Improving the Diagnosis of Pulmonary Tuberculosis Using Line Probe Assay and Determining the Factors Associated With the Disease in Children in Jos, Nigeria
Abstract
Introduction
Methods
Study design
Study site
Study population
Operational definitions
Recruitment of study participants
Specimen collection and processing
Patient care and treatment
Laboratory procedure for the LPA
Statistical analysis
Ethical approval
Results
Characteristics of the study population
Outcomes
Factors associated with PTB
Discussion
Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of interest
References
- World Health Organization. Global Tuberculosis REPORT 2018; WHO: Geneva, Switzerland, 2018; Available online: https://apps.who.int/iris/bitstream/handle/10665/329368/9789241565714-eng.pdf?ua=1 (accessed on 4 August 2020).
- Dodd, P.J.; Yuen, C.M.; Sismanidis, C.; Seddon, J.A.; Jenkins, H.E. The global burden of tuberculosis mortality in children: A mathematical modelling study. Lancet Glob Health 2017, 5, e898–e906. [Google Scholar] [CrossRef] [PubMed]
- Osborne, C.M. The challenge of diagnosing childhood tuberculosis in a developing country. Arch Dis Child 1995, 72, 369–374. [Google Scholar] [CrossRef] [PubMed]
- Starke, J.R. Pediatric tuberculosis: Time for a new approach. Tuberculosis (Edinb) 2003, 83, 208–212. [Google Scholar] [CrossRef]
- Zar, H.J.; Hanslo, D.; Apolles, P.; Swingler, G.; Hussey, G. Induced sputum versus gastric lavage for microbiological confirmation of pulmonary tuberculosis in infants and young children: A prospective study. Lancet 2005, 365, 130–134. [Google Scholar] [CrossRef] [PubMed]
- Cruz, A.T.; Revell, P.A.; Starke, J.R. Gastric aspirate yield for children with suspected pulmonary tuberculosis. J Pediatric Infect Dis Soc 2013, 2, 171–174. [Google Scholar] [CrossRef] [PubMed]
- Lawn, S.D.; Nicol, M.P. Xpert® MTB/RIF assay: Development, evaluation and implementation of a new rapid molecular diagnostic for tuberculosis and rifampicin resistance. Future Microbiol 2011, 6, 1067–1082. [Google Scholar] [CrossRef] [PubMed]
- Nicol, M.P.; Workman, L.; Isaacs, W.; et al. Accuracy of the Xpert MTB/RIF test for the diagnosis of pulmonary tuberculosis in children admitted to hospital in Cape Town, South Africa: A descriptive study. Lancet Infect Dis 2011, 11, 819–824. [Google Scholar] [CrossRef] [PubMed]
- Hain Lifescience. Genotype® MTBDRplus Ver 2.0. Instructions for Use; Hain Lifescience GmbH: Nehren, Germany; Available online: https://www.ghdonline.org/uploads/MTBDRplusV2_0212_304A-02-02.pdf (accessed on 1 June 2020).
- National Population Commission. Population Distribution by Sex, state, LGA & Senatorial District. In 2006 Population and Housing Census: Priority Table Volume III; National Population Commission: Abuja, Nigeria. Available online: http://catalog.ihsn.org/index.php/catalog/3340/down load/48521 (accessed on 4 August 2020).
- Federal Ministry of Health. National Tuberculosis, Leprosy and Buruli Ulcer Management and Control Guidelines, 6th ed.; Department of Public Health National Tuberculosis and Leprosy Control Programme; FMOH, 2015.
- Dean, A.G.; Sullivan, K.M.; Soe, M.M. OpenEpi: Open Source Epidemiologic Statistics for Public Health, Version 2.3; Updated 2013/04/06. Available online: www.OpenEpi.com (accessed on 4 August 2020).
- Graham, S.M.; Cuevas, L.E.; Jean-Philippe, P.; et al. Clinical case definitions for classification of intrathoracic tuberculosis in children: An update. Clin Infect Dis. 2015, 61 (Suppl. S3), S179–S187. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Application Tools: WHO AnthroPlus Software; World Health Organization: Geneva, Switzerland; Available online: http://www.who.int/growthref/tools/en/ (accessed on 1 June 2020).
- Federal Ministry of Health. National Guidelines for HIV Prevention Treatment and Care. In National AIDS and STIs Control Programme; FMOH, 2016. [Google Scholar]
- Kunkel, A.; Abel Zur Wiesch, P.; Nathavitharana, R.R.; Marx, F.M.; Jenkins, H.E.; Cohen, T. Smear positivity in paediatric and adult tuberculosis: Systematic review and meta-analysis. BMC Infect Dis 2016, 16, 282. [Google Scholar] [CrossRef] [PubMed]
- Al-Aghbari, N.; Al-Sonboli, N.; Yassin, M.A.; et al. Multiple sampling in one day to optimize smear microscopy in children with tuberculosis in Yemen. PLoS ONE 2009, 4, e5140. [Google Scholar] [CrossRef] [PubMed]
- Singh, B.K.; Sharma, S.K.; Sharma, R.; et al. Diagnostic utility of a line probe assay for multidrug resistant-TB in smear-negative pulmonary tuberculosis. PLoS ONE 2017, 12, e0182988. [Google Scholar] [CrossRef] [PubMed]
- Malhotra, P.; Chhina, C.; Gupta, V.; Singh, A.; Sandhu, D. Role of line probe assay in diagnosis and detection of drug resistance in Mycobacterium tuberculosis. Int J Res Dev Pharm L Sci 2019, 8, 46–49. [Google Scholar] [CrossRef]
- Arora, J.; Singhal, R.; Bhalla, M.; et al. Drug resistance detection and mutation patterns of multidrug resistant tuberculosis strains from children in Delhi. J Epidemiol Glob Health 2017, 7, 141–145. [Google Scholar] [CrossRef] [PubMed]
- Pelissari, D.M.; Diaz-Quijano, F.A. Household crowding as a potential mediator of socioeconomic determinants of tuberculosis incidence in Brazil. PLoS ONE 2017, 12, e0176116. [Google Scholar] [CrossRef] [PubMed]
- World Health Organisation. Housing and Health Guidelines. Available online: https://apps.who.int/iris/bitstream/handle/10665/276001/9789241550376-eng.pdf?ua=1 (accessed on 11 June 2020).
- Lienhardt, C.; Fielding, K.; Sillah, J.S.; et al. Investigation of the risk factors for tuberculosis: A case-control study in three countries in West Africa. Int J Epidemiol 2005, 34, 914–923. [Google Scholar] [CrossRef] [PubMed]
- Corbett, E.L.; Bandason, T.; Cheung, Y.B.; et al. Prevalent infectious tuberculosis in Harare, Zimbabwe: Burden, risk factors and implications for control. Int J Tuberc Lung Dis 2009, 13, 1231–1237. [Google Scholar] [PubMed]
- Escombe, A.R.; Oeser, C.C.; Gilman, R.H.; et al. Natural ventilation for the prevention of airborne contagion. PLoS Med 2007, 4, e68. [Google Scholar] [CrossRef] [PubMed]
- Lygizos, M.; Shenoi, S.V.; Brooks, R.P.; et al. Natural ventilation reduces high TB transmission risk in traditional homes in rural KwaZulu-Natal, South Africa. BMC Infect Dis 2013, 13, 300. [Google Scholar] [CrossRef] [PubMed]
| Characteristics | Total N (%) | Tuberculosis (LPA) | p Value | |
|---|---|---|---|---|
| N (%) | Absent N (%) | |||
| Age (years) | 0.167 | |||
| 0–5 | 58 (56.3) | 23 (48.9) | 35 (62.5) | |
| 6–15 | 45 (43.7) | 24 (51.1) | 21 (37.5) | |
| Median (IQR) | 3.3 (1.2–9.0) | 5.1 (1.5–12.0) | 3.0 (1.1–8.3) | 0.089 |
| Sex | 0.077 | |||
| Male | 47 (45.6) | 17 (36.2) | 30 (53.6) | |
| Female | 56 (54.4) | 30 (63.8) | 26 (46.4) | |
| Religion | 0.442 | |||
| Christianity | 59 (57.3) | 25 (53.2) | 34 (60.7) | |
| Islam | 44 (42.7) | 22 (46.8) | 22 (39.3) | |
| Education level of child | 0.636 | |||
| Pre-school | 58 (56.3) | 24 (51.1) | 34 (60.7) | |
| Primary | 22 (21.4) | 12 (25.5) | 10 (17.9) | |
| Secondary | 9 (8.7) | 4 (8.5) | 5 (8.9) | |
| Tertiary | 4 (3.9) | 3 (6.4) | 1 (1.8) | |
| No formal education | 10 (9.7) | 4 (8.5) | 6 (10.7) | |
| Type of housing | 0.667 | |||
| Flat | 35 (34.0) | 17 (36.2) | 18 (32.1) | |
| Compound type | 68 (66.0) | 30 (63.8) | 38 (67.9) | |
| Family size | ||||
| Median (IQR) | 6 (4–9) | 6 (5–10) | 6 (4–8) | 0.145 |
| Number of persons sleeping in the same room with the child | 0.018 | |||
| 1–2 | 39 (37.9) | 12 (25.5) | 27 (48.2) | |
| 3–7 | 64 (62.1) | 35 (74.5) | 29 (51.8) | |
| Median (IQR) | 3 (2–4) | 3 (2–4) | 3 (2–3) | 0.004 |
| Number of windows in room where child sleeps | 0.021 | |||
| 0–1 | 68 (66.7) | 37 (78.7) | 31 (56.4) | |
| 2–3 | 34 (33.3) | 10 (21.3) | 24 (43.6) | |
| Median (IQR) | 1 (1–2) | 1 (1–1) | 1 (1–2) | 0.027 |
| Characteristics | Total N (%) | Tuberculosis (LPA) | p Value | |
|---|---|---|---|---|
| Present N (%) | Absent N (%) | |||
| BCG vaccination | 0.250 | |||
| Yes | 84 (85.7) | 40 (90.9) | 44 (81.5) | |
| No | 14 (14.3) | 4 (9.1) | 10 (18.5) | |
| History of TB contact | 1.000 | |||
| Yes | 37 (35.9) | 17 (36.2) | 20 (35.8) | |
| No | 59 (57.3) | 27 (57.4) | 32 (57.1) | |
| Don’t know | 7 (6.8) | 3 (6.4) | 4 (7.1) | |
| Cough | 1.000 | |||
| Present | 98 (95.1) | 45 (95.7) | 53 (94.6) | |
| Absent | 5 (4.9) | 2 (4.3) | 3 (5.4) | |
| Fever | 0.097 | |||
| Present | 80 (77.7) | 40 (85.1) | 40 (71.4) | |
| Absent | 23 (22.3) | 7 (14.9) | 16 (28.6) | |
| Weight loss | 0.769 | |||
| Present | 91 (88.3) | 42 (89.4) | 49 (87.5) | |
| Absent | 12 (11.7) | 5 (10.6) | 7 (12.5) | |
| Night sweats | 0.796 | |||
| Present | 48 (47.1) | 21 (45.6) | 27 (48.2) | |
| Absent | 54 (52.9) | 25 (54.4) | 29 (51.8) | |
| TB-HIV co-infection | 0.650 | |||
| Present | 20 (22.2) | 8 (20.0) | 12 (24.0) | |
| Absent | 70 (77.8) | 32 (80.0) | 38 (76.0) | |
| BMI Z-score | 0.205 | |||
| ≤−3.0 | 68 (68.7) | 28 (62.2) | 40 (74.1) | |
| >−3.0 | 31 (31.3) | 17 (37.8) | 14 (25.9) | |
| Median (IQR) | −2.1 (−3.3–0.5) | −2.3 (−3.5–1.0) | −1.8 (−3.1–0.4) | 0.178 |
| MUAC (N = 97) | ||||
| Median (IQR) in cm | 13.2 (11.5–15.2) | 13 (11.3–15.2) | 13.5 (11.5–15.5) | 0.364 |
| Abnormal CXR | <0.001 | |||
| Yes | 69 (67.0) | 43 (91.5) | 26 (46.4) | |
| No | 34 (33.0) | 4 (8.5) | 30 (53.6) | |
| Mantoux (N = 44) | 0.228 | |||
| Median (IQR) in mm | 0 (0–7.5) | 0 (0–6) | 3 (0–10) | |
| ESR (N = 50) | 0.443 | |||
| Median (IQR) in mm/hr | 55.5 (25–91) | 56 (32–119) | 55 (16–80) | |
| Sample Type | Smear Microscopy | LPA | ||
|---|---|---|---|---|
| Positive N (%) | Negative N (%) | Positive N (%) | Negative N (%) | |
| Gastric (n = 67) | 2 (3.0) | 65 (97.0) | 28 (41.8) | 39 (58.2) |
| Sputum (n = 31) | 5 (16.1) | 26 (83.9) | 18 (58.1) | 13 (41.9) |
| Pleural (n = 5 | 0 (0.0) | 5 (100) | 1 (20.0) | 4 (80.0) |
| Total (n = 103) | 7 (6.8) | 96 (93.2) | 47 (45.6) | 56 (54.4) |
| Characteristics | Bivariate Analysis | Multivariate Analysis | ||
|---|---|---|---|---|
| Crude OR (95% CI) | p Value | Adjusted OR (95% CI) | p Value | |
| Abnormal chest x-ray | <0.001 | <0.001 | ||
| No | 1.00 (Ref) | 1.00 (Ref) | ||
| Yes | 12.40 (3.92–39.22 | 12.39 (3.75–40.90) | ||
| Number of persons sleeping in the same room with the child | 0.006 | 0.018 | ||
| <3 | 1.00 (Ref) | 1.00 (Ref) | ||
| >3 | 1.54 (1.13–2.11) | 3.30 (1.23–8.85) | ||
| Number of windows in room where child sleeps | 0.019 | 0.044 | ||
| 2–3 | 1.00 (Ref) | 1.00 (Ref) | ||
| 0–1 | 2.90 (1.19–6.90) | 2.86 (1.03–7.95) | ||
© GERMS 2025.
Share and Cite
Ebonyi, A.O.; Oguche, S.; Abok, I.I.; Isa, Y.O.; Ani, C.C.; Akhiwu, H.O.; Ihekaike, M.M.; Yiltok, E.S.; Ochoga, M.O.; Sagay, A.S. Improving the Diagnosis of Pulmonary Tuberculosis Using Line Probe Assay and Determining the Factors Associated With the Disease in Children in Jos, Nigeria. GERMS 2020, 10, 328-337. https://doi.org/10.18683/germs.2020.1225
Ebonyi AO, Oguche S, Abok II, Isa YO, Ani CC, Akhiwu HO, Ihekaike MM, Yiltok ES, Ochoga MO, Sagay AS. Improving the Diagnosis of Pulmonary Tuberculosis Using Line Probe Assay and Determining the Factors Associated With the Disease in Children in Jos, Nigeria. GERMS. 2020; 10(4):328-337. https://doi.org/10.18683/germs.2020.1225
Chicago/Turabian StyleEbonyi, Augustine O., Stephen Oguche, Ibrahim I. Abok, Yetunde O. Isa, Charles C. Ani, Helen O. Akhiwu, Marcia M. Ihekaike, Esther S. Yiltok, Martha O. Ochoga, and Atiene S. Sagay. 2020. "Improving the Diagnosis of Pulmonary Tuberculosis Using Line Probe Assay and Determining the Factors Associated With the Disease in Children in Jos, Nigeria" GERMS 10, no. 4: 328-337. https://doi.org/10.18683/germs.2020.1225
APA StyleEbonyi, A. O., Oguche, S., Abok, I. I., Isa, Y. O., Ani, C. C., Akhiwu, H. O., Ihekaike, M. M., Yiltok, E. S., Ochoga, M. O., & Sagay, A. S. (2020). Improving the Diagnosis of Pulmonary Tuberculosis Using Line Probe Assay and Determining the Factors Associated With the Disease in Children in Jos, Nigeria. GERMS, 10(4), 328-337. https://doi.org/10.18683/germs.2020.1225
