Figure 1.
Cross-validated accuracy against subsampling proportion based on the Wine dataset (averaged over 100 iterations).
Figure 1.
Cross-validated accuracy against subsampling proportion based on the Wine dataset (averaged over 100 iterations).
Figure 2.
Diagram that displays the partition subsampling scheme that generates B subsamples of size k.
Figure 2.
Diagram that displays the partition subsampling scheme that generates B subsamples of size k.
Figure 3.
Diagram that displays the shift subsampling scheme that generates B subsamples of size k.
Figure 3.
Diagram that displays the shift subsampling scheme that generates B subsamples of size k.
Figure 4.
Probability mass functions of expected overlaps between a pair of subsamples generated from random subsampling and partition subsampling when , , and .
Figure 4.
Probability mass functions of expected overlaps between a pair of subsamples generated from random subsampling and partition subsampling when , , and .
Figure 5.
Probability mass functions of expected overlaps between a pair of subsamples generated from random subsampling and partition subsampling when , , and .
Figure 5.
Probability mass functions of expected overlaps between a pair of subsamples generated from random subsampling and partition subsampling when , , and .
Figure 6.
Cross-validated accuracy with error bars based on the Wine dataset (#trees ).
Figure 6.
Cross-validated accuracy with error bars based on the Wine dataset (#trees ).
Figure 7.
Cross-validated accuracy with error bars based on the Wine dataset (#trees ).
Figure 7.
Cross-validated accuracy with error bars based on the Wine dataset (#trees ).
Figure 8.
Cross-validated accuracy with error bars based on the Wine dataset (#trees ).
Figure 8.
Cross-validated accuracy with error bars based on the Wine dataset (#trees ).
Figure 9.
Cross-validated accuracy with error bars based on the Wine dataset (#trees ).
Figure 9.
Cross-validated accuracy with error bars based on the Wine dataset (#trees ).
Figure 10.
Cross-validated accuracy with error bars based on the Wine dataset (#trees ).
Figure 10.
Cross-validated accuracy with error bars based on the Wine dataset (#trees ).
Table 1.
Comparison of the probability of maximum diversity under a subsampling scheme.
Table 1.
Comparison of the probability of maximum diversity under a subsampling scheme.
| Random | Partition |
---|
| | |
| Random | Shift |
| | |
Table 2.
Expected number of overlaps between a pair of subsamples.
Table 2.
Expected number of overlaps between a pair of subsamples.
Random Subsampling |
---|
n\k | | | | | | | | | |
50 | 0.5 | 2.0 | 4.5 | 8.0 | 12.5 | 18.0 | 24.5 | 32.0 | 40.5 |
100 | 1.0 | 4.0 | 9.0 | 16.0 | 25.0 | 36.0 | 49.0 | 84.0 | 81.0 |
500 | 5.0 | 20.0 | 45.0 | 80.0 | 125.0 | 180.0 | 245.0 | 320.0 | 405.0 |
Partition and Shift Subsampling () |
n\k | | | | | | | | | |
50 | 0.0 | 1.1 | 3.3 | 6.7 | 11.1 | 17.1 | 24.0 | 31.8 | 40.4 |
100 | 0.0 | 2.2 | 6.7 | 13.3 | 22.2 | 34.2 | 48.0 | 63.6 | 80.9 |
500 | 0.0 | 11.1 | 33.3 | 66.7 | 111.1 | 171.1 | 240.0 | 317.8 | 404.4 |
Partition and Shift Subsampling () |
n\k | | | | | | | | | |
50 | 0.3 | 1.6 | 3.9 | 7.4 | 11.8 | 17.6 | 24.3 | 31.9 | 40.5 |
100 | 0.5 | 3.2 | 7.9 | 14.7 | 23.7 | 35.2 | 48.5 | 63.8 | 80.9 |
500 | 2.6 | 15.8 | 39.5 | 73.7 | 118.4 | 175.8 | 242.6 | 318.9 | 404.7 |
Partition and Shift Subsampling () |
n\k | | | | | | | | | |
50 | 0.4 | 1.8 | 4.3 | 7.8 | 12.2 | 17.8 | 24.4 | 32.0 | 40.5 |
100 | 0.8 | 3.7 | 8.6 | 15.5 | 24.5 | 35.7 | 48.8 | 63.9 | 81.0 |
500 | 4.1 | 18.4 | 42.9 | 77.6 | 122.4 | 178.4 | 244.1 | 319.6 | 404.9 |
Partition and Shift Subsampling () |
n\k | | | | | | | | | |
50 | 0.5 | 1.9 | 4.4 | 7.9 | 12.4 | 17.9 | 24.5 | 32.0 | 40.5 |
100 | 0.9 | 3.8 | 8.8 | 15.8 | 24.7 | 35.8 | 48.9 | 64.0 | 81.0 |
500 | 4.5 | 19.2 | 43.9 | 78.8 | 123.7 | 179.2 | 244.5 | 319.8 | 404.9 |
Table 3.
Cross-validated accuracies in binary classification when and a 50-50 positive–negative ratio.
Table 3.
Cross-validated accuracies in binary classification when and a 50-50 positive–negative ratio.
Random Subsampling |
---|
#trees\k | | | | | | | | | |
50 | 0.629 | 0.633 | 0.634 | 0.632 | 0.631 | 0.630 | 0.631 | 0.624 | 0.628 |
100 | 0.638 | 0.642 | 0.638 | 0.636 | 0.639 | 0.637 | 0.631 | 0.631 | 0.633 |
500 | 0.645 | 0.636 | 0.640 | 0.638 | 0.636 | 0.635 | 0.636 | 0.633 | 0.630 |
#trees\k | | | | | | | | | |
50 | 0.624 | 0.625 | 0.623 | 0.617 | 0.611 | 0.609 | 0.609 | 0.597 | 0.588 |
100 | 0.629 | 0.625 | 0.616 | 0.616 | 0.617 | 0.612 | 0.608 | 0.596 | 0.591 |
500 | 0.626 | 0.625 | 0.624 | 0.618 | 0.613 | 0.609 | 0.606 | 0.601 | 0.595 |
Partition and Shift Subsampling |
#trees\k | | | | | | | | | |
50 | 0.624 | 0.630 | 0.634 | 0.631 | 0.633 | 0.631 | 0.634 | 0.629 | 0.633 |
100 | 0.632 | 0.638 | 0.634 | 0.635 | 0.639 | 0.640 | 0.637 | 0.636 | 0.636 |
500 | 0.641 | 0.638 | 0.641 | 0.640 | 0.638 | 0.640 | 0.644 | 0.640 | 0.638 |
#trees\k | | | | | | | | | |
50 | 0.630 | 0.633 | 0.631 | 0.629 | 0.626 | 0.624 | 0.626 | 0.621 | 0.620 |
100 | 0.639 | 0.637 | 0.630 | 0.628 | 0.632 | 0.629 | 0.630 | 0.624 | 0.625 |
500 | 0.637 | 0.634 | 0.636 | 0.632 | 0.630 | 0.628 | 0.628 | 0.626 | 0.627 |
Table 4.
Cross-validated accuracies in binary classification when and a 40-60 positive–negative ratio.
Table 4.
Cross-validated accuracies in binary classification when and a 40-60 positive–negative ratio.
Random Subsampling |
---|
#trees\k | | | | | | | | | |
50 | 0.638 | 0.645 | 0.648 | 0.639 | 0.645 | 0.645 | 0.645 | 0.644 | 0.641 |
100 | 0.647 | 0.647 | 0.652 | 0.644 | 0.645 | 0.648 | 0.643 | 0.647 | 0.636 |
500 | 0.645 | 0.657 | 0.650 | 0.651 | 0.651 | 0.651 | 0.644 | 0.644 | 0.648 |
#trees\k | | | | | | | | | |
50 | 0.630 | 0.635 | 0.634 | 0.630 | 0.622 | 0.618 | 0.614 | 0.610 | 0.606 |
100 | 0.643 | 0.633 | 0.632 | 0.627 | 0.623 | 0.621 | 0.620 | 0.607 | 0.597 |
500 | 0.641 | 0.637 | 0.637 | 0.631 | 0.626 | 0.624 | 0.610 | 0.615 | 0.607 |
Partition and Shift Subsampling |
#trees\k | | | | | | | | | |
50 | 0.636 | 0.644 | 0.647 | 0.641 | 0.648 | 0.645 | 0.650 | 0.647 | 0.646 |
100 | 0.644 | 0.645 | 0.651 | 0.647 | 0.651 | 0.649 | 0.648 | 0.654 | 0.644 |
500 | 0.644 | 0.654 | 0.650 | 0.653 | 0.654 | 0.654 | 0.651 | 0.650 | 0.655 |
#trees\k | | | | | | | | | |
50 | 0.641 | 0.643 | 0.646 | 0.643 | 0.638 | 0.634 | 0.637 | 0.635 | 0.637 |
100 | 0.651 | 0.643 | 0.646 | 0.640 | 0.638 | 0.641 | 0.641 | 0.633 | 0.633 |
500 | 0.650 | 0.648 | 0.651 | 0.642 | 0.643 | 0.645 | 0.633 | 0.643 | 0.638 |
Table 5.
Cross-validated accuracies in binary classification when and a 30-70 positive–negative ratio.
Table 5.
Cross-validated accuracies in binary classification when and a 30-70 positive–negative ratio.
Random Subsampling |
---|
#trees\k | | | | | | | | | |
50 | 0.679 | 0.686 | 0.685 | 0.682 | 0.684 | 0.680 | 0.676 | 0.673 | 0.673 |
100 | 0.679 | 0.688 | 0.689 | 0.689 | 0.685 | 0.684 | 0.680 | 0.676 | 0.676 |
500 | 0.651 | 0.682 | 0.692 | 0.692 | 0.681 | 0.687 | 0.679 | 0.679 | 0.674 |
#trees\k | | | | | | | | | |
50 | 0.665 | 0.672 | 0.670 | 0.664 | 0.657 | 0.656 | 0.648 | 0.643 | 0.632 |
100 | 0.672 | 0.669 | 0.670 | 0.664 | 0.665 | 0.657 | 0.653 | 0.647 | 0.632 |
500 | 0.676 | 0.670 | 0.668 | 0.663 | 0.659 | 0.656 | 0.647 | 0.644 | 0.632 |
Partition and Shift Subsampling |
#trees\k | | | | | | | | | |
50 | 0.676 | 0.685 | 0.685 | 0.685 | 0.687 | 0.683 | 0.683 | 0.681 | 0.681 |
100 | 0.677 | 0.685 | 0.692 | 0.691 | 0.688 | 0.689 | 0.688 | 0.685 | 0.684 |
500 | 0.650 | 0.681 | 0.691 | 0.695 | 0.688 | 0.692 | 0.686 | 0.689 | 0.683 |
#trees\k | | | | | | | | | |
50 | 0.677 | 0.681 | 0.681 | 0.679 | 0.677 | 0.675 | 0.668 | 0.674 | 0.667 |
100 | 0.682 | 0.681 | 0.683 | 0.682 | 0.684 | 0.678 | 0.677 | 0.675 | 0.671 |
500 | 0.689 | 0.683 | 0.683 | 0.679 | 0.680 | 0.679 | 0.671 | 0.675 | 0.669 |
Table 6.
Cross-validated accuracies in binary classification when and a 20-80 positive–negative ratio.
Table 6.
Cross-validated accuracies in binary classification when and a 20-80 positive–negative ratio.
Random Subsampling |
---|
#trees\k | | | | | | | | | |
50 | NA | 0.757 | 0.750 | 0.752 | 0.749 | 0.748 | 0.747 | 0.742 | 0.740 |
100 | NA | 0.748 | 0.754 | 0.752 | 0.751 | 0.747 | 0.747 | 0.746 | 0.741 |
500 | NA | 0.715 | 0.734 | 0.748 | 0.751 | 0.745 | 0.749 | 0.742 | 0.738 |
#trees\k | | | | | | | | | |
50 | 0.739 | 0.731 | 0.726 | 0.717 | 0.716 | 0.712 | 0.711 | 0.700 | 0.693 |
100 | 0.735 | 0.733 | 0.733 | 0.721 | 0.717 | 0.718 | 0.705 | 0.700 | 0.700 |
500 | 0.737 | 0.737 | 0.733 | 0.734 | 0.721 | 0.715 | 0.707 | 0.704 | 0.692 |
Partition and Shift Subsampling |
#trees\k | | | | | | | | | |
50 | NA | 0.757 | 0.757 | 0.757 | 0.754 | 0.755 | 0.753 | 0.751 | 0.750 |
100 | NA | 0.751 | 0.755 | 0.757 | 0.757 | 0.754 | 0.753 | 0.757 | 0.749 |
500 | NA | 0.715 | 0.736 | 0.752 | 0.757 | 0.753 | 0.757 | 0.753 | 0.752 |
#trees\k | | | | | | | | | |
50 | 0.750 | 0.746 | 0.743 | 0.737 | 0.740 | 0.737 | 0.743 | 0.733 | 0.734 |
100 | 0.749 | 0.748 | 0.748 | 0.743 | 0.737 | 0.742 | 0.735 | 0.733 | 0.738 |
500 | 0.750 | 0.748 | 0.750 | 0.752 | 0.744 | 0.741 | 0.736 | 0.737 | 0.736 |
Table 7.
Cross-validated accuracies in binary classification when and a 50-50 positive–negative ratio.
Table 7.
Cross-validated accuracies in binary classification when and a 50-50 positive–negative ratio.
Random Subsampling |
---|
#trees\k | | | | | | | | | |
50 | 0.660 | 0.663 | 0.658 | 0.658 | 0.655 | 0.655 | 0.652 | 0.650 | 0.650 |
100 | 0.669 | 0.666 | 0.665 | 0.663 | 0.660 | 0.657 | 0.656 | 0.654 | 0.650 |
500 | 0.672 | 0.668 | 0.669 | 0.664 | 0.663 | 0.660 | 0.659 | 0.656 | 0.652 |
#trees\k | | | | | | | | | |
50 | 0.644 | 0.646 | 0.643 | 0.639 | 0.636 | 0.633 | 0.627 | 0.622 | 0.613 |
100 | 0.650 | 0.644 | 0.642 | 0.641 | 0.637 | 0.635 | 0.629 | 0.622 | 0.614 |
500 | 0.651 | 0.649 | 0.644 | 0.644 | 0.637 | 0.634 | 0.630 | 0.624 | 0.615 |
Partition and Shift Subsampling |
#trees\k | | | | | | | | | |
50 | 0.660 | 0.663 | 0.661 | 0.659 | 0.659 | 0.660 | 0.658 | 0.655 | 0.658 |
100 | 0.669 | 0.669 | 0.669 | 0.666 | 0.664 | 0.661 | 0.663 | 0.661 | 0.659 |
500 | 0.673 | 0.671 | 0.673 | 0.668 | 0.668 | 0.666 | 0.666 | 0.664 | 0.661 |
#trees\k | | | | | | | | | |
50 | 0.653 | 0.655 | 0.653 | 0.652 | 0.650 | 0.650 | 0.647 | 0.646 | 0.644 |
100 | 0.660 | 0.655 | 0.655 | 0.654 | 0.653 | 0.654 | 0.651 | 0.649 | 0.648 |
500 | 0.661 | 0.660 | 0.657 | 0.659 | 0.654 | 0.653 | 0.653 | 0.651 | 0.652 |
Table 8.
Cross-validated accuracies in binary classification when and a 40-60 positive–negative ratio.
Table 8.
Cross-validated accuracies in binary classification when and a 40-60 positive–negative ratio.
Random Subsampling |
---|
#trees\k | | | | | | | | | |
50 | 0.670 | 0.668 | 0.670 | 0.664 | 0.663 | 0.662 | 0.664 | 0.657 | 0.660 |
100 | 0.676 | 0.675 | 0.675 | 0.671 | 0.666 | 0.667 | 0.662 | 0.663 | 0.663 |
500 | 0.678 | 0.678 | 0.677 | 0.673 | 0.672 | 0.671 | 0.667 | 0.662 | 0.661 |
#trees\k | | | | | | | | | |
50 | 0.654 | 0.654 | 0.650 | 0.646 | 0.643 | 0.641 | 0.635 | 0.633 | 0.617 |
100 | 0.658 | 0.652 | 0.651 | 0.647 | 0.643 | 0.646 | 0.639 | 0.634 | 0.620 |
500 | 0.659 | 0.660 | 0.653 | 0.650 | 0.645 | 0.638 | 0.637 | 0.634 | 0.621 |
Partition and Shift Subsampling |
#trees\k | | | | | | | | | |
50 | 0.669 | 0.667 | 0.671 | 0.666 | 0.666 | 0.667 | 0.670 | 0.664 | 0.667 |
100 | 0.676 | 0.676 | 0.675 | 0.672 | 0.670 | 0.672 | 0.671 | 0.669 | 0.669 |
500 | 0.678 | 0.680 | 0.680 | 0.678 | 0.677 | 0.677 | 0.674 | 0.670 | 0.670 |
#trees\k | | | | | | | | | |
50 | 0.663 | 0.665 | 0.663 | 0.660 | 0.659 | 0.658 | 0.654 | 0.656 | 0.652 |
100 | 0.668 | 0.663 | 0.663 | 0.662 | 0.659 | 0.664 | 0.662 | 0.659 | 0.653 |
500 | 0.671 | 0.670 | 0.667 | 0.666 | 0.663 | 0.660 | 0.660 | 0.662 | 0.656 |
Table 9.
Cross-validated accuracies in binary classification when and a 30-70 positive–negative ratio.
Table 9.
Cross-validated accuracies in binary classification when and a 30-70 positive–negative ratio.
Random Subsampling |
---|
#trees\k | | | | | | | | | |
50 | 0.704 | 0.705 | 0.704 | 0.702 | 0.701 | 0.698 | 0.697 | 0.694 | 0.692 |
100 | 0.709 | 0.709 | 0.706 | 0.704 | 0.702 | 0.702 | 0.699 | 0.698 | 0.695 |
500 | 0.713 | 0.709 | 0.710 | 0.709 | 0.706 | 0.703 | 0.701 | 0.700 | 0.695 |
#trees\k | | | | | | | | | |
50 | 0.690 | 0.689 | 0.685 | 0.684 | 0.680 | 0.675 | 0.671 | 0.666 | 0.654 |
100 | 0.694 | 0.690 | 0.685 | 0.685 | 0.683 | 0.677 | 0.673 | 0.665 | 0.656 |
500 | 0.694 | 0.693 | 0.689 | 0.686 | 0.682 | 0.674 | 0.676 | 0.667 | 0.658 |
Partition and Shift Subsampling |
#trees\k | | | | | | | | | |
50 | 0.703 | 0.705 | 0.705 | 0.704 | 0.706 | 0.703 | 0.702 | 0.701 | 0.700 |
100 | 0.707 | 0.710 | 0.708 | 0.708 | 0.706 | 0.706 | 0.704 | 0.705 | 0.703 |
500 | 0.712 | 0.710 | 0.713 | 0.713 | 0.710 | 0.709 | 0.707 | 0.707 | 0.704 |
#trees\k | | | | | | | | | |
50 | 0.699 | 0.698 | 0.697 | 0.697 | 0.696 | 0.692 | 0.693 | 0.692 | 0.689 |
100 | 0.704 | 0.701 | 0.699 | 0.700 | 0.699 | 0.696 | 0.695 | 0.693 | 0.691 |
500 | 0.704 | 0.704 | 0.701 | 0.700 | 0.699 | 0.693 | 0.698 | 0.695 | 0.694 |
Table 10.
Cross-validated accuracies in binary classification when and a 20-80 positive–negative ratio.
Table 10.
Cross-validated accuracies in binary classification when and a 20-80 positive–negative ratio.
Random Subsampling |
---|
#trees\k | | | | | | | | | |
50 | 0.764 | 0.765 | 0.762 | 0.762 | 0.762 | 0.761 | 0.759 | 0.760 | 0.752 |
100 | 0.766 | 0.768 | 0.765 | 0.767 | 0.766 | 0.762 | 0.760 | 0.759 | 0.755 |
500 | 0.768 | 0.769 | 0.768 | 0.767 | 0.766 | 0.764 | 0.764 | 0.763 | 0.756 |
#trees\k | | | | | | | | | |
50 | 0.751 | 0.750 | 0.747 | 0.744 | 0.739 | 0.738 | 0.732 | 0.727 | 0.715 |
100 | 0.752 | 0.751 | 0.748 | 0.744 | 0.743 | 0.738 | 0.731 | 0.727 | 0.714 |
500 | 0.754 | 0.753 | 0.749 | 0.745 | 0.742 | 0.739 | 0.735 | 0.727 | 0.715 |
Partition and Shift Subsampling |
#trees\k | | | | | | | | | |
50 | 0.764 | 0.765 | 0.763 | 0.764 | 0.765 | 0.764 | 0.762 | 0.763 | 0.761 |
100 | 0.766 | 0.769 | 0.766 | 0.768 | 0.767 | 0.765 | 0.763 | 0.763 | 0.762 |
500 | 0.767 | 0.769 | 0.769 | 0.769 | 0.768 | 0.766 | 0.766 | 0.766 | 0.763 |
#trees\k | | | | | | | | | |
50 | 0.759 | 0.760 | 0.759 | 0.758 | 0.756 | 0.756 | 0.754 | 0.753 | 0.752 |
100 | 0.761 | 0.761 | 0.760 | 0.758 | 0.759 | 0.757 | 0.754 | 0.755 | 0.752 |
500 | 0.762 | 0.763 | 0.761 | 0.759 | 0.759 | 0.758 | 0.757 | 0.754 | 0.754 |
Table 11.
Cross-validated mean squared error (MSE) in regression when and error standard deviation .
Table 11.
Cross-validated mean squared error (MSE) in regression when and error standard deviation .
Random Subsampling |
---|
#trees\k | | | | | | | | | |
50 | 21.848 | 16.881 | 15.197 | 13.961 | 12.943 | 12.463 | 12.072 | 11.710 | 11.584 |
100 | 21.454 | 16.774 | 14.880 | 13.811 | 12.976 | 12.314 | 11.882 | 11.427 | 11.337 |
500 | 21.166 | 16.445 | 14.907 | 13.517 | 12.726 | 12.213 | 11.724 | 11.531 | 11.171 |
#trees\k | | | | | | | | | |
50 | 11.371 | 11.374 | 11.306 | 11.281 | 11.497 | 11.779 | 12.319 | 12.973 | 15.020 |
100 | 11.176 | 11.053 | 11.132 | 11.336 | 11.439 | 11.660 | 12.061 | 13.060 | 15.029 |
500 | 10.995 | 11.142 | 11.100 | 11.118 | 11.305 | 11.781 | 12.117 | 12.864 | 14.706 |
Partition and Shift Subsampling |
#trees\k | | | | | | | | | |
50 | 26.835 | 20.025 | 17.472 | 15.801 | 14.501 | 13.593 | 12.977 | 12.382 | 12.217 |
100 | 26.530 | 19.779 | 17.060 | 15.613 | 14.205 | 13.462 | 12.776 | 12.273 | 11.940 |
500 | 26.337 | 19.578 | 17.027 | 15.371 | 14.147 | 13.346 | 12.549 | 12.015 | 11.744 |
#trees\k | | | | | | | | | |
50 | 11.757 | 11.552 | 11.371 | 11.149 | 11.039 | 10.896 | 10.829 | 10.708 | 10.716 |
100 | 11.538 | 11.359 | 11.153 | 10.929 | 10.807 | 10.685 | 10.603 | 10.611 | 10.616 |
500 | 11.412 | 11.292 | 11.065 | 10.778 | 10.621 | 10.593 | 10.449 | 10.395 | 10.353 |
Table 12.
Cross-validated mean squared error (MSE) in regression when and error standard deviation .
Table 12.
Cross-validated mean squared error (MSE) in regression when and error standard deviation .
Random Subsampling |
---|
#trees\k | | | | | | | | | |
50 | 25.983 | 20.812 | 19.077 | 17.853 | 17.099 | 16.646 | 15.946 | 15.837 | 15.711 |
100 | 25.421 | 20.605 | 18.826 | 17.528 | 16.846 | 16.276 | 15.880 | 15.508 | 15.518 |
500 | 25.094 | 20.325 | 18.515 | 17.246 | 16.300 | 16.130 | 15.710 | 15.315 | 15.375 |
#trees\k | | | | | | | | | |
50 | 15.453 | 15.603 | 15.519 | 15.801 | 16.217 | 16.518 | 17.251 | 18.232 | 20.501 |
100 | 15.227 | 15.387 | 15.468 | 15.616 | 16.099 | 16.439 | 16.836 | 17.947 | 20.065 |
500 | 15.374 | 15.244 | 15.353 | 15.508 | 15.953 | 16.285 | 16.891 | 18.015 | 20.188 |
Partition and Shift Subsampling |
#trees\k | | | | | | | | | |
50 | 30.820 | 24.195 | 21.291 | 19.773 | 18.297 | 17.696 | 16.995 | 16.317 | 16.218 |
100 | 30.645 | 23.596 | 21.180 | 19.520 | 18.080 | 17.340 | 16.773 | 16.264 | 15.942 |
500 | 30.594 | 23.523 | 20.847 | 19.106 | 17.954 | 17.321 | 16.429 | 15.991 | 15.705 |
#trees\k | | | | | | | | | |
50 | 15.661 | 15.471 | 15.373 | 15.287 | 15.000 | 15.021 | 15.011 | 15.020 | 14.921 |
100 | 15.599 | 15.441 | 15.158 | 15.097 | 15.025 | 14.824 | 14.651 | 14.706 | 14.684 |
500 | 15.324 | 15.193 | 14.873 | 14.922 | 14.783 | 14.858 | 14.650 | 14.697 | 14.678 |
Table 13.
Cross-validated mean squared error (MSE) in regression when and error standard deviation .
Table 13.
Cross-validated mean squared error (MSE) in regression when and error standard deviation .
Random Subsampling |
---|
#trees\k | | | | | | | | | |
50 | 30.869 | 25.840 | 23.904 | 22.958 | 21.948 | 21.463 | 21.223 | 20.957 | 20.809 |
100 | 30.245 | 25.395 | 23.928 | 22.482 | 21.736 | 21.259 | 20.713 | 20.858 | 20.857 |
500 | 30.002 | 25.292 | 23.275 | 22.268 | 21.579 | 21.034 | 20.882 | 20.653 | 20.559 |
#trees\k | | | | | | | | | |
50 | 20.828 | 21.187 | 21.357 | 21.517 | 22.041 | 22.369 | 22.898 | 24.689 | 27.948 |
100 | 20.820 | 20.665 | 21.062 | 21.218 | 21.615 | 22.299 | 22.934 | 24.815 | 27.276 |
500 | 20.541 | 20.826 | 20.996 | 21.022 | 21.589 | 22.130 | 23.248 | 24.457 | 27.548 |
Partition and Shift Subsampling |
#trees\k | | | | | | | | | |
50 | 36.313 | 29.430 | 26.444 | 25.066 | 23.298 | 22.624 | 22.022 | 21.708 | 21.345 |
100 | 35.636 | 28.738 | 26.095 | 24.535 | 23.151 | 22.362 | 21.731 | 21.120 | 20.787 |
500 | 35.449 | 28.779 | 25.830 | 24.174 | 23.159 | 22.080 | 21.621 | 20.886 | 20.904 |
#trees\k | | | | | | | | | |
50 | 20.755 | 20.805 | 20.636 | 20.561 | 20.287 | 20.281 | 20.277 | 20.489 | 20.632 |
100 | 20.694 | 20.370 | 20.413 | 20.180 | 20.196 | 20.204 | 20.261 | 20.124 | 20.147 |
500 | 20.559 | 20.393 | 20.235 | 20.155 | 20.017 | 20.058 | 20.217 | 19.975 | 20.114 |
Table 14.
Cross-validated mean squared error (MSE) in regression when and error standard deviation .
Table 14.
Cross-validated mean squared error (MSE) in regression when and error standard deviation .
Random Subsampling |
---|
#trees\k | | | | | | | | | |
50 | 9.589 | 7.667 | 7.522 | 6.588 | 5.998 | 6.028 | 5.971 | 5.899 | 5.436 |
100 | 9.582 | 8.171 | 7.044 | 6.205 | 6.054 | 5.914 | 5.898 | 5.962 | 5.805 |
500 | 8.752 | 7.766 | 6.532 | 6.371 | 5.765 | 5.668 | 4.993 | 5.645 | 5.515 |
#trees\k | | | | | | | | | |
50 | 5.595 | 5.939 | 5.439 | 5.601 | 5.636 | 5.805 | 6.021 | 6.278 | 7.157 |
100 | 5.260 | 5.294 | 5.275 | 6.015 | 5.674 | 5.328 | 5.402 | 6.498 | 7.287 |
500 | 5.450 | 5.456 | 5.524 | 5.317 | 4.918 | 5.874 | 5.795 | 6.023 | 7.682 |
Partition and Shift Subsampling |
#trees\k | | | | | | | | | |
50 | 10.598 | 9.410 | 8.381 | 7.665 | 6.863 | 6.497 | 6.296 | 5.935 | 6.019 |
100 | 11.076 | 9.142 | 8.173 | 7.496 | 6.659 | 6.450 | 6.278 | 6.029 | 5.962 |
500 | 10.697 | 8.860 | 7.866 | 7.208 | 6.718 | 6.434 | 6.095 | 5.922 | 5.757 |
#trees\k | | | | | | | | | |
50 | 5.832 | 5.599 | 5.204 | 5.478 | 5.550 | 5.290 | 5.029 | 5.203 | 5.238 |
100 | 5.545 | 5.513 | 5.152 | 5.349 | 5.262 | 5.285 | 5.184 | 5.071 | 4.881 |
500 | 5.455 | 5.497 | 5.343 | 5.025 | 5.380 | 4.879 | 5.081 | 5.151 | 4.830 |
Table 15.
Cross-validated mean squared error (MSE) in regression when and error standard deviation .
Table 15.
Cross-validated mean squared error (MSE) in regression when and error standard deviation .
Random Subsampling |
---|
#trees\k | | | | | | | | | |
50 | 12.942 | 11.877 | 10.840 | 10.418 | 10.320 | 9.930 | 10.007 | 9.578 | 9.578 |
100 | 13.385 | 11.338 | 10.704 | 9.907 | 10.125 | 9.716 | 9.695 | 9.278 | 10.473 |
500 | 12.413 | 11.400 | 10.324 | 10.758 | 9.939 | 10.054 | 9.572 | 9.630 | 9.206 |
#trees\k | | | | | | | | | |
50 | 9.613 | 9.544 | 10.246 | 10.023 | 9.593 | 10.021 | 10.268 | 11.293 | 12.632 |
100 | 9.591 | 9.693 | 9.311 | 9.665 | 9.635 | 9.980 | 10.174 | 11.339 | 11.533 |
500 | 9.600 | 9.400 | 9.345 | 9.594 | 9.915 | 9.779 | 10.239 | 11.128 | 11.867 |
Partition and Shift Subsampling |
#trees\k | | | | | | | | | |
50 | 14.373 | 13.066 | 11.881 | 11.210 | 11.031 | 10.540 | 10.251 | 9.871 | 9.852 |
100 | 14.602 | 12.354 | 11.762 | 10.778 | 10.872 | 10.177 | 10.135 | 9.678 | 10.484 |
500 | 13.746 | 12.534 | 11.313 | 11.616 | 10.538 | 10.558 | 10.100 | 9.959 | 9.427 |
#trees\k | | | | | | | | | |
50 | 9.807 | 9.573 | 9.978 | 9.662 | 9.213 | 9.446 | 9.148 | 9.558 | 9.447 |
100 | 9.664 | 9.585 | 9.164 | 9.394 | 8.953 | 9.255 | 9.112 | 9.620 | 9.053 |
500 | 9.609 | 9.392 | 9.206 | 9.272 | 9.294 | 8.984 | 9.228 | 9.168 | 9.192 |
Table 16.
Cross-validated mean squared error (MSE) in regression when and error standard deviation .
Table 16.
Cross-validated mean squared error (MSE) in regression when and error standard deviation .
Random Subsampling |
---|
#trees\k | | | | | | | | | |
50 | 17.821 | 16.886 | 15.930 | 15.673 | 15.390 | 15.329 | 14.700 | 14.984 | 15.629 |
100 | 17.670 | 15.639 | 15.853 | 15.577 | 15.086 | 14.819 | 15.555 | 14.985 | 14.555 |
500 | 17.688 | 16.154 | 15.313 | 14.767 | 14.713 | 14.253 | 14.483 | 14.804 | 14.855 |
#trees\k | | | | | | | | | |
50 | 14.760 | 15.842 | 14.573 | 14.872 | 16.519 | 16.417 | 16.940 | 17.591 | 18.661 |
100 | 15.464 | 14.970 | 15.641 | 15.357 | 15.672 | 14.752 | 15.899 | 16.994 | 19.143 |
500 | 15.125 | 15.499 | 15.157 | 15.024 | 16.372 | 15.648 | 16.370 | 16.448 | 18.713 |
Partition and Shift Subsampling |
#trees\k | | | | | | | | | |
50 | 19.409 | 17.597 | 16.598 | 16.446 | 16.016 | 15.646 | 14.898 | 15.217 | 15.642 |
100 | 18.962 | 16.909 | 16.755 | 16.256 | 15.431 | 15.232 | 15.640 | 15.109 | 14.557 |
500 | 19.126 | 17.266 | 16.096 | 15.521 | 15.287 | 14.651 | 14.798 | 14.965 | 14.754 |
#trees\k | | | | | | | | | |
50 | 14.874 | 15.749 | 14.459 | 14.299 | 15.147 | 14.949 | 14.755 | 15.127 | 14.755 |
100 | 15.161 | 14.623 | 15.018 | 14.615 | 14.521 | 14.054 | 14.287 | 14.570 | 14.786 |
500 | 15.010 | 14.929 | 14.707 | 14.374 | 15.164 | 14.149 | 14.849 | 13.775 | 14.812 |
Table 17.
Classification dataset quantitative summary.
Table 17.
Classification dataset quantitative summary.
Dataset | Sample Size | #Features | Label Counts | Label Distribution |
---|
Wine | 170 | 13 | 58, 65, 47 | 0.34, 0.38, 0.28 |
Iris | 150 | 4 | 50, 50, 50 | 0.33, 0.33, 0.33 |
Cleveland | 300 | 13 | 161, 55, 36, 35, 13 | 0.54, 0.18, 0.12, 0.12, 0.04 |
Diabetes | 760 | 8 | 494, 266 | 0.65, 0.35 |
German | 1000 | 20 | 700, 300 | 0.70, 0.30 |
Table 18.
Cross-validated accuracy scores based on the Wine dataset.
Table 18.
Cross-validated accuracy scores based on the Wine dataset.
Random Subsampling |
---|
#trees\k | | | | | | | | | |
20 | 0.934 | 0.935 | 0.937 | 0.939 | 0.940 | 0.944 | 0.945 | 0.946 | 0.944 |
50 | 0.947 | 0.946 | 0.947 | 0.948 | 0.951 | 0.953 | 0.953 | 0.952 | 0.952 |
100 | 0.953 | 0.948 | 0.951 | 0.955 | 0.955 | 0.956 | 0.958 | 0.955 | 0.953 |
500 | 0.954 | 0.950 | 0.953 | 0.958 | 0.961 | 0.962 | 0.961 | 0.958 | 0.954 |
1000 | 0.954 | 0.949 | 0.953 | 0.960 | 0.962 | 0.962 | 0.961 | 0.959 | 0.954 |
#trees\k | | | | | | | | | |
20 | 0.943 | 0.944 | 0.941 | 0.939 | 0.936 | 0.933 | 0.931 | 0.92 | 0.903 |
50 | 0.950 | 0.947 | 0.946 | 0.944 | 0.941 | 0.939 | 0.934 | 0.921 | 0.904 |
100 | 0.951 | 0.948 | 0.946 | 0.944 | 0.941 | 0.939 | 0.934 | 0.920 | 0.904 |
500 | 0.951 | 0.949 | 0.946 | 0.944 | 0.941 | 0.940 | 0.931 | 0.917 | 0.905 |
1000 | 0.951 | 0.950 | 0.946 | 0.944 | 0.942 | 0.940 | 0.931 | 0.914 | 0.904 |
Partition and Shift Subsampling |
#trees\k | | | | | | | | | |
20 | 0.931 | 0.937 | 0.942 | 0.937 | 0.940 | 0.939 | 0.942 | 0.944 | 0.948 |
50 | 0.953 | 0.954 | 0.948 | 0.950 | 0.950 | 0.952 | 0.952 | 0.953 | 0.956 |
100 | 0.961 | 0.956 | 0.955 | 0.954 | 0.951 | 0.953 | 0.955 | 0.957 | 0.960 |
500 | 0.968 | 0.962 | 0.958 | 0.954 | 0.954 | 0.958 | 0.962 | 0.962 | 0.963 |
1000 | 0.968 | 0.963 | 0.956 | 0.955 | 0.952 | 0.959 | 0.962 | 0.964 | 0.965 |
#trees\k | | | | | | | | | |
20 | 0.947 | 0.947 | 0.949 | 0.949 | 0.950 | 0.950 | 0.950 | 0.952 | 0.949 |
50 | 0.956 | 0.957 | 0.958 | 0.957 | 0.959 | 0.959 | 0.958 | 0.957 | 0.957 |
100 | 0.961 | 0.960 | 0.962 | 0.962 | 0.961 | 0.960 | 0.960 | 0.960 | 0.957 |
500 | 0.964 | 0.965 | 0.967 | 0.966 | 0.966 | 0.966 | 0.964 | 0.963 | 0.960 |
1000 | 0.965 | 0.966 | 0.966 | 0.968 | 0.967 | 0.966 | 0.965 | 0.964 | 0.961 |
Table 19.
Cross-validated accuracy scores based on the Iris dataset.
Table 19.
Cross-validated accuracy scores based on the Iris dataset.
Random Subsampling |
---|
#trees\k | | | | | | | | | |
20 | 0.950 | 0.950 | 0.948 | 0.947 | 0.950 | 0.948 | 0.949 | 0.950 | 0.950 |
50 | 0.951 | 0.951 | 0.950 | 0.950 | 0.951 | 0.950 | 0.952 | 0.951 | 0.951 |
100 | 0.952 | 0.951 | 0.952 | 0.951 | 0.952 | 0.952 | 0.953 | 0.952 | 0.951 |
500 | 0.952 | 0.953 | 0.953 | 0.953 | 0.953 | 0.953 | 0.953 | 0.953 | 0.952 |
1000 | 0.953 | 0.953 | 0.953 | 0.953 | 0.953 | 0.953 | 0.953 | 0.953 | 0.953 |
#trees\k | | | | | | | | | |
20 | 0.950 | 0.951 | 0.951 | 0.950 | 0.950 | 0.949 | 0.947 | 0.946 | 0.946 |
50 | 0.952 | 0.952 | 0.952 | 0.952 | 0.952 | 0.950 | 0.947 | 0.946 | 0.945 |
100 | 0.952 | 0.952 | 0.952 | 0.953 | 0.953 | 0.951 | 0.947 | 0.946 | 0.946 |
500 | 0.951 | 0.951 | 0.953 | 0.953 | 0.953 | 0.953 | 0.947 | 0.947 | 0.946 |
1000 | 0.952 | 0.950 | 0.953 | 0.953 | 0.953 | 0.953 | 0.947 | 0.946 | 0.946 |
#trees\k | | | | | | | | | |
20 | 0.945 | 0.948 | 0.950 | 0.948 | 0.948 | 0.947 | 0.948 | 0.950 | 0.948 |
50 | 0.951 | 0.951 | 0.951 | 0.949 | 0.949 | 0.950 | 0.950 | 0.951 | 0.951 |
100 | 0.950 | 0.952 | 0.951 | 0.951 | 0.952 | 0.952 | 0.952 | 0.952 | 0.952 |
500 | 0.952 | 0.952 | 0.953 | 0.953 | 0.953 | 0.953 | 0.953 | 0.953 | 0.953 |
1000 | 0.953 | 0.953 | 0.953 | 0.953 | 0.953 | 0.953 | 0.953 | 0.953 | 0.953 |
#trees\k | | | | | | | | | |
20 | 0.948 | 0.949 | 0.949 | 0.949 | 0.951 | 0.949 | 0.951 | 0.951 | 0.951 |
50 | 0.952 | 0.951 | 0.952 | 0.951 | 0.952 | 0.952 | 0.951 | 0.952 | 0.952 |
100 | 0.953 | 0.953 | 0.953 | 0.952 | 0.953 | 0.953 | 0.952 | 0.952 | 0.952 |
500 | 0.953 | 0.953 | 0.953 | 0.953 | 0.953 | 0.953 | 0.953 | 0.953 | 0.953 |
1000 | 0.953 | 0.953 | 0.953 | 0.953 | 0.953 | 0.953 | 0.953 | 0.953 | 0.951 |
Table 20.
Cross-validated accuracy scores based on the Cleveland dataset.
Table 20.
Cross-validated accuracy scores based on the Cleveland dataset.
Random Subsampling |
---|
#trees\k | | | | | | | | | |
20 | 0.574 | 0.574 | 0.572 | 0.572 | 0.571 | 0.568 | 0.568 | 0.565 | 0.564 |
50 | 0.574 | 0.577 | 0.576 | 0.575 | 0.575 | 0.573 | 0.571 | 0.568 | 0.566 |
100 | 0.576 | 0.579 | 0.578 | 0.578 | 0.576 | 0.573 | 0.571 | 0.566 | 0.564 |
500 | 0.578 | 0.577 | 0.580 | 0.580 | 0.578 | 0.573 | 0.570 | 0.565 | 0.562 |
1000 | 0.579 | 0.577 | 0.580 | 0.580 | 0.577 | 0.573 | 0.569 | 0.565 | 0.562 |
#trees\k | | | | | | | | | |
20 | 0.560 | 0.557 | 0.556 | 0.551 | 0.548 | 0.542 | 0.537 | 0.527 | 0.515 |
50 | 0.565 | 0.561 | 0.559 | 0.558 | 0.555 | 0.547 | 0.542 | 0.533 | 0.518 |
100 | 0.563 | 0.562 | 0.560 | 0.558 | 0.554 | 0.550 | 0.543 | 0.533 | 0.519 |
500 | 0.561 | 0.558 | 0.557 | 0.557 | 0.557 | 0.553 | 0.544 | 0.532 | 0.522 |
1000 | 0.560 | 0.557 | 0.557 | 0.556 | 0.556 | 0.555 | 0.545 | 0.531 | 0.522 |
Partition and Shift Subsampling |
#trees\k | | | | | | | | | |
20 | 0.572 | 0.576 | 0.576 | 0.575 | 0.576 | 0.573 | 0.576 | 0.575 | 0.572 |
50 | 0.580 | 0.583 | 0.582 | 0.580 | 0.580 | 0.581 | 0.578 | 0.575 | 0.575 |
100 | 0.583 | 0.584 | 0.583 | 0.583 | 0.583 | 0.582 | 0.581 | 0.579 | 0.577 |
500 | 0.584 | 0.585 | 0.583 | 0.583 | 0.583 | 0.584 | 0.584 | 0.582 | 0.580 |
1000 | 0.583 | 0.585 | 0.584 | 0.584 | 0.584 | 0.584 | 0.584 | 0.583 | 0.579 |
#trees\k | | | | | | | | | |
20 | 0.569 | 0.569 | 0.568 | 0.566 | 0.566 | 0.564 | 0.561 | 0.561 | 0.561 |
50 | 0.573 | 0.570 | 0.572 | 0.571 | 0.567 | 0.566 | 0.564 | 0.563 | 0.564 |
100 | 0.575 | 0.574 | 0.570 | 0.570 | 0.567 | 0.565 | 0.565 | 0.563 | 0.561 |
500 | 0.576 | 0.574 | 0.571 | 0.568 | 0.566 | 0.565 | 0.563 | 0.562 | 0.560 |
1000 | 0.578 | 0.573 | 0.569 | 0.567 | 0.565 | 0.565 | 0.562 | 0.562 | 0.560 |
Table 21.
Cross-validated accuracy scores based on the Diabetes dataset.
Table 21.
Cross-validated accuracy scores based on the Diabetes dataset.
Random Subsampling |
---|
#trees\k | | | | | | | | | |
20 | 0.751 | 0.751 | 0.754 | 0.753 | 0.753 | 0.755 | 0.754 | 0.754 | 0.753 |
50 | 0.759 | 0.758 | 0.758 | 0.759 | 0.760 | 0.760 | 0.761 | 0.761 | 0.761 |
100 | 0.761 | 0.761 | 0.760 | 0.761 | 0.762 | 0.763 | 0.764 | 0.764 | 0.762 |
500 | 0.761 | 0.760 | 0.760 | 0.763 | 0.765 | 0.766 | 0.767 | 0.766 | 0.766 |
1000 | 0.761 | 0.761 | 0.760 | 0.763 | 0.764 | 0.766 | 0.768 | 0.767 | 0.765 |
#trees\k | | | | | | | | | |
20 | 0.751 | 0.751 | 0.753 | 0.749 | 0.750 | 0.748 | 0.748 | 0.746 | 0.739 |
50 | 0.759 | 0.759 | 0.759 | 0.758 | 0.757 | 0.755 | 0.755 | 0.750 | 0.741 |
100 | 0.762 | 0.762 | 0.763 | 0.762 | 0.760 | 0.759 | 0.757 | 0.752 | 0.741 |
500 | 0.766 | 0.767 | 0.768 | 0.765 | 0.763 | 0.761 | 0.759 | 0.753 | 0.742 |
1000 | 0.767 | 0.768 | 0.769 | 0.766 | 0.764 | 0.762 | 0.759 | 0.753 | 0.742 |
Partition and Shift Subsampling |
#trees\k | | | | | | | | | |
20 | 0.750 | 0.751 | 0.752 | 0.752 | 0.750 | 0.753 | 0.752 | 0.753 | 0.752 |
50 | 0.760 | 0.759 | 0.759 | 0.759 | 0.758 | 0.758 | 0.760 | 0.760 | 0.759 |
100 | 0.763 | 0.761 | 0.760 | 0.761 | 0.762 | 0.760 | 0.761 | 0.763 | 0.762 |
500 | 0.765 | 0.762 | 0.761 | 0.761 | 0.762 | 0.763 | 0.763 | 0.765 | 0.764 |
1000 | 0.765 | 0.761 | 0.760 | 0.762 | 0.762 | 0.762 | 0.763 | 0.764 | 0.765 |
#trees\k | | | | | | | | | |
20 | 0.753 | 0.754 | 0.752 | 0.754 | 0.751 | 0.752 | 0.753 | 0.751 | 0.752 |
50 | 0.759 | 0.761 | 0.760 | 0.759 | 0.760 | 0.760 | 0.759 | 0.759 | 0.759 |
100 | 0.763 | 0.764 | 0.763 | 0.764 | 0.764 | 0.763 | 0.764 | 0.763 | 0.763 |
500 | 0.765 | 0.765 | 0.766 | 0.766 | 0.768 | 0.768 | 0.768 | 0.767 | 0.767 |
1000 | 0.765 | 0.765 | 0.767 | 0.767 | 0.768 | 0.769 | 0.769 | 0.769 | 0.768 |
Table 22.
Cross-validated accuracy scores based on the German dataset.
Table 22.
Cross-validated accuracy scores based on the German dataset.
Random Subsampling |
---|
#trees\k | | | | | | | | | |
20 | 0.717 | 0.716 | 0.715 | 0.716 | 0.715 | 0.715 | 0.711 | 0.711 | 0.707 |
50 | 0.730 | 0.730 | 0.728 | 0.727 | 0.725 | 0.722 | 0.720 | 0.717 | 0.715 |
100 | 0.737 | 0.736 | 0.735 | 0.730 | 0.728 | 0.725 | 0.722 | 0.720 | 0.719 |
500 | 0.743 | 0.737 | 0.735 | 0.734 | 0.730 | 0.729 | 0.726 | 0.723 | 0.721 |
1000 | 0.743 | 0.737 | 0.735 | 0.734 | 0.732 | 0.729 | 0.726 | 0.724 | 0.722 |
#trees\k | | | | | | | | | |
20 | 0.704 | 0.703 | 0.701 | 0.698 | 0.695 | 0.689 | 0.686 | 0.677 | 0.658 |
50 | 0.714 | 0.711 | 0.707 | 0.704 | 0.700 | 0.695 | 0.691 | 0.681 | 0.657 |
100 | 0.715 | 0.713 | 0.710 | 0.707 | 0.702 | 0.699 | 0.692 | 0.684 | 0.655 |
500 | 0.720 | 0.717 | 0.714 | 0.711 | 0.706 | 0.703 | 0.697 | 0.688 | 0.655 |
1000 | 0.720 | 0.717 | 0.715 | 0.712 | 0.708 | 0.704 | 0.698 | 0.688 | 0.656 |
#trees\k | | | | | | | | | |
20 | 0.724 | 0.726 | 0.727 | 0.727 | 0.727 | 0.726 | 0.724 | 0.722 | 0.721 |
50 | 0.733 | 0.733 | 0.735 | 0.736 | 0.736 | 0.734 | 0.730 | 0.730 | 0.727 |
100 | 0.738 | 0.736 | 0.738 | 0.737 | 0.738 | 0.736 | 0.733 | 0.732 | 0.729 |
500 | 0.744 | 0.736 | 0.735 | 0.738 | 0.738 | 0.737 | 0.735 | 0.735 | 0.732 |
1000 | 0.744 | 0.735 | 0.733 | 0.737 | 0.738 | 0.737 | 0.735 | 0.734 | 0.733 |
#trees\k | | | | | | | | | |
20 | 0.720 | 0.718 | 0.717 | 0.716 | 0.715 | 0.713 | 0.711 | 0.711 | 0.709 |
50 | 0.727 | 0.724 | 0.724 | 0.723 | 0.721 | 0.718 | 0.716 | 0.718 | 0.715 |
100 | 0.729 | 0.727 | 0.724 | 0.723 | 0.721 | 0.720 | 0.719 | 0.718 | 0.716 |
500 | 0.731 | 0.729 | 0.724 | 0.722 | 0.721 | 0.720 | 0.721 | 0.721 | 0.720 |
1000 | 0.732 | 0.729 | 0.724 | 0.721 | 0.721 | 0.722 | 0.720 | 0.723 | 0.721 |
Table 23.
Regression dataset quantitative summary.
Table 23.
Regression dataset quantitative summary.
Dataset | Sample Size | Number of Features | Missing Values? |
---|
Housing | 410 | 6 | no |
Energy | 760 | 8 | no |
Forest fires | 510 | 12 | no |
Table 24.
Cross-validated MSEs based on the Housing dataset.
Table 24.
Cross-validated MSEs based on the Housing dataset.
Random Subsampling |
---|
#trees\k | | | | | | | | | |
20 | 64.451 | 61.747 | 60.106 | 58.868 | 58.251 | 57.800 | 57.795 | 57.965 | 58.182 |
50 | 62.261 | 59.850 | 58.379 | 57.461 | 56.724 | 56.422 | 56.495 | 56.583 | 56.664 |
100 | 61.594 | 59.323 | 57.780 | 56.882 | 56.214 | 55.840 | 55.872 | 56.125 | 56.505 |
500 | 61.017 | 58.729 | 57.280 | 56.338 | 55.785 | 55.508 | 55.491 | 55.693 | 56.048 |
1000 | 60.948 | 58.670 | 57.161 | 56.321 | 55.735 | 55.450 | 55.428 | 55.630 | 56.030 |
#trees\k | | | | | | | | | |
20 | 58.629 | 59.492 | 60.969 | 62.438 | 65.022 | 66.863 | 69.860 | 73.526 | 78.874 |
50 | 57.316 | 58.389 | 59.688 | 61.636 | 63.378 | 65.921 | 68.987 | 72.986 | 78.365 |
100 | 57.075 | 58.190 | 59.481 | 61.073 | 63.421 | 65.714 | 68.670 | 72.721 | 78.387 |
500 | 56.778 | 57.762 | 59.212 | 60.793 | 62.968 | 65.302 | 68.569 | 72.465 | 78.059 |
1000 | 56.696 | 57.735 | 59.184 | 60.834 | 62.907 | 65.249 | 68.549 | 72.501 | 78.092 |
Partition and Shift Subsampling |
#trees\k | | | | | | | | | |
20 | 67.151 | 64.379 | 62.169 | 61.107 | 59.718 | 59.252 | 58.622 | 58.385 | 58.076 |
50 | 64.793 | 61.910 | 60.431 | 58.964 | 58.215 | 57.628 | 56.984 | 56.486 | 56.482 |
100 | 64.054 | 61.286 | 59.705 | 58.504 | 57.843 | 57.001 | 56.499 | 56.172 | 55.841 |
500 | 63.357 | 60.803 | 59.118 | 58.048 | 57.183 | 56.580 | 56.052 | 55.692 | 55.560 |
1000 | 63.402 | 60.742 | 59.072 | 57.983 | 57.105 | 56.519 | 56.033 | 55.668 | 55.497 |
#trees\k | | | | | | | | | |
20 | 57.468 | 57.993 | 57.527 | 57.551 | 58.006 | 58.132 | 58.414 | 58.666 | 59.275 |
50 | 56.236 | 55.999 | 56.197 | 56.518 | 56.438 | 56.746 | 57.128 | 57.367 | 57.831 |
100 | 55.851 | 55.737 | 55.769 | 55.914 | 56.123 | 56.312 | 56.481 | 57.019 | 57.375 |
500 | 55.361 | 55.358 | 55.411 | 55.495 | 55.719 | 55.909 | 56.216 | 56.621 | 57.078 |
1000 | 55.357 | 55.307 | 55.357 | 55.474 | 55.605 | 55.869 | 56.232 | 56.542 | 57.054 |
Table 25.
Cross-validated MSEs based on the Energy dataset.
Table 25.
Cross-validated MSEs based on the Energy dataset.
Random Subsampling |
---|
#trees\k | | | | | | | | | |
20 | 1.783 | 0.886 | 0.551 | 0.444 | 0.410 | 0.394 | 0.380 | 0.369 | 0.356 |
50 | 1.678 | 0.828 | 0.520 | 0.425 | 0.398 | 0.386 | 0.374 | 0.363 | 0.351 |
100 | 1.631 | 0.815 | 0.509 | 0.418 | 0.392 | 0.381 | 0.370 | 0.360 | 0.349 |
500 | 1.604 | 0.793 | 0.499 | 0.413 | 0.389 | 0.379 | 0.369 | 0.358 | 0.348 |
1000 | 1.600 | 0.790 | 0.498 | 0.412 | 0.389 | 0.379 | 0.369 | 0.358 | 0.347 |
#trees\k | | | | | | | | | |
20 | 0.344 | 0.336 | 0.325 | 0.315 | 0.302 | 0.291 | 0.279 | 0.270 | 0.267 |
50 | 0.339 | 0.330 | 0.320 | 0.311 | 0.300 | 0.288 | 0.277 | 0.268 | 0.265 |
100 | 0.339 | 0.330 | 0.319 | 0.309 | 0.298 | 0.287 | 0.275 | 0.267 | 0.265 |
500 | 0.338 | 0.327 | 0.318 | 0.308 | 0.298 | 0.286 | 0.275 | 0.267 | 0.264 |
1000 | 0.337 | 0.327 | 0.317 | 0.308 | 0.297 | 0.286 | 0.275 | 0.267 | 0.264 |
Partition and Shift Subsampling |
#trees\k | | | | | | | | | |
20 | 3.024 | 1.603 | 0.910 | 0.696 | 0.513 | 0.433 | 0.441 | 0.408 | 0.350 |
50 | 2.706 | 1.437 | 0.872 | 0.603 | 0.470 | 0.428 | 0.382 | 0.360 | 0.360 |
100 | 2.496 | 1.358 | 0.862 | 0.586 | 0.460 | 0.406 | 0.389 | 0.355 | 0.339 |
500 | 2.501 | 1.358 | 0.824 | 0.579 | 0.453 | 0.400 | 0.368 | 0.353 | 0.336 |
1000 | 2.452 | 1.358 | 0.835 | 0.577 | 0.454 | 0.400 | 0.371 | 0.350 | 0.336 |
#trees\k | | | | | | | | | |
20 | 0.334 | 0.329 | 0.315 | 0.317 | 0.300 | 0.282 | 0.261 | 0.256 | 0.246 |
50 | 0.330 | 0.332 | 0.316 | 0.309 | 0.283 | 0.276 | 0.266 | 0.265 | 0.249 |
100 | 0.323 | 0.314 | 0.297 | 0.299 | 0.282 | 0.273 | 0.271 | 0.254 | 0.254 |
500 | 0.324 | 0.313 | 0.300 | 0.293 | 0.279 | 0.267 | 0.261 | 0.254 | 0.246 |
1000 | 0.325 | 0.311 | 0.301 | 0.287 | 0.279 | 0.268 | 0.260 | 0.252 | 0.246 |
Table 26.
Cross-validated MSEs based on the Forest Fires dataset.
Table 26.
Cross-validated MSEs based on the Forest Fires dataset.
Random Subsampling |
---|
#trees\k | | | | | | | | | |
20 | 2.106 | 2.115 | 2.137 | 2.182 | 2.171 | 2.171 | 2.208 | 2.150 | 2.206 |
50 | 2.063 | 2.070 | 2.087 | 2.127 | 2.119 | 2.129 | 2.139 | 2.131 | 2.144 |
100 | 2.061 | 2.085 | 2.076 | 2.077 | 2.098 | 2.117 | 2.101 | 2.106 | 2.140 |
500 | 2.043 | 2.057 | 2.069 | 2.075 | 2.086 | 2.096 | 2.102 | 2.111 | 2.123 |
1000 | 2.036 | 2.055 | 2.065 | 2.078 | 2.084 | 2.092 | 2.102 | 2.110 | 2.115 |
#trees\k | | | | | | | | | |
20 | 2.206 | 2.230 | 2.268 | 2.276 | 2.249 | 2.292 | 2.325 | 2.346 | 2.404 |
50 | 2.163 | 2.157 | 2.186 | 2.198 | 2.211 | 2.231 | 2.250 | 2.298 | 2.369 |
100 | 2.143 | 2.149 | 2.161 | 2.190 | 2.201 | 2.220 | 2.232 | 2.270 | 2.345 |
500 | 2.131 | 2.149 | 2.163 | 2.169 | 2.190 | 2.211 | 2.237 | 2.269 | 2.345 |
1000 | 2.134 | 2.143 | 2.155 | 2.169 | 2.187 | 2.206 | 2.232 | 2.266 | 2.341 |
Partition and Shift Subsampling |
#trees\k | | | | | | | | | |
20 | 2.112 | 2.106 | 2.145 | 2.175 | 2.130 | 2.178 | 2.158 | 2.173 | 2.194 |
50 | 2.056 | 2.049 | 2.087 | 2.095 | 2.100 | 2.101 | 2.111 | 2.114 | 2.117 |
100 | 2.048 | 2.057 | 2.060 | 2.089 | 2.072 | 2.091 | 2.089 | 2.102 | 2.105 |
500 | 2.031 | 2.043 | 2.050 | 2.055 | 2.065 | 2.072 | 2.085 | 2.078 | 2.091 |
1000 | 2.027 | 2.042 | 2.047 | 2.059 | 2.058 | 2.076 | 2.083 | 2.083 | 2.087 |
#trees\k | | | | | | | | | |
20 | 2.169 | 2.202 | 2.181 | 2.165 | 2.195 | 2.204 | 2.200 | 2.195 | 2.253 |
50 | 2.134 | 2.139 | 2.141 | 2.128 | 2.158 | 2.154 | 2.158 | 2.161 | 2.169 |
100 | 2.116 | 2.127 | 2.132 | 2.117 | 2.120 | 2.134 | 2.157 | 2.157 | 2.162 |
500 | 2.090 | 2.094 | 2.107 | 2.111 | 2.108 | 2.116 | 2.128 | 2.129 | 2.138 |
1000 | 2.091 | 2.095 | 2.106 | 2.108 | 2.114 | 2.118 | 2.128 | 2.137 | 2.143 |