Decreasing Respondent Heterogeneity by Likert Scales Adjustment via Multipoles
Abstract
1. Introduction
2. Reducing Respondents’ Heterogeneity
3. Summary
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A. Likert Scale in Multipole Description
References
- Likert, R. A technique for the measurement of attitudes. Arch. Psychol. 1932, 140, 1–55. [Google Scholar]
- Likert, R.; Roslow, S.; Murphy, G. A simple and reliable method of scoring the Thurstone attitude scales. J. Soc. Psychol. 1934, 5, 228–238. [Google Scholar] [CrossRef]
- Edmondson, D.R. Likert scales: A history. In Proceedings of the 12th Conference on Historical Analysis and Research in Marketing (CHARM), Long Beach, CA, USA, 28 April–1 May 2005; Neilson, L.C., Ed.; Sage: Thousand Oaks, CA, USA, 2005; pp. 127–133. [Google Scholar]
- Allen, E.; Seaman, C. Likert scales and data analysis. Qual. Prog. 2007, 40, 64–65. [Google Scholar]
- Carifio, J.; Perla, R.J. Ten common misunderstandings, misconceptions, persistent myths and urban legends about Likert scales and Likert response formats and their antidotes. J. Soc. Sci. 2007, 3, 106–116. [Google Scholar] [CrossRef]
- Burns, A.; Burns, R. Basic Marketing Research, 2nd ed.; Pearson Education: Hoboken, NJ, USA, 2008. [Google Scholar]
- Dawes, J. Do data characteristics change according to the number of scale points used? An experiment using 5-point, 7-point and 10-point scales. Int. J. Mark. Res. 2008, 50, 61–77. [Google Scholar] [CrossRef]
- Norman, G. Likert scales, levels of measurement and the “laws” of statistics”. Adv. Health Sci. Educ. 2010, 15, 625–632. [Google Scholar] [CrossRef] [PubMed]
- Lipovetsky, S. Factor analysis by limited scales—Which factors to analyze? J. Mod. Appl. Stat. Methods 2017, 16, 233–245. [Google Scholar] [CrossRef]
- Malhotra, N.K.; Agarwal, J.; Peterson, M. Methodological issues in cross-cultural marketing research: A state-of-the-art review. Int. Mark. Rev. 1996, 13, 7–43. [Google Scholar] [CrossRef]
- Rossi, P.E.; Gilula, Z.; Allenby, G.M. Overcoming scale usage heterogeneity: A Bayesian hierarchical approach. JASA 2001, 96, 20–31. [Google Scholar] [CrossRef]
- Van Rosmalen, J.; Van Herk, H.; Groenen, P.J.F. Identifying response styles: A latent-class bilinear multinomial logit model. J. Mark. Res. 2010, XLVII, 157–172. [Google Scholar] [CrossRef]
- Lipovetsky, S. Dual PLS analysis. Int. J. Inf. Technol. Decis. Mak. 2012, 11, 879–891. [Google Scholar] [CrossRef]
- Lipovetsky, S. Data fusion in several algorithms. Adv. Adapt. Data Anal. 2013, 5, 3. [Google Scholar] [CrossRef]
- Hoffmeyer-Zlotnik, J.H.P.; Warner, U. Harmonizing Demographic and Socio-Economic Variables for Cross-National Comparative Survey Research; Springer: Dordrecht, The Netherlands; New York, NY, USA, 2014. [Google Scholar]
- Arboretti, R.; Bathke, A.; Bonnini, S.; Bordignon, P.; Carrozzo, E.; Corain, L.; Salmaso, L. Parametric and Nonparametric Statistics for Sample Surveys and Customer Satisfaction Data; Springer: Cham, Switzerland, 2018. [Google Scholar]
- Malito, D.V.; Umbach, G.; Bhuta, N. (Eds.) The Palgrave Handbook of Indicators in Global Governance; Palgrave Macmillan: Basingstoke, UK; Springer: Cham, Switzerland, 2018. [Google Scholar]
- Camparo, J. A geometrical approach to the ordinal data of Likert scaling and attitude measurements: The density matrix in psychology. J. Math. Psychol. 2013, 57, 29–42. [Google Scholar] [CrossRef]
- Camparo, J.; Camparo, L.B. The analysis of Likert scales using state multipoles: An application of quantum methods to behavioral sciences data. J. Educ. Behav. Stat. 2013, 38, 81–101. [Google Scholar] [CrossRef]
- Busemeyer, J.R.; Bruza, P.D. Quantum Models of Cognition and Decision; Cambridge University Press: Cambridge, UK, 2012. [Google Scholar]
- Pothos, E.M.; Busemeyer, J.R. Can quantum probability provide a new direction for cognitive modeling? Behav. Brain Sci. 2013, 36, 255–327. [Google Scholar] [CrossRef] [PubMed]
- Haven, E.; Khrennikov, A. (Eds.) The Palgrave Handbook of Quantum Models in Social Science: Applications and Grand Challenges; Palgrave Macmillan: London, UK, 2017. [Google Scholar]
- Camparo, J.; Camparo, L.B. Being of “two minds”: Assessing vacillating and simultaneous ambivalence with the density matrix. Behav. Res. Methods 2018, 50, 1141–1153. [Google Scholar] [CrossRef] [PubMed]
- Kovalenko, T.; Sornette, D. The Conjunction Fallacy in Quantum Decision Theory; Research Paper Series N°18-15; Swiss Finance Institute: Geneva, Switzerland, 2018. [Google Scholar]
- Yukalov, V.I.; Yukalova, E.P.; Sornette, D. Information processing by networks of quantum decision makers. Phys. A Stat. Mech. Appl. 2018, 492, 747–766. [Google Scholar] [CrossRef]
- Lipovetsky, S. Quantum paradigm of probability amplitude and complex utility in entangled discrete choice modeling. J. Choice Model. 2018, 27, 62–73. [Google Scholar] [CrossRef]
- Lipovetsky, S.; Conklin, M. Predictor relative importance and matching regression parameters. J. Appl. Stat. 2015, 42, 1017–1031. [Google Scholar] [CrossRef]
- Lipovetsky, S.; Conklin, M. Singular value decomposition in additive, multiplicative, and logistic forms. Pattern Recognit. 2005, 38, 1099–1110. [Google Scholar] [CrossRef]
- Lipovetsky, S. Trinomial response modeling in one logit regression. Ann. Data Sci. 2015, 2, 157–163. [Google Scholar] [CrossRef]
- Landau, L.D.; Lifshitz, E.M. Quantum Mechanics: Non-Relativistic Theory, 3rd ed.; Butterworth-Heinemann: Burlington, MA, USA, 2003. [Google Scholar]
Segment Prediction with the Row-Centered Data | Segment Prediction with the Dipole-Adjusted Data | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
LDA | 1 | 2 | 3 | 4 | 5 | 6 | LDA | 1 | 2 | 3 | 4 | 5 | 6 |
1 | 5337 | 39 | 26 | 0 | 0 | 378 | 1 | 10121 | 2 | 11 | 0 | 41 | 0 |
2 | 117 | 4371 | 115 | 63 | 7 | 352 | 2 | 99 | 2906 | 216 | 11 | 167 | 17 |
3 | 107 | 199 | 4783 | 10 | 109 | 78 | 3 | 845 | 11 | 4335 | 2 | 67 | 0 |
4 | 0 | 452 | 78 | 3267 | 70 | 0 | 4 | 0 | 32 | 230 | 1823 | 18 | 37 |
5 | 0 | 105 | 140 | 91 | 3562 | 0 | 5 | 325 | 20 | 312 | 0 | 3082 | 7 |
6 | 1418 | 1004 | 101 | 2 | 0 | 683 | 6 | 3 | 51 | 160 | 26 | 150 | 1937 |
Hit-rate, % | 81.3 | Hit-rate, % | 89.4 | ||||||||||
Logit-ROC | 1 | 2 | 3 | 4 | 5 | 6 | Logit-ROC | 1 | 2 | 3 | 4 | 5 | 6 |
1 | 5056 | 134 | 238 | 0 | 0 | 352 | 1 | 9812 | 76 | 126 | 0 | 160 | 1 |
2 | 96 | 3487 | 104 | 586 | 70 | 682 | 2 | 4 | 3240 | 62 | 16 | 65 | 29 |
3 | 45 | 184 | 4748 | 4 | 230 | 75 | 3 | 232 | 178 | 4262 | 252 | 278 | 58 |
4 | 0 | 288 | 79 | 3366 | 100 | 34 | 4 | 0 | 64 | 132 | 1895 | 15 | 34 |
5 | 0 | 73 | 178 | 82 | 3565 | 0 | 5 | 99 | 102 | 133 | 7 | 3140 | 265 |
6 | 1177 | 854 | 281 | 42 | 5 | 849 | 6 | 0 | 66 | 57 | 29 | 181 | 1994 |
Hit-rate, % | 77.9 | Hit-rate, % | 89.9 | ||||||||||
MNL | 1 | 2 | 3 | 4 | 5 | 6 | MNL | 1 | 2 | 3 | 4 | 5 | 6 |
1 | 4814 | 143 | 169 | 1 | 0 | 653 | 1 | 10124 | 2 | 21 | 0 | 28 | 0 |
2 | 162 | 3738 | 164 | 477 | 90 | 394 | 2 | 14 | 3203 | 82 | 35 | 54 | 28 |
3 | 112 | 131 | 4716 | 61 | 239 | 27 | 3 | 158 | 33 | 4888 | 61 | 103 | 17 |
4 | 0 | 561 | 107 | 3063 | 132 | 4 | 4 | 0 | 40 | 52 | 2009 | 1 | 38 |
5 | 0 | 53 | 211 | 81 | 3553 | 0 | 5 | 50 | 38 | 85 | 12 | 3442 | 119 |
6 | 1173 | 963 | 242 | 38 | 8 | 784 | 6 | 0 | 33 | 50 | 55 | 43 | 2146 |
Hit-rate, % | 76.4 | Hit-rate, % | 95.4 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lipovetsky, S.; Conklin, M. Decreasing Respondent Heterogeneity by Likert Scales Adjustment via Multipoles. Stats 2018, 1, 169-175. https://doi.org/10.3390/stats1010012
Lipovetsky S, Conklin M. Decreasing Respondent Heterogeneity by Likert Scales Adjustment via Multipoles. Stats. 2018; 1(1):169-175. https://doi.org/10.3390/stats1010012
Chicago/Turabian StyleLipovetsky, Stan, and Michael Conklin. 2018. "Decreasing Respondent Heterogeneity by Likert Scales Adjustment via Multipoles" Stats 1, no. 1: 169-175. https://doi.org/10.3390/stats1010012
APA StyleLipovetsky, S., & Conklin, M. (2018). Decreasing Respondent Heterogeneity by Likert Scales Adjustment via Multipoles. Stats, 1(1), 169-175. https://doi.org/10.3390/stats1010012