoScience 2013, 3, 145–171. [Google Scholar] [CrossRef]
- Lane, N.D.; Georgiev, P. Can deep learning revolutionize mobile sensing? In Proceedings of the 16th International Workshop on Mobile Computing Systems and Applications, Santa Fe, NM, USA, 12–13 February 2015; pp. 117–122. [Google Scholar]
- Nweke, H.F.; Teh, Y.W.; Al-Garadi, M.A.; Alo, U.R. Deep learning algorithms for human activity recognition using mobile and wearable sensor networks: State of the art and research challenges. Expert Syst. Appl. 2018, 105, 233–261. [Google Scholar] [CrossRef]
- Perera, C.; Zaslavsky, A.; Christen, P.; Georgakopoulos, D. Context aware computing for the internet of things: A survey. IEEE Commun. Surv. Tutor. 2013, 16, 414–454. [Google Scholar] [CrossRef] [Green Version]
- Altshuler, Y.; Fire, M.; Aharony, N.; Volkovich, Z.; Elovici, Y.; Pentland, A.S. Trade-offs in social and behavioral modeling in mobile networks. In International Conference on Social Computing, Behavioral-Cultural Modeling, and Prediction; Springer: Berlin, Germany, 2013; pp. 412–423. [Google Scholar]
- Saeed, A.; Waheed, T. An extensive survey of context-aware middleware architectures. In Proceedings of the 2010 IEEE International Conference on Electro/Information Technology, Normal, IL, USA, 20–22 May 2010; pp. 1–6. [Google Scholar]
- Makris, P.; Skoutas, D.N.; Skianis, C. A survey on context-aware mobile and wireless networking: On networking and computing environments’ integration. IEEE Commun. Surv. Tutor. 2012, 15, 362–386. [Google Scholar] [CrossRef]
- Bettini, C.; Brdiczka, O.; Henricksen, K.; Indulska, J.; Nicklas, D.; Ranganathan, A.; Riboni, D. A survey of context modelling and reasoning techniques. Pervasive Mob. Comput. 2010, 6, 161–180. [Google Scholar] [CrossRef]
- Bandyopadhyay, S.; Sengupta, M.; Maiti, S.; Dutta, S. Role of middleware for internet of things: A study. Int. J. Comput. Sci. Eng. Surv. 2011, 2, 94–105. [Google Scholar] [CrossRef]
- Bellavista, P.; Corradi, A.; Fanelli, M.; Foschini, L. A survey of context data distribution for mobile ubiquitous systems. ACM Comput. Surv. (CSUR) 2012, 44, 1–45. [Google Scholar] [CrossRef] [Green Version]
- Shi, W.; Cao, J.; Zhang, Q.; Li, Y.; Xu, L. Edge computing: Vision and challenges. IEEE Internet Things J. 2016, 3, 637–646. [Google Scholar] [CrossRef]
- Sarddar, D.; Barman, S.; Sen, P.; Pandit, R. Refinement of Resource Management in Fog Computing Aspect of QoS. Int. J. Grid Distrib. Comput. 2018, 11, 29–44. [Google Scholar] [CrossRef]
- Hu, Y.C.; Patel, M.; Sabella, D.; Sprecher, N.; Young, V. Mobile edge computing—A key technology towards 5G. ETSI White Pap. 2015, 11, 1–16. [Google Scholar]
- Bilal, K.; Khalid, O.; Erbad, A.; Khan, S.U. Potentials, trends, and prospects in edge technologies: Fog, cloudlet, mobile edge, and micro data centers. Comput. Netw. 2018, 130, 94–120. [Google Scholar] [CrossRef] [Green Version]
- Carvalho, L.I.; Silva, D.; Sofia, R.C. Leveraging Context-awareness to Better Support the IoT Cloud-Edge Continuum. arXiv 2020, arXiv:2005.00121. [Google Scholar]
- Riboni, D.; Bettini, C.; Civitarese, G.; Janjua, Z.H.; Helaoui, R. Smartfaber: Recognizing fine-grained abnormal behaviors for early detection of mild cognitive impairment. Artif. Intell. Med. 2016, 67, 57–74. [Google Scholar] [CrossRef] [Green Version]
- Dawadi, P.N.; Cook, D.J.; Schmitter-Edgecombe, M. Automated cognitive health assessment using smart home monitoring of complex tasks. IEEE Trans. Syst. Man Cybern. Syst. 2013, 43, 1302–1313. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Nie, L.; Liu, L.; Rosenblum, D.S. From action to activity: Sensor-based activity recognition. Neurocomputing 2016, 181, 108–115. [Google Scholar] [CrossRef]
- Liang, Q.; Cheng, X.; Huang, S.C.; Chen, D. Opportunistic sensing in wireless sensor networks: Theory and application. IEEE Trans. Comput. 2013, 63, 2002–2010. [Google Scholar] [CrossRef]
- Burke, J.A.; Estrin, D.; Hansen, M.; Parker, A.; Ramanathan, N.; Reddy, S.; Srivastava, M.B. Participatory Sensing. Available online: https://escholarship.org/uc/item/19h777qd (accessed on 21 November 2020).
- Miluzzo, E.; Lane, N.D.; Eisenman, S.B.; Campbell, A.T. CenceMe–injecting sensing presence into social networking applications. In European Conference on Smart Sensing and Context; Springer: Berlin/Heidelberg, Germany, 2007; pp. 1–28. [Google Scholar]
- Lu, H.; Pan, W.; Lane, N.D.; Choudhury, T.; Campbell, A.T. SoundSense: Scalable sound sensing for people-centric applications on mobile phones. In Proceedings of the 7th International Conference on Mobile Systems, Applications, and Services, Krakow, Poland, 22–25 June 2009; pp. 165–178. [Google Scholar]
- Rachuri, K.K.; Musolesi, M.; Mascolo, C.; Rentfrow, P.J.; Longworth, C.; Aucinas, A. EmotionSense: A mobile phones based adaptive platform for experimental social psychology research. In Proceedings of the 12th ACM International Conference on Ubiquitous Computing, Copenhagen, Denmark, 26–29 September 2010; pp. 281–290. [Google Scholar]
- Hicks, J.; Ramanathan, N.; Kim, D.; Monibi, M.; Selsky, J.; Hansen, M.; Estrin, D. AndWellness: An open mobile system for activity and experience sampling. In Proceeding of the Conference on Wireless Health, San Diego, CA, USA, 5–7 October 2010; pp. 34–43. [Google Scholar]
- Rachuri, K.K.; Mascolo, C.; Musolesi, M.; Rentfrow, P.J. Sociablesense: Exploring the trade-offs of adaptive sampling and computation offloading for social sensing. In Proceedings of the 17th Annual International Conference on Mobile Computing and Networking, Las Vegas, NV, USA, 19–23 September 2011; pp. 73–84. [Google Scholar]
- Lin, M.; Lane, N.D.; Mohammod, M.; Yang, X.; Lu, H.; Cardone, G.; Ali, S.; Doryab, A.; Berke, E.; Campbell, A.T.; et al. BeWell+ multi-dimensional wellbeing monitoring with community-guided user feedback and energy optimization. In Proceedings of the Conference on Wireless Health, La Jolla, CA, USA, 22–25 October 2012; pp. 1–8. [Google Scholar]
- Castro, L.A.; Beltrán, J.; Perez, M.; Quintana, E.; Favela, J.; Chávez, E.; Rodriguez, M.; Navarro, R. Collaborative opportunistic sensing with mobile phones. In Proceedings of the 2014 ACM International Joint Conference on Pervasive and Ubiquitous Computing: Adjunct Publication, Seattle, WA, USA, 13–17 September 2014; pp. 1265–1272. [Google Scholar]
- Wang, R.; Chen, F.; Chen, Z.; Li, T.; Harari, G.; Tignor, S.; Zhou, X.; Ben-Zeev, D.; Campbell, A.T. StudentLife: Assessing mental health, academic performance and behavioral trends of college students using smartphones. In Proceedings of the 2014 ACM International Joint Conference on Pervasive and Ubiquitous Computing, Seattle, WA, USA, 13–17 September 2014; pp. 3–14. [Google Scholar]
- Akbar, F.; Weber, I. # Sleep_as_Android: Feasibility of Using Sleep Logs on Twitter for Sleep Studies. In Proceedings of the 2016 IEEE International Conference on Healthcare Informatics (ICHI), Chicago, IL, USA, 4–7 October 2016; pp. 227–233. [Google Scholar]
- Sofia, R.; Firdose, S.; Lopes, L.A.; Moreira, W.; Mendes, P. NSense: A people-centric, non-intrusive opportunistic sensing tool for contextualizing nearness. In Proceedings of the 2016 IEEE 18th International Conference on e-Health Networking, Applications and Services (Healthcom), Munich, Germany, 14–16 September 2016; pp. 1–6. [Google Scholar]
- Elhamshary, M.; Youssef, M.; Uchiyama, A.; Yamaguchi, H.; Higashino, T. Crowdmeter: Congestion level estimation in railway stations using smartphones. In Proceedings of the 2018 IEEE International Conference on Pervasive Computing and Communications (PerCom), Athens, Greece, 19–23 March 2018; pp. 1–12. [Google Scholar]
- Onnela, J.P.; Waber, B.N.; Pentland, A.; Schnorf, S.; Lazer, D. Using sociometers to quantify social interaction patterns. Sci. Rep. 2014, 4, 5604. [Google Scholar] [CrossRef] [Green Version]
- Servia-Rodríguez, S.; Rachuri, K.K.; Mascolo, C.; Rentfrow, P.J.; Lathia, N.; Sandstrom, G.M. Mobile sensing at the service of mental well-being: A large-scale longitudinal study. In Proceedings of the 26th International Conference on World Wide Web, Perth, Australia, 3–7 May 2017; pp. 103–112. [Google Scholar]
- Krupitzer, C.; Sztyler, T.; Edinger, J.; Breitbach, M.; Stuckenschmidt, H.; Becker, C. Hips do lie! a position-aware mobile fall detection system. In Proceedings of the 2018 IEEE International Conference on Pervasive Computing and Communications (PerCom), Athens, Greece, 19–23 March 2018; pp. 1–10. [Google Scholar]
- Depatla, S.; Mostofi, Y. Crowd counting through walls using WiFi. In Proceedings of the 2018 IEEE International Conference on Pervasive Computing and Communications (PerCom), Athens, Greece, 19–23 March 2018; pp. 1–10. [Google Scholar]
- Garcia-Ceja, E.; Brena, R. Long-term activity recognition from accelerometer data. Procedia Technol. 2013, 7, 248–256. [Google Scholar] [CrossRef] [Green Version]
- Preece, S.J.; Goulermas, J.Y.; Kenney, L.P.; Howard, D. A comparison of feature extraction methods for the classification of dynamic activities from accelerometer data. IEEE Trans. Biomed. Eng. 2008, 56, 871–879. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Gong, L.; Gong, Y.; Liu, Y. Revealing travel patterns and city structure with taxi trip data. J. Transp. Geogr. 2015, 43, 78–90. [Google Scholar] [CrossRef] [Green Version]
- Wirz, M.; Schläpfer, P.; Kjærgaard, M.B.; Roggen, D.; Feese, S.; Tröster, G. Towards an Online Detection of Pedestrian Flocks in Urban Canyons by Smoothed Spatio-Temporal Clustering of GPS Trajectories. Available online: https://dl.acm.org/doi/proceedings/10.1145/2063212 (accessed on 21 November 2020).
- Werb, J.; Lanzl, C. Designing a positioning system for finding things and people indoors. IEEE Spectr. 1998, 35, 71–78. [Google Scholar] [CrossRef]
- Kawaguchi, N.; Yano, M.; Ishida, S.; Sasaki, T.; Iwasaki, Y.; Sugiki, K.; Matsubara, S. Underground positioning: Subway information system using WiFi location technology. In Proceedings of the 2009 Tenth International Conference on Mobile Data Management: Systems, Services and Middleware, Taipei, Taiwan, 18–20 May 2009; pp. 371–372. [Google Scholar]
- Rahman, T.; Adams, A.T.; Zhang, M.; Cherry, E.; Zhou, B.; Peng, H.; Choudhury, T. BodyBeat: A mobile system for sensing non-speech body sounds. In Proceeding of the Conference ACM MobiSys 2014, Bretton Woods, NH, USA, 16–19 June 2014. [Google Scholar]
- Guo, B.; Yu, Z.; Zhou, X.; Zhang, D. From participatory sensing to mobile crowd sensing. In Proceedings of the 2014 IEEE International Conference on Pervasive Computing and Communication Workshops (PERCOM WORKSHOPS), Budapest, Hungary, 24–28 March 2014; pp. 593–598. [Google Scholar]
- Lane, N.D.; Eisenman, S.B.; Musolesi, M.; Miluzzo, E.; Campbell, A.T. Urban sensing systems: Opportunistic or participatory? In Proceedings of the 9th Workshop on Mobile Computing Systems and Applications (HotMobile 2008), Napa Valley, CA, USA, 25–26 February 2008; pp. 11–16. [Google Scholar]
- Guo, B.; Chen, C.; Zhang, D.; Yu, Z.; Chin, A. Mobile crowd sensing and computing: When participatory sensing meets participatory social media. IEEE Commun. Mag. 2016, 54, 131–137. [Google Scholar] [CrossRef] [Green Version]
- Avvenuti, M.; Bellomo, S.; Cresci, S.; La Polla, M.N.; Tesconi, M. Hybrid crowdsensing: A novel paradigm to combine the strengths of opportunistic and participatory crowdsensing. In Proceedings of the 26th International Conference on World Wide Web Companion, Perth, Australia, 3–7 April 2017; pp. 1413–1421. [Google Scholar]
- Wang, W.; Chen, J.; Hong, T. Occupancy prediction through machine learning and data fusion of environmental sensing and Wi-Fi sensing in buildings. Autom. Constr. 2018, 94, 233–243. [Google Scholar] [CrossRef] [Green Version]
- Ganti, R.K.; Pham, N.; Ahmadi, H.; Nangia, S.; Abdelzaher, T.F. GreenGPS: A participatory sensing fuel-efficient maps application. In Proceedings of the 8th International Conference on Mobile Systems, Applications, and Services, San Francisco, CA, USA, 15–18 June 2010; pp. 151–164. [Google Scholar]
- Christin, D.; Reinhardt, A.; Kanhere, S.S.; Hollick, M. A survey on privacy in mobile participatory sensing applications. J. Syst. Softw. 2011, 84, 1928–1946. [Google Scholar] [CrossRef]
- Reddy, S.; Estrin, D.; Srivastava, M. Recruitment framework for participatory sensing data collections. In International Conference on Pervasive Computing; Springer: Berlin, Germany, 2010; pp. 138–155. [Google Scholar]
- Koutsopoulos, I. Optimal incentive-driven design of participatory sensing systems. In Proceedings of the 2013 Proceedings IEEE INFOCOM, Turin, Italy, 14–19 April 2013; pp. 1402–1410. [Google Scholar]
- Dua, A.; Bulusu, N.; Feng, W.C.; Hu, W. Towards trustworthy participatory sensing. In Proceedings of the 4th USENIX Conference on Hot topics in Security, Montreal, QC, Canada, 11 August 2009; p. 8. [Google Scholar]
- Luo, T.; Tan, H.P.; Xia, L. Profit-maximizing incentive for participatory sensing. In Proceedings of the IEEE INFOCOM 2014-IEEE Conference on Computer Communications, Toronto, ON, Canada, 27 April–2 May 2014; pp. 127–135. [Google Scholar]
- Tuncay, G.S.; Benincasa, G.; Helmy, A. Participant recruitment and data collection framework for opportunistic sensing: A comparative analysis. In Proceedings of the 8th ACM MobiCom Workshop on Challenged Networks, Miami, FL, USA, 30 September–4 October 2013; pp. 25–30. [Google Scholar]
- Higuchi, T.; Yamaguchi, H.; Higashino, T. Mobile devices as an infrastructure: A survey of opportunistic sensing technology. J. Inf. Process. 2015, 23, 94–104. [Google Scholar] [CrossRef] [Green Version]
- Eisenman, S.B.; Lane, N.D.; Miluzzo, E.; Peterson, R.A.; Ahn, G.S.; Campbell, A.T. Metrosense project: People-centric sensing at scale. In Workshop on World-Sensor-Web (WSW 2006); Citeseer: Boulder, CO, USA, 2006. [Google Scholar]
- Zhao, D.; Ma, H.; Liu, L.; Zhao, J. On opportunistic coverage for urban sensing. In Proceedings of the 2013 IEEE 10th International Conference on Mobile Ad-Hoc and Sensor Systems, HangZhou, China, 14–16 October 2013; pp. 231–239. [Google Scholar]
- Menchaca-Mendez, R.; Luna-Nuñez, B.; Menchaca-Mendez, R.; Yee-Rendon, A.; Quintero, R.; Favela, J. Opportunistic mobile sensing in the fog. Wirel. Commun. Mob. Comput. 2018, 2018. [Google Scholar] [CrossRef]
- Jayaraman, P.P.; Perera, C.; Georgakopoulos, D.; Zaslavsky, A. Efficient opportunistic sensing using mobile collaborative platform mosden. In Proceedings of the 9th IEEE International Conference on Collaborative Computing: Networking, Applications and Worksharing, Austin, TX, USA, 20–23 October 2013; pp. 77–86. [Google Scholar]
- Cornelius, C.; Kapadia, A.; Kotz, D.; Peebles, D.; Shin, M.; Triandopoulos, N. Anonysense: Privacy-aware people-centric sensing. In Proceedings of the 6th International Conference on Mobile Systems, Applications, and Services, Breckenridge, CO, USA, 17–20 June 2008; pp. 211–224. [Google Scholar]
- Sun, X.; Hu, S.; Su, L.; Abdelzaher, T.F.; Hui, P.; Zheng, W.; Liu, H.; Stankovic, J.A. Participatory sensing meets opportunistic sharing: Automatic phone-to-phone communication in vehicles. IEEE Trans. Mob. Comput. 2015, 15, 2550–2563. [Google Scholar] [CrossRef]
- Issarny, V.; Mallet, V.; Nguyen, K.; Raverdy, P.G.; Rebhi, F.; Ventura, R. Dos and don’ts in mobile phone sensing middleware: Learning from a large-scale experiment. In Proceedings of the 17th International Middleware Conference, Trento, Italy, 12–16 December 2016; pp. 1–13. [Google Scholar]
- Habibzadeh, H.; Qin, Z.; Soyata, T.; Kantarci, B. Large-scale distributed dedicated-and non-dedicated smart city sensing systems. IEEE Sens. J. 2017, 17, 7649–7658. [Google Scholar] [CrossRef]
- Salim, F.; Haque, U. Urban computing in the wild: A survey on large scale participation and citizen engagement with ubiquitous computing, cyber physical systems, and Internet of Things. Int. J. Hum. Comput. Stud. 2015, 81, 31–48. [Google Scholar] [CrossRef]
- Riboni, D. Opportunistic pervasive computing: Adaptive context recognition and interfaces. CCF Trans. Pervasive Comput. Interact. 2019, 1, 125–139. [Google Scholar] [CrossRef] [Green Version]
- D’Alessandro, D.; Buffoli, M.; Capasso, L.; Fara, G.M.; Rebecchi, A.; Capolongo, S. Green areas and public health: Improving wellbeing and physical activity in the urban context. Epidemiol. Prev. 2015, 39, 8–13. [Google Scholar]
- Vaizman, Y.; Ellis, K.; Lanckriet, G. Recognizing detailed human context in the wild from smartphones and smartwatches. IEEE Pervasive Comput. 2017, 16, 62–74. [Google Scholar] [CrossRef] [Green Version]
- Cardenas, C.; Garcia-Macias, J.A. ProximiThings: Implementing Proxemic Interactions in the Internet of Things. Procedia Comput. Sci. 2017, 113, 49–56. [Google Scholar] [CrossRef]
- Forkan, A.R.M.; Khalil, I.; Tari, Z.; Foufou, S.; Bouras, A. A context-aware approach for long-term behavioural change detection and abnormality prediction in ambient assisted living. Pattern Recognit. 2015, 48, 628–641. [Google Scholar] [CrossRef]
- Cao, L.; Wang, Y.; Zhang, B.; Jin, Q.; Vasilakos, A.V. GCHAR: An efficient Group-based Context—Aware human activity recognition on smartphone. J. Parallel Distrib. Comput. 2018, 118, 67–80. [Google Scholar] [CrossRef]
- Roman, R.; Lopez, J.; Mambo, M. Mobile edge computing, fog et al.: A survey and analysis of security threats and challenges. Future Gener. Comput. Syst. 2018, 78, 680–698. [Google Scholar] [CrossRef] [Green Version]
- Bellavista, P.; Belli, D.; Chessa, S.; Foschini, L. A social-driven edge computing architecture for mobile crowd sensing management. IEEE Commun. Mag. 2019, 57, 68–73. [Google Scholar] [CrossRef]
- Zhong, S.; Zhong, H.; Huang, X.; Yang, P.; Shi, J.; Xie, L.; Wang, K. Connecting physical-world to cyber-world: Security and privacy issues in pervasive sensing. In Security and Privacy for Next-Generation Wireless Networks; Springer: Berlin, Germany, 2019; pp. 49–63. [Google Scholar]
- Guan, Z.; Zhang, Y.; Wu, L.; Wu, J.; Li, J.; Ma, Y.; Hu, J. APPA: An anonymous and privacy preserving data aggregation scheme for fog-enhanced IoT. J. Netw. Comput. Appl. 2019, 125, 82–92. [Google Scholar] [CrossRef]
- Chen, Q.; Zheng, S.; Weng, Z. Leveraging mobile nodes for preserving node privacy in mobile crowd sensing. Wirel. Commun. Mob. Comput. 2018, 2018. [Google Scholar] [CrossRef] [Green Version]
- Xiong, J.; Ma, R.; Chen, L.; Tian, Y.; Lin, L.; Jin, B. Achieving incentive, security, and scalable privacy protection in mobile crowdsensing services. Wirel. Commun. Mob. Comput. 2018, 2018. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Liang, L.; Luo, C.; Cheng, L. Privacy-preserving incentive mechanisms for mobile crowdsensing. IEEE Pervasive Comput. 2018, 17, 47–57. [Google Scholar] [CrossRef]
- Lin, J.; Yang, D.; Li, M.; Xu, J.; Xue, G. Frameworks for privacy-preserving mobile crowdsensing incentive mechanisms. IEEE Trans. Mob. Comput. 2017, 17, 1851–1864. [Google Scholar] [CrossRef]
- Mach, P.; Becvar, Z. Mobile edge computing: A survey on architecture and computation offloading. IEEE Commun. Surv. Tutor. 2017, 19, 1628–1656. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Cai, Z.; Tong, X.; Gao, Y.; Yin, G. Truthful incentive mechanism with location privacy-preserving for mobile crowdsourcing systems. Comput. Netw. 2018, 135, 32–43. [Google Scholar] [CrossRef]
- Alsheikh, M.A.; Lin, S.; Niyato, D.; Tan, H.P. Machine learning in wireless sensor networks: Algorithms, strategies, and applications. IEEE Commun. Surv. Tutor. 2014, 16, 1996–2018. [Google Scholar] [CrossRef] [Green Version]
- Sun, M.; Tay, W.P.; He, X. Toward information privacy for the Internet of Things: A nonparametric learning approach. IEEE Trans. Signal Process. 2018, 66, 1734–1747. [Google Scholar] [CrossRef]
- He, X.; Tay, W.P.; Sun, M. Privacy-aware decentralized detection using linear precoding. In Proceedings of the 2016 IEEE Sensor Array and Multichannel Signal Processing Workshop (SAM), Rio de Janeiro, Brazil, 10–13 July 2016; pp. 1–5. [Google Scholar]
- He, X.; Sun, M.; Tay, W.P.; Gong, Y. Multilayer nonlinear processing for information privacy in sensor networks. arXiv 2017, arXiv:1711.04459. [Google Scholar]
- Ignatov, A. Real-time human activity recognition from accelerometer data using Convolutional Neural Networks. Appl. Soft Comput. 2018, 62, 915–922. [Google Scholar] [CrossRef]
- Wang, J.; Zucker, J.D. Solving Multiple-Instance Problem: A Lazy Learning Approach. Available online: http://cogprints.org/2124/ (accessed on 11 March 2011).
- Lu, H.; Yang, J.; Liu, Z.; Lane, N.D.; Choudhury, T.; Campbell, A.T. The Jigsaw Continuous Sensing Engine for Mobile Phone Applications. Available online: https://dl.acm.org/doi/proceedings/10.1145/1869983 (accessed on 21 November 2020).
- Rokach, L.; Maimon, O.Z. Data Mining with Decision Trees: Theory and Applications; World Scientific: Singapore, 2008; Volume 69. [Google Scholar]
- Reddy, S.; Mun, M.; Burke, J.; Estrin, D.; Hansen, M.; Srivastava, M. Using mobile phones to determine transportation modes. ACM Trans. Sens. Netw. (TOSN) 2010, 6, 1–27. [Google Scholar] [CrossRef]
- Haykin, S. Neural Networks: A Comprehensive Foundation; Prentice-Hall, Inc.: Upper Saddle River, NJ, USA, 2007. [Google Scholar]
- Wettschereck, D.; Aha, D.W.; Mohri, T. A review and empirical evaluation of feature weighting methods for a class of lazy learning algorithms. Artif. Intell. Rev. 1997, 11, 273–314. [Google Scholar] [CrossRef]
- Richter, M.M.; Weber, R.O. Case-Based Reasoning; Springer: Berlin, Germany, 2016. [Google Scholar]
- Schank, R.C. Dynamic Memory: A Theory of Reminding and Learning in Computers and People; Cambridge University Press: Cambridge, UK, 1983. [Google Scholar]
- Kolodner, J. Case-Based Reasoning; Morgan Kaufmann: Burlington, MA, USA, 2014. [Google Scholar]
- Kofod-Petersen, A.; Aamodt, A. Contextualised ambient intelligence through case-based reasoning. In European Conference on Case-Based Reasoning; Springer: Berlin, Germany, 2006; pp. 211–225. [Google Scholar]
- Berry, M.J.; Linoff, G.S. Data Mining Techniques: For Marketing, Sales, and Customer Relationship Management; John Wiley & Sons: Hoboken, NJ, USA, 2004. [Google Scholar]
- Chandra, A.; Weissman, J.; Heintz, B. Decentralized edge clouds. IEEE Internet Comput. 2013, 17, 70–73. [Google Scholar] [CrossRef]
- Erdogan, S.Z.; Bilgin, T.T. A data mining approach for fall detection by using k-nearest neighbour algorithm on wireless sensor network data. IET Commun. 2012, 6, 3281–3287. [Google Scholar] [CrossRef]
- Kulkarni, R.V.; Förster, A.; Venayagamoorthy, G.K. Computational intelligence in wireless sensor networks: A survey. IEEE Commun. Surv. Tutor. 2010, 13, 68–96. [Google Scholar] [CrossRef]
- Radu, V.; Lane, N.D.; Bhattacharya, S.; Mascolo, C.; Marina, M.K.; Kawsar, F. Towards multimodal deep learning for activity recognition on mobile devices. In Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing: Adjunct, Heidelberg, Germany, 12–16 September 2016; pp. 185–188. [Google Scholar]
- Hammerla, N.Y.; Halloran, S.; Plötz, T. Deep, convolutional, and recurrent models for human activity recognition using wearables. arXiv 2016, arXiv:1604.08880. [Google Scholar]
- Lee, J.; Lee, J. Juice Recipe Recommendation System Using Machine Learning in MEC Environment. IEEE Consum. Electron. Mag. 2020, 9, 79–84. [Google Scholar] [CrossRef]
- Calabrese, F.; Ferrari, L.; Blondel, V.D. Urban sensing using mobile phone network data: A survey of research. ACM Comput. Surv. (CSUR) 2014, 47, 1–20. [Google Scholar] [CrossRef]
- Yang, D.; Xue, G.; Fang, X.; Tang, J. Crowdsourcing to smartphones: Incentive mechanism design for mobile phone sensing. In Proceedings of the 18th ACM Annual International Conference on Mobile Computing and Networking, Istanbul, Turkey, 22–26 August 2012; pp. 173–184. [Google Scholar]
- Stisen, A.; Blunck, H.; Bhattacharya, S.; Prentow, T.S.; Kjærgaard, M.B.; Dey, A.; Sonne, T.; Jensen, M.M. Smart devices are different: Assessing and mitigatingmobile sensing heterogeneities for activity recognition. In Proceedings of the 13th ACM Conference on Embedded Networked Sensor Systems, Seoul, Korea, 1–4 November 2015; pp. 127–140. [Google Scholar]
- Jaimes, L.G.; Vergara-Laurens, I.J.; Raij, A. A survey of incentive techniques for mobile crowd sensing. IEEE Internet Things J. 2015, 2, 370–380. [Google Scholar] [CrossRef]
- Zebin, T.; Scully, P.J.; Peek, N.; Casson, A.J.; Ozanyan, K.B. Design and implementation of a convolutional neural network on an edge computing smartphone for human activity recognition. IEEE Access 2019, 7, 133509–133520. [Google Scholar] [CrossRef]
- Miao, C.; Su, L.; Jiang, W.; Li, Y.; Tian, M. A lightweight privacy-preserving truth discovery framework for mobile crowd sensing systems. In Proceedings of the IEEE INFOCOM 2017-IEEE Conference on Computer Communications, Atlanta, GA, USA, 1–4 May 2017; pp. 1–9. [Google Scholar]
- Shi, W.; Dustdar, S. The promise of edge computing. Computer 2016, 49, 78–81. [Google Scholar] [CrossRef]
- MartíN-Campillo, A.; Crowcroft, J.; Yoneki, E.; Martí, R. Evaluating opportunistic networks in disaster scenarios. J. Netw. Comput. Appl. 2013, 36, 870–880. [Google Scholar] [CrossRef]
- Loreti, P.; Bracciale, L. Optimized neighbor discovery for opportunistic networks of energy constrained IoT devices. IEEE Trans. Mob. Comput. 2019, 19, 1387–1400. [Google Scholar] [CrossRef]
Tool | Behavior Inference Aspect | Activity | Type | Sensor | OS, Device | Sensing | Classification | Metrics | Edge/Cloud |
---|---|---|---|---|---|---|---|---|---|
CenceMe, 2007 [46] | Social interaction | Movement, Conversation, Location (Indoor/Outdoor) | S,C | Accelerometer, GPS, microphone, Wi-Fi, Bluetooth | Linux, iOS, Nokia N95 (Symbian) | O | J48 Decision Tree; different classifiers for different activities | Mean, Standard deviation, Number of peaks | Edge classification; cloud computation and storage |
SoundSense, 2009 [47] | Social interaction | Music, speech, silence | S | Microphone | Apple | O,P | Decision trees | Zero crossing rate, Low energy frame, Spectral | Edge (device) |
EmotionSense, 2010 [48] | Emotions | Movement; location (indoor vs. outdoor); conversation | S | Accelerometer, GPS, Bluetooth, microphone | Nokia Symbian s60 | O,P | Gaussian Mixture Model (GMM) for speech; discriminant function classifier for movement; GMM classifier for emotions | Mean, average; mode levels | Edge classification; inferred data stored in the cloud |
AndWellness, 2011 [49] | Social interaction | Movement, location, interaction | S,C | Accelerometer, GPS, Wi-Fi | Android | O,P | C4.5 decision tree for mobility | Quality of participation over time: battery charge level, mobility feedback, etc. | Cloud |
SociableSense, 2011 [50] | Social interaction | Movement, location, interaction | S | Accelerometer, Bluetooth | Android | O,P | Gaussian Mixture Model for speech; discriminant function classifier for movement; | Mean, average | Edge and cloud |
Bewell BeWell+, 2012 [51] | Social interaction | Movement, speaking, sleep, location | S,C | Accelerometer, microphone, GPS | Android Nexus | O | Naive Bayes for mobility, speaking; specific model for sleep | Spectral roll-off, mean, variance | Cloud, edge classification; inferred data and other data stored in the cloud |
InCense, 2014 [52] | Social interaction | Movement, relative location, speaking | S,C | Accelerometer, microphone | Android | O,P | Audio fingerprinting (filter) | Audio similarity | Cloud |
StudentLife, 2014 [53] | Stress, mental health | Motion, conversation, sleep, location and co-location | S | Accelerometer, GPS, Bluetooth, microphone, light sensor | Android | O,P | Decision tree for motion; Markov model for conversation vs. silence; specific model for sleep | Mean, standard deviation | Edge classification; behavior inference stored and computed on the cloud |
Sleep as Android, 2015 [54] | Sleep issues, stress | Sleep | C | Accelerometer, gyroscope, microphone, screen, sonar, oximeter | Android | O | Noise graph, actigraphy, hypnography | Mean, average < sleep scores | Edge classification; behavior inference stored and computed on the cloud |
Nsense, 2016 [55] | Nearness, social interaction, preferred locations | Movement and mobility preferences, location (indoor/outdoors), level of surrounding noise, proximity | S,C | Accelerometer, GPS, microphone, Wi-Fi, Bluetooth | Android | O | Decision trees | Sociability level, propinquity level, affinity of shared interests | Edge (device) |
CrowdMeter, 2018 [56] | Train congestion levels | Walking vs. standing, location | S | gyroscope, accelerometer, magnetometer, barometer, microphone, Wi-Fi | Android | O, P | Estimation/maximization | Fine-grained congestion levels | Edge classification and cloud classification for collective behavior |
Area | Studied Work | |
---|---|---|
Data capture/Sensing | Opportunistic | [17,44,55,69,80,81,82,83,84,85,128] |
Participatory | [45,58,73,74,75,76,77,78,79,129,130] | |
Hybrid | [2,69,71,86,87,88,89,131] | |
Learning/Contextualization | Routine Habits | [12,13,55,97] |
Context awareness | [29,30,43,91,92,93,94,95,96,112,128] | |
Inference/Classification | Activity recognition | [12,13,22,23,24,25,26,27,28,43,57,61,62,92,112,128,130] |
Placement | [14,15,16,50,96,132] | |
Models | [8,13,27,28,106,111,112,113,114,115] | |
Behavior inference | Behavior awareness | [3,6,49,57,112] |
Well-being | [7,8,9,10,11,58] | |
Human interaction | [5,18,20,48,55,97,128] | |
Security | Privacy/anonymity | [84,85,98,99,100,102,104,105,128,130,131] |
Incentives | [79,101,102,103,106,129,131] | |
Platforms | [13,34,46,47,48,49,51,53,54,55,56,59,60,81,128,133] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carvalho, L.I.; Sofia, R.C. A Review on Scaling Mobile Sensing Platforms for Human Activity Recognition: Challenges and Recommendations for Future Research. IoT 2020, 1, 451-473. https://doi.org/10.3390/iot1020025
Carvalho LI, Sofia RC. A Review on Scaling Mobile Sensing Platforms for Human Activity Recognition: Challenges and Recommendations for Future Research. IoT. 2020; 1(2):451-473. https://doi.org/10.3390/iot1020025
Chicago/Turabian StyleCarvalho, Liliana I., and Rute C. Sofia. 2020. "A Review on Scaling Mobile Sensing Platforms for Human Activity Recognition: Challenges and Recommendations for Future Research" IoT 1, no. 2: 451-473. https://doi.org/10.3390/iot1020025
APA StyleCarvalho, L. I., & Sofia, R. C. (2020). A Review on Scaling Mobile Sensing Platforms for Human Activity Recognition: Challenges and Recommendations for Future Research. IoT, 1(2), 451-473. https://doi.org/10.3390/iot1020025