Theoretical Advancements in Small Area Modeling: A Case Study with the CHILD Cohort
Abstract
:1. Introduction
2. Small Area Models
2.1. Linear Mixed Model
2.2. Logistic Mixed Model
2.3. Poisson Mixed Model
2.4. Inference
3. Proposed Statistics Models
3.1. Ordinal Logistic Model
3.2. Binary Logistic Model
3.3. Zero-Inflated Poisson Model
3.4. Predicted Proportions and Rates
4. Results
Proportions and Rates of Wheezing
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Supplementary Tables
Severity of Wheezing | ||||||
---|---|---|---|---|---|---|
Severity | 3 Months | 6 Months | 1 Year | 18 Months | 2 Years | 2.5 Years |
0 | 618 | 596 | 576 | 567 | 600 | 581 |
1 | 34 | 29 | 26 | 2 | 31 | 24 |
2 | 19 | 16 | 19 | 6 | 17 | 12 |
3 | 8 | 7 | 12 | 2 | 13 | 9 |
Missing | 11 | 42 | 57 | 112 | 29 | 64 |
Code | Region | Small Area |
---|---|---|
W002 | Assiniboine South | 1 |
W11A | Downtown | 2 |
W11B | Downtown | 3 |
W03A | Ft. Garry | 4 |
W03B | Ft. Garry | 5 |
W09A | Inkster | 6 |
W09B | Inkster | 7 |
W10A | Point Douglas | 8 |
W10B | Point Douglas | 9 |
W07A | River East | 10 |
W07B | River East | 11 |
W07C | River East | 12 |
W07D | River East | 13 |
W12A | River Heights | 14 |
W12B | River Heights | 15 |
W08A | Seven Oaks | 16 |
W08B | Seven Oaks | 17 |
W08C | Seven Oaks | 18 |
W05A | St. Boniface | 19 |
W05B | St. Boniface | 20 |
W01A | St. James-Assiniboia | 21 |
W01B | St. James-Assiniboia | 22 |
W04A | St. Vital | 23 |
W04B | St. Vital | 24 |
W006 | Transcona | 25 |
WE34 | Souris River | 26 |
WE31 | Asessippi | 27 |
WE36 | Spruce Woods | 28 |
IE42 | Arborg/Riverton | 29 |
WE32 | Little Saskatchewan | 30 |
IE31 | Beausejour | 31 |
WE33 | Turtle Mountain | 32 |
SO14 | Cartier/SFX | 33 |
IE43 | St. Laurent | 34 |
WE13 | Riding Mountain | 35 |
WE15 | Dauphin | 36 |
SO25 | St Pierre/DeSalaberry | 37 |
SO22 | Carman | 38 |
SO26 | Red River South | 39 |
IE41 | Gimli | 40 |
WE35 | Whitemud | 41 |
WE11 | Duck Mountain | 42 |
SO45 | Hanover | 43 |
SO44 | Steinbach | 44 |
IE32 | Pinawa/LDB | 45 |
SO11 | Seven Regions | 46 |
SO31 | Lorne/Louise/Pembina | 47 |
SO23 | MacDonald | 48 |
WE12 | Porcupine Mountain | 49 |
SO24 | Morris | 50 |
SO12 | MacGregor | 51 |
SO13 | Rural Portage | 52 |
SO15 | City of Portage la Prair | 53 |
SO33 | Altona | 54 |
IE21 | Stonewall/Teulon | 55 |
SO36 | Roland/Thompson | 56 |
IE22 | Wpg Beach/St. Andrews | 57 |
IE11 | Selkirk | 58 |
IE23 | St. Clements | 59 |
IE24 | Springfield | 60 |
SO32 | Stanley | 61 |
SO34 | Morden | 62 |
SO35 | Winkler | 63 |
SO42 | Tache | 64 |
WP21 | Winnipeg Churchill | 65 |
IE52 | Fisher/Peguis | 66 |
NO11 | Flin, Snow, Cran, Sher | 67 |
NO13 | LL/MC, LR, O-P(SIL), PN(GVL) | 68 |
IE51 | Powerview/PF | 69 |
NO21 | GR/Mis, ML/Mos, Eas/Che | 70 |
SO43 | Ste Anne/LaBroquerie | 71 |
SO21 | Nortre Dame/St. Claude | 72 |
NO14 | Thomp, Myst Lake | 73 |
SO41 | Niverville/Richot | 74 |
IE61 | Northern Remote | 75 |
SO46 | Rural East | 76 |
NO22 | Puk/Mat Col CN | 77 |
NO23 | SayD(TL), Bro/BL, NoL(Lac) | 78 |
NO26 | Bu(OH), MS(GR), GLN/GLFN | 79 |
NO28 | Norway House/NH CN | 80 |
NO27 | Cross Lake/Pimi CN | 81 |
NO31 | Island Lake | 82 |
IE33 | Whiteshell | 83 |
WE14 | Agassiz Mountain | 84 |
WE16 | Swan River | 85 |
WE23 | Bdn Downtown | 86 |
WE24 | Bdn South End | 87 |
WE22 | Bdn North Hill | 88 |
WE25 | Bdn East End | 89 |
WE21 | Bdn West End | 90 |
IE53 | Eriksdale/Ashern | 91 |
NO12 | The Pas/OCN, Kels | 92 |
NO15 | Bay Line | 93 |
NO16 | Gillam, Fox Lake CN | 94 |
NO25 | Sham, YorkF, Tat(SPL) | 95 |
NO24 | Nelson House/NCN | 96 |
Appendix B. Simulation Studies: Theory and Results
Appendix B.1. Ordinal Logistic Model
- Step 1:
- Consider the estimates from Table A3 as the true parameters, represented by the vector
- Step 2:
- Use the true parameters to generate the random effects, which, in turn, generate the new response values
- Step 3:
- Refit the model using the new generated response values
- Step 4:
- Extract the estimates from the newly fitted model
- Step 5:
- Repeat the cycle by going to step 2
Parameter | Estimate |
---|---|
−0.685 | |
0.772 | |
−0.090 | |
0.068 | |
0.170 | |
0.378 | |
0.145 | |
0.162 | |
0.169 |
Parameter | True | Bias | R. Bias (%) | MSE |
---|---|---|---|---|
−0.685 | −0.022 | 3.21 | 0.037 | |
0.772 | 0.010 | 1.24 | 0.038 | |
−0.090 | 0.003 | −3.33 | 0.011 | |
0.068 | −0.002 | −2.94 | 0.009 | |
0.170 | −0.010 | −5.88 | 0.009 | |
0.378 | −0.019 | −4.95 | 0.015 | |
0.145 | 0.028 | 19.24 | 0.015 | |
0.162 | 0.011 | 6.48 | 0.001 | |
0.169 | −0.006 | −3.55 | 0.001 |
Appendix B.2. Binary Logistic Model
Parameter | Estimate |
---|---|
−0.298 | |
−0.118 | |
0.270 | |
0.0168 | |
0.0117 | |
0.111 | |
0.128 |
Parameter | True | Bias | R. Bias (%) | MSE |
---|---|---|---|---|
−0.298 | 0.009 | −3.00 | < | |
−0.118 | −0.002 | −1.80 | < | |
0.270 | −0.001 | -0.41 | < | |
0.0168 | −0.0002 | −8.40 | < | |
0.0117 | 0.0025 | 22.70 | < | |
0.111 | 0.0005 | 0.47 | < | |
0.128 | 0.0006 | 0.62 | < |
Appendix B.3. Zero-Inflated Poisson Model
Parameter | Estimate |
---|---|
1.085 | |
−0.034 | |
0.066 | |
0.085 | |
−0.304 | |
0.657 | |
0.575 | |
0.639 | |
0.042 |
Parameter | True | Bias | R. Bias (%) | MSE |
---|---|---|---|---|
1.085 | 0.270 | 24.9 | 0.252 | |
−0.034 | −0.003 | 8.40 | < | |
0.066 | 0.002 | 3.30 | < | |
0.085 | -0.003 | −3.50 | < | |
−0.304 | < | 0.10 | < | |
0.657 | −0.224 | −34.10 | 0.194 | |
0.575 | < | < | < | |
0.639 | −0.210 | −34.00 | 0.355 | |
0.042 | < | 0.30 | < |
References
- Global Initiative for Asthma. Global Strategy for Asthma Management and Prevention. Eur. Respir. J. 2008, 31, 143–178. [Google Scholar] [CrossRef] [PubMed]
- Public Health Agency of Canada. Report from the Canadian Chronic Disease Surveillance System: Asthma and Chronic Obstructive Pulmonary Disease (COPD) in Canada, 2018; Public Health Agency of Canada: Ottawa, ON, Canada, 2018.
- Statistics Canada. Table 13-10-0096-08 Asthma, by Age Group, 2022. [CrossRef]
- Nahum, U.; Gorlanova, O.; Decrue, F.; Oller, H.; Delgado-Eckert, E.; Böck, A.; Schulzke, S.; Latzin, P.; Schaub, B.; Karvonen, A.M.; et al. Symptom trajectories in infancy for the prediction of subsequent wheeze and asthma in the BILD and PASTURE cohorts: A dynamic network analysis. Lancet Digit. Health 2024, 6, e718–e728. [Google Scholar] [CrossRef] [PubMed]
- Rao, J.; Molina, I. Small Area Estimation; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2015. [Google Scholar] [CrossRef]
- Richelle, J. Wheezing in Early Life and Validating the Asthma Predictive Index. Bachelor Thesis, University of Manitoba, Winnipeg, MB, Canada, 2014. [Google Scholar]
- Jiang, J.; Torabi, M. Sumca: Simple, unified, Monte-Carlo-assisted approach to second-order unbiased mean-squared prediction error estimation. J. R. Stat. Soc. Ser. B 2020, 82, 467–485. [Google Scholar] [CrossRef]
- Torabi, M.; Lele, S.R.; Prasad, N.G. Likelihood inference for small area estimation using data cloning. Comput. Stat. Data Anal. 2015, 89, 158–171. [Google Scholar] [CrossRef]
- Battese, G.E.; Harter, R.M.; Fuller, W.A. An error-components model for prediction of county crop areas using survey and satellite data. J. Am. Stat. Assoc. 1988, 83, 28–36. [Google Scholar] [CrossRef]
- Fay, R.E.; Herriot, R.A. Estimates of Income for Small Places: An Application of James-Stein Procedures to Census Data. J. Am. Stat. Assoc. 1979, 74, 269–277. [Google Scholar] [CrossRef]
- Alkan, N. Assessing convergence diagnostic tests for Bayesian Cox regression. Commun. Stat. Simul. Comput. 2017, 46, 3201–3212. [Google Scholar] [CrossRef]
- Chan, J.C.C.; Grant, A.L. On the Observed-Data Deviance Information Criterion for Volatility Modeling. J. Financ. Econom. 2016, 14, 772–802. [Google Scholar] [CrossRef]
- Torabi, M.; Shokoohi, F. Likelihood inference in small area estimation by combining time-series and cross-sectional data. J. Multivar. Anal. 2012, 111, 213–221. [Google Scholar] [CrossRef]
- Torabi, M.; Shokoohi, F. Hierarchical Bayes estimation in small area estimation using cross-sectional and time-series data. J. Stat. Comput. Simul. 2014, 84, 605–613. [Google Scholar] [CrossRef]
- Shokoohi, F.; Torabi, M. Semi-parametric small-area estimation by combining time-series and cross-sectional data methods. Aust. N. Z. J. Stat. 2018, 60, 323–342. [Google Scholar] [CrossRef]
- Torabi, M. Zero-inflated spatio-temporal models for disease mapping. Biom. J. 2017, 59, 430–444. [Google Scholar] [CrossRef] [PubMed]
Parameter | Estimate | 95% Credible Interval (Lower, Upper) | Odds Ratio |
---|---|---|---|
Intercept | −2.74 | (−3.25, −2.27) | - |
Mother asthma (prenatal) | 1.20 | (0.63, 1.76) | 3.31 |
Mother smoked (prenatal) | 1.05 | (−0.02, 2.01) | 2.85 |
Farm (3 months) | −0.36 | (−1.47, 0.60) | 0.70 |
Furry pets (3 months) | −0.28 | (−0.86, 0.28) | 0.76 |
0.37 | (0.04, 0.95) | - |
Parameter | Estimate | 95% Credible Interval (Lower, Upper) | Rate Ratio |
---|---|---|---|
Intercept | −1.22 | (−2.17, −0.35) | - |
Mother asthma (prenatal) | 0.84 | (0.18, 1.52) | 2.32 |
Mother wheezed (prenatal) | 0.02 | (−0.63, 0.65) | 1.02 |
Mother smoked (prenatal) | 1.01 | (−0.38, 2.44) | 2.75 |
Farm (3 months) | 0.90 | (0.10, 1.78) | 2.45 |
1.45 | (1.01, 1.88) | - | |
0.19 | (0.13, 0.27) | - | |
1.37 | (0.86, 2.07) | - |
Parameter | Estimate | 95% Credible Interval (Lower, Upper) | Odds Ratio |
---|---|---|---|
Intercept | −3.27 | (−4.09, −2.52) | - |
Mother wheezed (prenatal) | 0.01 | (−0.01, 0.04) | 1.01 |
Mother asthma (prenatal) | 0.02 | (0.01, 0.05) | 1.02 |
Mother smoked (prenatal) | 0.00 | (−0.03, 0.03) | 1.00 |
Farm | −0.01 | (−0.03, 0.00) | 0.99 |
0.25 | (0.03, 0.84) | - |
Parameter | Estimate | 95% Credible Interval (Lower, Upper) | Rate Ratio |
---|---|---|---|
Intercept | 0.95 | (−0.02, 1.90) | - |
Farm | −0.03 | (−0.60, 0.01) | 0.97 |
Mother asthma (prenatal) | 0.01 | (−0.02, 0.03) | 1.01 |
1.17 | (0.76, 1.75) | - | |
DIC | 164.7 | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Singh, C.; Torabi, M. Theoretical Advancements in Small Area Modeling: A Case Study with the CHILD Cohort. Stats 2025, 8, 39. https://doi.org/10.3390/stats8020039
Singh C, Torabi M. Theoretical Advancements in Small Area Modeling: A Case Study with the CHILD Cohort. Stats. 2025; 8(2):39. https://doi.org/10.3390/stats8020039
Chicago/Turabian StyleSingh, Charanpal, and Mahmoud Torabi. 2025. "Theoretical Advancements in Small Area Modeling: A Case Study with the CHILD Cohort" Stats 8, no. 2: 39. https://doi.org/10.3390/stats8020039
APA StyleSingh, C., & Torabi, M. (2025). Theoretical Advancements in Small Area Modeling: A Case Study with the CHILD Cohort. Stats, 8(2), 39. https://doi.org/10.3390/stats8020039