Epidemiology of Pseudomonas aeruginosa in Diabetic Foot Infections: A Global Systematic Review and Meta-Analysis
Abstract
Introduction
Methods
Literature Search
Eligibility Criteria
Quality Assessment
Data Extraction
Meta-Analysis
Results
Study Selection and Characteristics of Included Studies
Overall Effects
Heterogeneity and Publication Bias
Discussion
Conclusions
Supplementary Materials
Author Contributions
Funding
Availability of data
Acknowledgments
Conflicts of interest
References
- Jneid, J.; Lavigne, J.P.; La Scola, B.; Cassir, N. The diabetic foot microbiota: a review. Human Microbiome. Human Microbiome J 2017, 5, 1–6. [Google Scholar] [CrossRef]
- Iraj, B.; Khorvash, F.; Ebneshahidi, A.; Askari, G. Prevention of diabetic foot ulcer. Int J Prev Med. 2013, 4, 373–376. [Google Scholar]
- Son, S.T.; Han, S.-K.; Lee, T.Y.; Namgoong, S.; Dhong, E.-S. The microbiology of diabetic foot infections in Korea. J Wound Manage Res. 2017, 13, 8–12. [Google Scholar] [CrossRef]
- Bush, K. Past and present perspectives on β-lactamases. Antimicrob Agents Chemother. 2018, 62, e01076-18. [Google Scholar] [CrossRef] [PubMed]
- Sivanmaliappan, T.S.; Sevanan, M. Antimicrobial susceptibility patterns of Pseudomonas aeruginosa from diabetes patients with foot ulcers. Int J Microbiol. 2011, 2011, 605195. [Google Scholar] [CrossRef]
- Slama, T.G. Gram-negative antibiotic resistance: there is a price to pay. Crit Care. 2008, 12 (Suppl 4), S4. [Google Scholar] [CrossRef]
- Esmaeili, D.; Daymad, S.F.; Neshani, A.; Rashki, S.; Marzhoseyni, Z.; Khaledi, A. Alerting prevalence of MBLs producing Pseudomonas aeruginosa isolates. 2019. Gene Reports. 2019, 16, 100460. [Google Scholar] [CrossRef]
- Hsueh, P.R. Study for monitoring antimicrobial resistance trends (SMART) in the Asia-Pacific region, 2002-2010. Int J Antimicrob Agents. 2012, 40 (Suppl), S1–S3. [Google Scholar] [CrossRef] [PubMed]
- Pugazhendhi, S.; Dorairaj, A.P. Appraisal of biofilm formation in diabetic foot infections by comparing phenotypic methods with the ultrastructural analysis. J Foot Ankle Surg. 2018, 57, 309–315. [Google Scholar] [CrossRef]
- Barrigah-Benissan, K.; Ory, J.; Dunyach-Remy, C.; Pouget, C.; Lavigne, J.P.; Sotto, A. Antibiofilm properties of antiseptic agents used on Pseudomonas aeruginosa isolated from diabetic foot ulcers. Int J Mol Sci. 2022, 23, 11270. [Google Scholar] [CrossRef] [PubMed]
- Margolis, D.J.; Hoffstad, O. Response to Comment on Hoffstad et al. Diabetes, lower-extremity amputation, and death. Diabetes Care. 2015;38:1852–1857. Diabetes Care. 2016, 39, e8. [Google Scholar] [CrossRef]
- Karami, P.; Khaledi, A.; Mashoof, R.Y.; et al. The correlation between biofilm formation capability and antibiotic resistance pattern in Pseudomonas aeruginosa. Gene Reports. 2020, 18, 100561. [Google Scholar] [CrossRef]
- Bonfiglio, G.; Carciotto, V.; Russo, G.; et al. Antibiotic resistance in Pseudomonas aeruginosa: an Italian survey. J Antimicrob Chemother. 1998, 41, 307–310. [Google Scholar] [CrossRef]
- Hosseini, S.M.; Naeini, N.S.; Khaledi, A.; Daymad, S.F.; Esmaeili, D. Evaluate the relationship between class 1 integrons and drug resistance genes in clinical isolates of Pseudomonas aeruginosa. Open Microbiol J. 2016, 10, 188–196. [Google Scholar] [CrossRef]
- Zhang, P.; Lu, J.; Jing, Y.; Tang, S.; Zhu, D.; Bi, Y. Global epidemiology of diabetic foot ulceration: a systematic review and meta-analysis. Ann Med. 2017, 49, 106–116. [Google Scholar] [CrossRef]
- Boulton, A.J.; Vileikyte, L.; Ragnarson-Tennvall, G.; Apelqvist, J. The global burden of diabetic foot disease. Lancet. 2005, 366, 1719–1724. [Google Scholar] [CrossRef] [PubMed]
- Peters, E.J.; Lavery, L.A.; Armstrong, D.G. Diabetic lower extremity infection: influence of physical, psychological, and social factors. J Diabetes Complications. 2005, 19, 107–112. [Google Scholar] [CrossRef]
- Roberts, A.D.; Simon, G.L. Diabetic foot infections: the role of microbiology and antibiotic treatment. Semin Vasc Surg; 2012, 25, 75–81. [Google Scholar] [CrossRef]
- Dunyach-Remy, C.; Ngba Essebe, C.; Sotto, A.; Lavigne, J.P. Staphylococcus aureus toxins and diabetic foot ulcers: role in pathogenesis and interest in diagnosis. Toxins 2016, 8, 209. [Google Scholar] [CrossRef]
- Palomo, A.T.; Pires, A.P.M.; Matielo, M.F.; et al. Microbiology of diabetic foot infections in a tertiary care hospital in São Paulo, Brazil. Antibiotics 2022, 11, 1125. [Google Scholar] [CrossRef]
- Muthu, S.E.; Aberna, R.A.; Mohan, V.; et al. Phenotypes of isolates of Pseudomonas aeruginosa in a diabetes care center. Arch Med Res. 2006, 37, 95–101. [Google Scholar] [CrossRef] [PubMed]
- Al-Khudhairy, M.K.; Al-Shammari, M.M.M. Prevalence of metallo-β-lactamase–producing Pseudomonas aeruginosa isolated from diabetic foot infections in Iraq. New Microbes New Infect. 2020, 35, 100661. [Google Scholar] [CrossRef] [PubMed]
- Saltoglu, N.; Ergonul, O.; Tulek, N.; et al. Influence of multidrug resistant organisms on the outcome of diabetic foot infection. Int J Infect Dis. 2018, 70, 10–14. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Qi, X.; Yuan, G.; et al. Microbiological profile and clinical characteristics of diabetic foot infection in northern China: a retrospective multicentre survey in the Beijing area. J Med Microbiol. 2018, 67, 160–168. [Google Scholar] [CrossRef]
- Agwu, E.; Ihongbe, J.; Inyang, N. Prevalence of quinolonesusceptible Pseudomonas aeruginosa and Staphylococcus aureus in delayed-healing diabetic foot ulcers in Ekpoma, Nigeria. Wounds 2010, 22, 100–105. [Google Scholar]
- Ul Hassan, F.; Qudus, M.S.; Sehgal, S.A.; et al. Prevalence of extended-spectrum β-lactamases in multi-drug resistant Pseudomonas aeruginosa from diabetic foot patients. Endocr Metab Immune Disord Drug Targets. 2019, 19, 443–448. [Google Scholar] [CrossRef]
- Zhao, G.; Hochwalt, P.C.; Usui, M.L.; et al. Delayed wound healing in diabetic (db/db) mice with Pseudomonas aeruginosa biofilm challenge: a model for the study of chronic wounds. Wound Repair Regen. 2010, 18, 467–477. [Google Scholar] [CrossRef]
- Moser, C.; Jensen, P.Ø.; Thomsen, K.; et al. Immune responses to Pseudomonas aeruginosa biofilm infections. Front Immunol. 2021, 12, 625597. [Google Scholar] [CrossRef]
- Srivastava, P.; Sivashanmugam, K. Combinatorial drug therapy for controlling Pseudomonas aeruginosa and its association with chronic condition of diabetic foot ulcer. Int J Low Extrem Wounds. 2020, 19, 7–20. [Google Scholar] [CrossRef]
- Hwang, I.S.; Hwang, J.H.; Choi, H.; Kim, K.J.; Lee, D.G. Synergistic effects between silver nanoparticles and antibiotics and the mechanisms involved. J Med Microbiol. 2012, 61, 1719–1726. [Google Scholar] [CrossRef]
- Lipsky, B.A.; Berendt, A.R.; Cornia, P.B.; et al. 2012 Infectious Diseases Society of America clinical practice guideline for the diagnosis and treatment of diabetic foot infections. Clin Infect Dis. 2012, 54, e132–e173. [Google Scholar] [CrossRef]
- Veve, M.P.; Mercuro, N.J.; Sangiovanni, R.J.; Santarossa, M.; Patel, N. Prevalence and predictors of Pseudomonas aeruginosa among hospitalized patients with diabetic foot infections. Open Forum Infect Dis. 2022, 9, ofac297. [Google Scholar] [CrossRef] [PubMed]
- Lebowitz, D.; Gariani, K.; Kressmann, B.; et al. Are antibiotic-resistant pathogens more common in subsequent episodes of diabetic foot infection? Int J Infect Dis. 2017, 59, 61–64. [Google Scholar] [CrossRef] [PubMed]
- Hong, D.J.; Bae, I.K.; Jang, I.H.; Jeong, S.H.; Kang, H.K.; Lee, K. Epidemiology and characteristics of metallo-β-lactamaseproducing Pseudomonas aeruginosa. Infect Chemother. 2015, 47, 81–97. [Google Scholar] [CrossRef]
- Gasink, L.B.; Fishman, N.O.; Weiner, M.G.; Nachamkin, I.; Bilker, W.B.; Lautenbach, E. Fluoroquinolone-resistant Pseudomonas aeruginosa: assessment of risk factors and clinical impact. Am J Med. 2006, 119, 526. [Google Scholar] [CrossRef]
- Akya, A.; Salimi, A.; Nomanpour, B.; Ahmadi, K. Prevalence and clonal dissemination of metallo-beta-lactamaseproducing Pseudomonas aeruginosa in Kermanshah. Jundishapur J Microbiol. 2015, 8, e20980. [Google Scholar] [CrossRef]
- Quale, J.; Bratu, S.; Gupta, J.; Landman, D. Interplay of efflux system, ampC, and oprD expression in carbapenem resistance of Pseudomonas aeruginosa clinical isolates. Antimicrob Agents Chemother. 2006, 50, 1633–1641. [Google Scholar] [CrossRef] [PubMed]
- Lebeaux, D.; Ghigo, J.-M.; Beloin, C. Biofilm-related infections: bridging the gap between clinical management and fundamental aspects of recalcitrance toward antibiotics. Microbiol Mol Biol Rev. 2014, 78, 510–543. [Google Scholar] [CrossRef]
- Baby, S.; George, V. Essential oils and new antimicrobial strategies. In New strategies. In New strategies combating bacterial infection; Ahmad, I., Aqil, F., Eds.; Wiley-VCH: Weinheim, 2008; pp. 165–203. [Google Scholar] [CrossRef]
- Rahim, K.; Qasim, M.; Rahman, H.; et al. Antimicrobial resistance among aerobic biofilm producing bacteria isolated from chronic wounds in the tertiary care hospitals of Peshawar, Pakistan. J Wound Care. 2016, 25, 480–486. [Google Scholar] [CrossRef]


© GERMS 2023.
Share and Cite
Garousi, M.; MonazamiTabar, S.; Mirazi, H.; Farrokhi, Z.; Khaledi, A.; Shakerimoghaddam, A. Epidemiology of Pseudomonas aeruginosa in Diabetic Foot Infections: A Global Systematic Review and Meta-Analysis. Germs 2023, 13, 362-372. https://doi.org/10.18683/germs.2023.1406
Garousi M, MonazamiTabar S, Mirazi H, Farrokhi Z, Khaledi A, Shakerimoghaddam A. Epidemiology of Pseudomonas aeruginosa in Diabetic Foot Infections: A Global Systematic Review and Meta-Analysis. Germs. 2023; 13(4):362-372. https://doi.org/10.18683/germs.2023.1406
Chicago/Turabian StyleGarousi, Mitra, Sina MonazamiTabar, Hosein Mirazi, Zahra Farrokhi, Azad Khaledi, and Ali Shakerimoghaddam. 2023. "Epidemiology of Pseudomonas aeruginosa in Diabetic Foot Infections: A Global Systematic Review and Meta-Analysis" Germs 13, no. 4: 362-372. https://doi.org/10.18683/germs.2023.1406
APA StyleGarousi, M., MonazamiTabar, S., Mirazi, H., Farrokhi, Z., Khaledi, A., & Shakerimoghaddam, A. (2023). Epidemiology of Pseudomonas aeruginosa in Diabetic Foot Infections: A Global Systematic Review and Meta-Analysis. Germs, 13(4), 362-372. https://doi.org/10.18683/germs.2023.1406
