Vitamin D and COVID-19: Comparative Analysis with Other Respiratory Infections and impact of Comorbidities
Abstract
Introduction
Methods
Statistical analysis
Results
Discussion
Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Yuki, K.; Fujiogi, M.; Koutsogiannaki, S. COVID-19 pathophysiology: a review. Clin Immunol. 2020, 215, 108427. [Google Scholar] [CrossRef] [PubMed]
- Baratella, E.; Bussani, R.; Zanconati, F.; et al. Radiological- pathological signatures of patients with COVID-19- related pneumomediastinum: is there a role for the Sonic hedgehog and Wnt5a pathways? ERJ Open Res. 2021, 7, 00346–02021. [Google Scholar] [CrossRef]
- Constantin, L.; Ungurianu, A.; Streinu-Cercel, A.; et al. Investigation of serum endocan levels in SARS-CoV-2 patients. Int J Mol Sci. 2024, 25, 3042. [Google Scholar] [CrossRef]
- Contreras-Bolívar, V.; García-Fontana, B.; García-Fontana, C.; Muñoz-Torres, M. Vitamin D and COVID-19: where are we now? Postgrad Med. 2023, 135, 195–207. [Google Scholar] [CrossRef] [PubMed]
- Grant, W.B.; Lahore, H.; McDonnell, S.L.; et al. Evidence that vitamin D supplementation could reduce risk of influenza and COVID-19 infections and deaths. Nutrients. 2020, 12, 988. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Leung, D.Y.M.; Richers, B.N.; et al. Vitamin D inhibits monocyte/macrophage proinflammatory cytokine production by targeting MAPK phosphatase-1. J Immunol. 2012, 188, 2127–2135. [Google Scholar] [CrossRef]
- Gradinaru, D.; Borsa, C.; Ionescu, C.; Margina, D.; Prada, G.I.; Jansen, E. Vitamin D status and oxidative stress markers in the elderly with impaired fasting glucose and type 2 diabetes mellitus. Aging Clin Exp Res. 2012, 24, 595–602. [Google Scholar] [CrossRef]
- Athanassiou, L.; Kostoglou-Athanassiou, I.; Nikolakopoulou, S.; et al. Vitamin D levels as a marker of severe SARS-CoV-2 infection. Life. 2024, 14, 210. [Google Scholar] [CrossRef]
- Bilezikian, J.P.; Bikle, D.; Hewison, M.; et al. Mechanisms in endocrinology: vitamin D and COVID-19. Eur J Endocrinol. 2020, 183, R133–R147. [Google Scholar] [CrossRef]
- Beka, A.A.; Papadopoulos, V.; Mylopoulou, T.; et al. Association between vitamin D receptor gene polymorphisms and fibrosis susceptibility in Greek patients with HCV infection. Germs. 2022, 12, 384–393. [Google Scholar] [CrossRef] [PubMed]
- Alexiu-Toma, O.A.; Toma, M.; Stavarachi, M.; et al. Vitamin D receptor gene polymorphisms and spinal muscular atrophy. Rom J Mil Med. 2022, 125, 487–492. [Google Scholar] [CrossRef]
- DiNicolantonio, J.J.; O'Keefe, J.H. Magnesium and vitamin D deficiency as a potential cause of immune dysfunction, cytokine storm and disseminated intravascular coagulation in COVID-19 patients. Mo Med. 2021, 118, 68–73. [Google Scholar] [PubMed]
- Wimalawansa, S.J. Infections and autoimmunity-the immune system and vitamin D: a systematic review. Nutrients. 2023, 15, 3842. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.K.; Jain, R.; Singh, S. Vitamin D deficiency in patients with diabetes and COVID-19 infection. Diabetes Metab Syndr. 2020, 14, 1033–1035. [Google Scholar] [CrossRef]
- Holick, M.F.; Binkley, N.C.; Bischoff-Ferrari, H.A.; et al. Evaluation, treatment, and prevention of vitamin D deficiency: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab. 2011, 96, 1911–1930. [Google Scholar] [CrossRef]
- Kazakou, P.; Lambadiari, V.; Ikonomidis, I.; et al. Diabetes and COVID-19; a bidirectional interplay. Front Endocrinol (Lausanne). 2022, 13, 780663. [Google Scholar] [CrossRef] [PubMed]
- Margină, D.; Ungurianu, A.; Purdel, C.; et al. Chronic inflammation in the context of everyday life: dietary changes as mitigating factors. Int J Environ Res Public Health. 2020, 17, 4135. [Google Scholar] [CrossRef] [PubMed]
- Gradinaru, D.; Khaddour, H.; Margina, D.; et al. Insulin- leptin axis, cardiometabolic risk and oxidative stress in elderly with metabolic syndrome. Exp Clin Endocrinol Diabetes. 2018, 126, 445–452. [Google Scholar] [CrossRef]
- Landstra, C.P.; de Koning, E.J.P. COVID-19 and diabetes: understanding the interrelationship and risks for a severe course. Front Endocrinol (Lausanne). 2021, 12, 649525. [Google Scholar] [CrossRef]
- Margina, D.; Ilie, M.; Gradinaru, D. Quercetin and epigallocatechin gallate induce in vitro a dose-dependent stiffening and hyperpolarizing effect on the cell membrane of human mononuclear blood cells. Int J Mol Sci. 2012, 13, 4839–4859. [Google Scholar] [CrossRef]
- Valer-Martinez, A.; Sayon-Orea, C.; Martinez, J.A.; Basterra- Gortari, F.J.; Martinez-Gonzalez, M.A.; Bes-Rastrollo, M. Vitamin D and risk of developing type 2 diabetes in the SUN project: a prospective cohort study. J Endocrinol Invest. 2024, 47, 2313–2323. [Google Scholar] [CrossRef] [PubMed]
- Mitri, J.; Pittas, A.G. Vitamin D and diabetes. Endocrinol Metab Clin North Am. 2014, 43, 205–232. [Google Scholar] [CrossRef]
- Mahroum, N.; Alghory, A.; Kiyak, Z.; et al. Ferritin - from iron, through inflammation and autoimmunity, to COVID-19. J Autoimmun. 2022, 126, 102778. [Google Scholar] [CrossRef]
- Para, O.; Caruso, L.; Pestelli, G.; et al. Ferritin as prognostic marker in COVID-19: the FerVid study. Postgrad Med. 2022, 134, 58–63. [Google Scholar] [CrossRef]
- Cavezzi, A.; Troiani, E.; Corrao, S. COVID-19: hemoglobin, iron, and hypoxia beyond inflammation. A narrative review. Clin Pract. 2020, 10, 1271. [Google Scholar] [CrossRef] [PubMed]
- Fenercioglu, A.K.; Gonen, M.S.; Uzun, H.; et al. The association between serum 25-hydroxyvitamin D3 levels and pro-inflammatory markers in new-onset type 2 diabetes mellitus and prediabetes. Biomolecules. 2023, 13, 1778. [Google Scholar] [CrossRef] [PubMed]
- Pfeffer, P.E.; Hawrylowicz, C.M. Vitamin D and lung disease. Thorax. 2012, 67, 1018–1020. [Google Scholar] [CrossRef]
- Guan, W.J.; Ni, Z.Y.; Hu, Y.; et al. Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med. 2020, 382, 1708–1720. [Google Scholar] [CrossRef] [PubMed]
- Cetinkaya, P.U.; Azik, F.M.; Karakus, V.; Huddam, B.; Yilmaz, N. β2-microglobulin, neutrophil gelatinase-associated lipocalin, and endocan values in evaluating renal functions in patients with β-thalassemia major. Hemoglobin. 2020, 44, 147–152. [Google Scholar] [CrossRef]
- Pawlak, K.; Mysliwiec, M.; Pawlak, D. Endocan - the new endothelial activation marker independently associated with soluble endothelial adhesion molecules in uraemic patients with cardiovascular disease. Clin Biochem. 2015, 48, 425–430. [Google Scholar] [CrossRef]
- Ricci, A.; Pagliuca, A.; D'Ascanio, M.; et al. Circulating vitamin D levels status and clinical prognostic indices in COVID-19 patients. Respir Res. 2021, 22, 76. [Google Scholar] [CrossRef]
- Atis, O.; Keles, M.; Cankaya, E.; Dogan, H.; Aksoy, H.; Akcay, F. Vitamin D treatment effect on serum endocan and high-sensitivity c-reactive protein levels in renal transplant patients. Prog Transplant. 2016, 26, 335–339. [Google Scholar] [CrossRef]
- Danikiewicz, A.; Hudzik, B.; Nowak, J.; et al. Serum gamma glutamyltransferase is associated with 25-hydroxyvitamin D status in elderly patients with stable coronary artery disease. Int J Environ Res Public Health. 2020, 17, 8980. [Google Scholar] [CrossRef] [PubMed]
- Barchetta, I.; Angelico, F.; Ben, M.D.; et al. Strong association between non alcoholic fatty liver disease (NAFLD) and low 25(OH) vitamin D levels in an adult population with normal serum liver enzymes. BMC Med. 2011, 9, 85. [Google Scholar] [CrossRef]
- Dumea, E.; Barbu, E.C.; Chiţu, C.E.; Lazăr, M.; Ion, D.A. Clinical, biochemical and pulmonary CT imaging features for hepatobiliary involvement in COVID-19. Germs. 2023, 13, 121–129. [Google Scholar] [CrossRef] [PubMed]
- Das, S.; K.R., A; Birangal, S.R.; et al. Role of comorbidities like diabetes on severe acute respiratory syndrome coronavirus-2: a review. Life Sci. 2020, 258, 118202. [Google Scholar] [CrossRef]
- Corrao, S.; Nobili, A.; Natoli, G.; et al. Hyperglycemia at admission, comorbidities, and in-hospital mortality in elderly patients hospitalized in internal medicine wards: data from the RePoSI Registry. Acta Diabetol. 2021, 58, 1225–1236. [Google Scholar] [CrossRef] [PubMed]
- Yoshinaga, R.; Ishikawa, S.; Ayukawa, K.; Doi, Y. Plasma glucose level as a predictor of in-hospital mortality in patients at an emergency room: a retrospective cohort study. Diabetes Care. 2019, 42, e6–e7. [Google Scholar] [CrossRef] [PubMed]
- Roberts, J.; Pritchard, A.L.; Treweeke, A.T.; et al. Why is COVID-19 more severe in patients with diabetes? The role of angiotensin-converting enzyme 2, endothelial dysfunction and the immunoinflammatory system. Front Cardiovas Med. 2020, 7, 629933. [Google Scholar] [CrossRef] [PubMed]
- Argano, C.; Bocchio, R.M.; Monaco, M.L.; et al. An overview of systematic reviews of the role of vitamin D on inflammation in patients with diabetes and the potentiality of its application on diabetic patients with COVID-19. Int J Mol Sci. 2022, 23, 2873. [Google Scholar] [CrossRef]
- Popovska Jovičić, B.; Raković, I.; Gavrilović, J.; et al. Vitamin D, albumin, and D-dimer as significant prognostic markers in early hospitalization in patients with COVID-19. J Clin Med. 2023, 12, 2825. [Google Scholar] [CrossRef]
- Pereira, M.; Dantas Damascena, A.; Galvão Azevedo, L.M.; de Almeida Oliveira, T.; da Mota Santana, J. Vitamin D deficiency aggravates COVID-19: systematic review and meta-analysis. Crit Rev Food Sci Nutr. 2022, 62, 1308–1316. [Google Scholar] [CrossRef]
- Di Filippo, L.; Allora, A.; Doga, M.; et al. Vitamin D levels are associated with blood glucose and BMI in COVID-19 patients, predicting disease severity. J Clin Endocrinol Metab. 2022, 107, E348–E360. [Google Scholar] [CrossRef] [PubMed]
- Sheth, J.J.; Shah, A.; Sheth, F.J.; et al. Does vitamin D play a significant role in type 2 diabetes? BMC Endocr Disord. 2015, 15, 5. [Google Scholar] [CrossRef] [PubMed]
- Kumar, M.; Bindu, C.; Shyam, A.; Reena, R. Ferritin - the key model inflammatory marker in diabetic and non- diabetic COVID-19. Asian J Med Sci. 2021, 12, 23–31. [Google Scholar] [CrossRef]
- Santos, C.V.; Fukushima, E.A.; Zhao, W.; et al. Incidence of bloodstream infections in patients with COVID-19: a retrospective cohort study of risk factors and outcomes. Germs. 2022, 12, 253–261. [Google Scholar] [CrossRef]
- Varikasuvu, S.R.; Varshney, S.; Dutt, N. Markers of coagulation dysfunction and inflammation in diabetic and non-diabetic COVID-19. J Thromb Thrombolysis. 2021, 51, 941–946. [Google Scholar] [CrossRef]
| COVID-19 | Non-COVID-19 | p | |
|---|---|---|---|
| General characteristics | |||
| Age (years) | 72.28 ± 14.84 | 51.69 ± 19.41 | p<0.001 | 
| Male/female | 26/26 | 13/13 | |
| Body mass index (BMI), kg/m2 | 23.75 [22.36; 25] | 24.6 [23.12; 26.06] | 0.479 | 
| Comorbidities, n (%) | 44 (84.61%) | 17 (65.38%) | 0.049 | 
| Hypertension, n (%) | 28 (53.84%) | 8 (30.76%) | 0.190 | 
| Obesity, n (%) | 12 (23.07%) | 4 (15.38%) | 0.457 | 
| Dyslipidemia, n (%) | 11 (21.15%) | 1 (3.86%) | 0.937 | 
| Heart failure, n (%) | 10 (19.23%) | 6 (23.07%) | 0.385 | 
| Rhythm disturbances, n (%) | 10 (19.23%) | 5 (19.23%) | 0.427 | 
| Diabetes, n (%) | 9 (17.3%) | 2 (7.69%) | 0.706 | 
| Coronary artery disease, n (%) | 8 (15.38%) | 0 | N/A | 
| Chronic kidney disease, n (%) | 7 (13.46%) | 0 | N/A | 
| Chronic obstructive pulmonary disease, n (%) | 3 (5.76%) | 4 (15.38%) | 0.762 | 
| Symptomatology | |||
| Cough, n (%) | 30 (57.69%) | 13 (50%) | 0.798 | 
| Fever, n (%) | 19 (36.53%) | 13 (50%) | 0.298 | 
| Fatigability, n (%) | 14 (26.92%) | 6 (23.07%) | 0.844 | 
| Headache, n (%) | 13 (25%) | 4 (15.38%) | 0.451 | 
| Pharyngitis, n (%) | 12 (23.07%) | 2 (7.69%) | 0.154 | 
| Dyspnea, n (%) | 9 (17.3%) | 7 (26.92%) | 0.316 | 
| Myalgia, n (%) | 9 (17.3%) | 5 (19.23%) | 0.769 | 
| Biochemical and inflammatory parameters | |||
| Glucose (mg/dL) | 106.5 [98; 126.25] | 113.27 ± 35.23 | 0.699 | 
| LDH (U/L) | 234 [187; 305] | 241 [214; 285] | 0.819 | 
| GGT (U/L) | 33 [25; 51] | 57.96 ± 35.07 | 0.058 | 
| Alkaline phosphatase (U/L) | 78 [55; 94] | 91.13 ± 28.42 | 0.929 | 
| Lipase (U/L) | 117.5 [55; 193.75] | 88.11 ± 75.16 | 0.097 | 
| C-reactive protein (mg/L) | 27.6 [7.52; 85.3] | 98.55 ± 76.78 | 0.015 | 
| Fibrinogen (mg/dL) | 367.17 [307.5; 575.7] | 507.76 ± 221.33 | 0.126 | 
| White blood cell count × 1000/µL | 7.4 [4.56; 9.28] | 8.53 ± 3.72 | 0.651 | 
| Neutrophils × 1000/µL | 5.5 ± 2.59 | 6.18 ± 3.2 | 0.409 | 
| Lymphocytes × 1000/µL | 0.85 [0.69; 1.28] | 1.47 ± 0.96 | 0.901 | 
| Neutrophil/lymphocyte ratio | 7.51 + 6.59 | 6.18 ± 4.08 | 0.345 | 
| 25(OH)D3 (ng/mL) | 21.93 ± 10.04 | 21.23 ± 9.6 | 0.768 | 
| COVID-19 | Non-COVID-19 | |||||||
|---|---|---|---|---|---|---|---|---|
| Deficient (1) N=22 (42.3%) | Insufficient (2) N=17 (32.69%) | Sufficient (3) N=13 (25%) | p | Deficient (1) N=13 (50%) | Insufficient (2) N=7 (26.92%) | Sufficient (3) N=6 (23.07%) | p | |
| Symptoms | ||||||||
| Cough, n (%) | 14 (63.63%) | 8 (47.05%) | 8 (61.53%) | 0.553 | 7 (53.84%) | 2 (28.57%) | 5 (83.33%) | 0.142 | 
| Fever, n (%) | 9 (40.90%) | 6 (35.29%) | 4 (30.76%) | 0.827 | 8 (61.53%) | 1 (14.28%) | 5 (83.33%) | 0.033 | 
| Headache, n (%) | 5 (22.72%) | 3 (17.64%) | 3 (23.07%) | 0.910 | 1 (7.69%) | 0 | 3 (50%) | N/A | 
| Myalgia, n (%) | 5 (22.72%) | 3 (17.64%) | 1 (7.69%) | 0.523 | 1 (7.69% | 2 (28.57%) | 2 (33.33%) | 0.320 | 
| Dyspnea, n (%) | 4 (18.18%) | 3 (17.64%) | 2 (15.38%) | 0.976 | 2 (15.38%) | 2 (28.57%) | 3 (50%) | 0.284 | 
| Pharyngitis, n (%) | 4 (18.18%) | 4 (23.52%) | 4 (30.76%) | 0.693 | 1 (7.69%) | 1 (14.28%) | 0 | N/A | 
| Fatigability, n (%) | 4 (18.18%) | 8 (47.05%) | 2 (15.38%) | 0.072 | 3 (23.07%) | 1 (14.28%) | 2 (33.33%) | 0.585 | 
| Comorbidities, n (%) | 19 (86.36%) | 12 (70.58%) | 12 (92.3%) | 0.248 | 7 (41.17%) | 4 (57.14%) | 3 (50%) | 0.967 | 
| Diabetes, n (%) | 6 (27.27%) | 3 (17.64%) | 0 | N/A | 1 (7.69%) | 1 (14.28%) | 1 (16.66%) | 0.820 | 
| Cardiovascular, n (%) | 13 (59.09%) | 11 (64.70%) | 9 (69.23%) | 0.827 | 5 (38.46%) | 4 (57.14%) | 4 (66.67%) | 0.471 | 
| Obesity, n (%) | 7 (31.81%) | 2 (11.76%) | 3 (23.07%) | 0.905 | 1 (7.69%) | 0 | 3 (50%) | N/A | 
| Dyslipidemia, n (%) | 6 (27.27%) | 1 (5.88%) | 4 (30.76%) | 0.165 | 0 | 1 (14.28%) | 0 | N/A | 
| Biochemical and inflammatory parameters | ||||||||
| LDH (U/L) | 304.89 ± 217.43 | 211.76 ± 46.17 | 271.18 ± 71.9 | 0.169 | 308.9 ± 161.51 | 266.71 ± 80.11 | 214.66 ± 36.74 | 0.322 | 
| GGT (U/L) | 31.5 [25; 38] | 52.12 ± 32.91 | 48.45 ± 28.02 | 0.238 | 70.15 ± 41.34 | 59.28 ± 21.49 | 30 ± 12.94 | 0.061 | 
| Alkaline phosphatase (U/L) | 69.45 ± 26.96 | 84 [72; 108.5] | 99.9 ± 80.56 | 0.033 | 98.88 ± 31.6 | 84.85 ± 14.17 | 86.83 ± 37 | 0.586 | 
| Lipase (U/L) | 125.54 ± 85.55 | 153.33 ± 115.08 | 111.71 ± 55.67 | 0.642 | 91.22 ± 71.03 | 98.4 ± 109.12 | 63.4 ± 39.74 | 0.743 | 
| C-reactive protein (mg/L) | 70.88 ± 84.25 | 33.06 ± 41.57 | 54.06 ± 51.15 | 0.209 | 103.75 ± 76.96 | 168.8 ± 45.21 | 31.36 ± 29.67 | 0.005 2: 3=0.001 | 
| Fibrinogen (mg/dL) | 428.22 ± 153.7 | 447.88 ± 154.42 | 447.55 ± 169.2 | 0.787 | 500.08 ± 210.80 | 656.42 ± 229.66 | 349.66 ± 114.03 | 0.036 2: 3=0.016 | 
| Ferritin (ng/mL) | 479.07 ± 352.3 | 508 ± 419.79 | 247.68 ± 146.3 | 0.276 | - | - | - | - | 
| Interleukin-6 (pg/mL) | 268.69 ± 379.54 | 166.28 ± 243.13 | 47.5 ± 209.28 | 0.640 | - | - | - | - | 
| White blood cells × 1000/µL | 9.33 ± 7.47 | 6.73 ± 2.43 | 7.41 ± 2.79 | 0.298 | 9.46 ± 4.57 | 8.78 ± 2.54 | 6.21 ± 1.54 | 0.209 | 
| Neutrophils × 1000/µL | 6.17 ± 2.75 | 4.98 ± 32.16 | 5.55 ± 2.74 | 0.359 | 6.64 ± 4.05 | 6.85 ± 2.07 | 4.43 ± 1.34 | 0.320 | 
| Lymphocyte × 1000/µL | 0.78 [0.5; 1.1] | 1.06 ± 0.54 | 1.11 ± 0.43 | 0.238 | 1.9 ± 0.96 | 1.03 ± 0.99 | 1.05 ± 0.51 | 0.068 | 
| Neutrophil/ lymphocyte ratio | 9.53 ± 8.39 | 5.98 ± 3.82 | 3.76 ± 4.86 | 0.183 | 4.63 ± 3.29 | 9.86 ± 4.32 | 5.23 ± 2.96 | 0.012 1: 2=0.020 2: 3=0.042 | 
| Endocan (pg/mL) | 65.48 ± 29.57 | 85.08 ± 30.55 | 84.19 ± 36.4 | 0.107 | - | - | - | |
| Deficient Vitamin D | p | Insufficient Vitamin D | p | Sufficient Vitamin D | p | ||||
|---|---|---|---|---|---|---|---|---|---|
| Parameters | COVID-19 | Non- COVID- 19 | COVID-19 | Non-COVID- 19 | COVID-19 | Non-COVID-19 | |||
| LDH (U/L) | 304.89 ± 217.43 | 308.9 ± 161.51 | 0.893 | 211.76 ± 46.17 | 266.71 ± 80.11 | 0.044 | 271.18 ± 71.99 | 214.66 ± 36.74 | 0.095 | 
| GGT (U/L) | 31.5 [25; 38] | 70.15 ± 41.34 | 0.007 | 52.12 ± 32.91 | 59.28 ± 21.49 | 0.605 | 48.45 ± 28.02 | 30 ± 12.94 | 0.151 | 
| Alkaline phosphatase | 69.45 ± 26.96 | 98.88 ± 31.6 | 0.012 | 84 [72; 108.5] | 84.85 ± 14.17 | 0.400 | 86.83 ± 37 | 99.9 ± 80.56 | 0.714 | 
| Lipase (U/L) | 125.54 ± 85.55 | 91.22 ± 71.03 | 0.371 | 153.33 ± 115.08 | 98.4 ± 109.12 | 0.401 | 111.71 ± 55.67 | 63.4 ± 39.74 | 0.129 | 
| C-reactive protein (mg/L) | 70.88 ± 84.25 | 103.75 ± 76.96 | 0.256 | 33.06 ± 41.57 | 168.8 ± 45.21 | <0.001 | 54.06 ± 51.15 | 31.36 ± 29.67 | 0.330 | 
| Fibrinogen (mg/dL) | 428.22 ± 153.79 | 500.08 ± 210.80 | 0.227 | 447.88 ± 154.42 | 656.42 ± 229.66 | 0.018 | 447.55 ± 169.2 | 349.66 ± 114.03 | 0.222 | 
| White blood cells × 1000/µL | 9.33 ± 7.47 | 9.46 ± 4.57 | 0.955 | 6.73 ± 2.43 | 8.78 ± 2.54 | 0.077 | 7.41 ± 2.79 | 6.21 ± 1.54 | 0.344 | 
| Neutrophils × 1000/µL | 6.17 ± 2.75 | 6.64 ± 4.05 | 0.690 | 4.98 ± 32.16 | 6.85 ± 2.07 | 0.065 | 5.55 ± 2.74 | 4.43 ± 1.34 | 0.362 | 
| Lymphocytes × 1000/µL | 0.78 [0.5; 1.1] | 1.9 ± 0.96 | 0.851 | 1.06 ± 0.54 | 1.03 ± 0.99 | 0.909 | 1.11 ± 0.43 | 1.05 ± 0.51 | |
| Neutrophil/ lymphocyte ratio | 9.53 ± 8.39 | 4.63 ± 3.29 | 0.050 | 5.98 ± 3.82 | 9.86 ± 4.32 | 0.04 | 3.76 ± 4.86 | 5.23 ± 2.96 | 0.626 | 
| Comorbidities | |||||||||
| Diabetes | 6 (27.27%) | 1 (7.69%) | 0.161 | 3 (17.64%) | 1 (14.28%) | 0.840 | 0 | 1 (16.66) | N/A | 
| Cardiovascular diseases | 13 (59.09%) | 5 (38.46%) | 0.238 | 11 (84.61%) | 4 (66.66%) | 0.727 | 9 (69.23%) | 4 (66.66%) | 0.911 | 
| Obesity | 7 (31.81%) | 1 (7.69%) | 0.100 | 2 (15.38%) | 0 | N/A | 3 (23.07%) | 3 (50%) | 0.240 | 
| Comorbidity | Present | Absent | P value | 
|---|---|---|---|
| Cardiovascular | 21.93 ± 10.2 | 21.93 ±10 | 0.998 | 
| Obesity | 19.12 ± 10.06 | 22.77 ± 10.01 | 0.274 | 
| Dyslipidemia | 22.44 ± 12.14 | 21.79 ± 9.58 | 0.851 | 
| Diabetes | 13.29 ±9.42 | 23.74 ± 9.29 | 0.003 | 
| Without diabetes | With diabetes | P value | |
|---|---|---|---|
| Age, years | 72 [61; 82] | 83 [77; 86.5] | 0.023 | 
| Blood glucose (mg/dL) | 104 [96; 121] | 141 [107; 178.5] | 0.002 | 
| CK (U/L) | 76 [46.75; 143] | 43 [24; 74.5] | 0.038 | 
| C-reactive protein (mg/L) | 25.5 [6.69; 69.4] | 32.5 [14.35; 140] | 0.233 | 
| Ferritin (ng/mL) | 234 [163.9; 489] | 854 [330.25;1173.3] | 0.017 | 
| IL6 (pg/mL) | 59.7 [16.4; 185.33] | 229.2 [64.8; 0] | 0.171 | 
| WBC × 1000/µL | 6.6 [4.4; 8.85] | 9.75 [8.4; 11.55] | 0.015 | 
| Neutrophils × 1000/µL | 5.12 ± 2.47 | 7.47 ± 2.46 | 0.011 | 
| Lymphocytes × 1000/µL | 0.86 [0.69; 1.31] | 0.76 [0.6; 1.23] | 0.608 | 
| Neutrophil/lymphocyte ratio | 6.93 ± 6.08 | 10.25 ± 8 | 0.213 | 
| Fibrinogen (mg/dL) | 361.28 [291.72; 556.98] | 548 [364.09; 611.01] | 0.115 | 
| Endocan (pg/mL) | 77.2 ± 31.99 | 77.28 ± 30.31 | 0.994 | 
| Vitamin D (ng/mL) | 25.84 ± 11.39 | 13.3 ± 9.42 | 0.003 | 
© GERMS 2024.
Share and Cite
Constantin, L.; Ungurianu, A.; Ţârcomnicu, I.; Bălulescu, E.; Margină, D. Vitamin D and COVID-19: Comparative Analysis with Other Respiratory Infections and impact of Comorbidities. GERMS 2024, 14, 232-245. https://doi.org/10.18683/germs.2024.1435
Constantin L, Ungurianu A, Ţârcomnicu I, Bălulescu E, Margină D. Vitamin D and COVID-19: Comparative Analysis with Other Respiratory Infections and impact of Comorbidities. GERMS. 2024; 14(3):232-245. https://doi.org/10.18683/germs.2024.1435
Chicago/Turabian StyleConstantin, Laura, Anca Ungurianu, Isabela Ţârcomnicu, Ema Bălulescu, and Denisa Margină. 2024. "Vitamin D and COVID-19: Comparative Analysis with Other Respiratory Infections and impact of Comorbidities" GERMS 14, no. 3: 232-245. https://doi.org/10.18683/germs.2024.1435
APA StyleConstantin, L., Ungurianu, A., Ţârcomnicu, I., Bălulescu, E., & Margină, D. (2024). Vitamin D and COVID-19: Comparative Analysis with Other Respiratory Infections and impact of Comorbidities. GERMS, 14(3), 232-245. https://doi.org/10.18683/germs.2024.1435
 
        
 
       