High Prevalence of Multidrug-Resistant Gram-Negative Bacterial Infections in Northwest Nigeria
Abstract
Introduction
Methods
Settings and study centres
Bacterial collection and identification
Identification and preservation
Antibiotic susceptibility testing
Operational definitions
Ethics statement
Statistical analysis
Results
Socio-demographic characteristics of the patients with bacterial infections
Bacterial isolates
Antibiotic resistance profile
Distribution of resistance phenotypes
Phenotypic tests for beta-lactamase enzymes
Discussion
Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Ventola, C.L. The antibiotic resistance crisis part 1: Causes and threats. Pharm Ther. 2015, 40, 277–283. [Google Scholar]
- WHO. Antimicrobial Resistance: Global report on surveillance 2014. Available online: https://www.who.int/antimicrobial-resistance/publications/surveillancereport/en/ (accessed on 12 April 2020).
- World Bank. Drug-resistant infections: A threat to our economic future. World Bank Rep. 2016. (accessed on day month year).
- Founou, R.C.; Founou, L.L.; Essack, S.Y. Clinical and economic impact of antibiotic resistance in developing countries: A systematic review and meta-analysis. PLoS ONE 2017, 12, e0189621. [Google Scholar] [CrossRef] [PubMed]
- Roca, I.; Akova, M.; Baquero, F.; et al. The global threat of antimicrobial resistance: Science for intervention. New Microbes New Infect. 2015, 6, 22–29. [Google Scholar] [CrossRef]
- Ayukekbong, J.A.; Ntemgwa, M.; Atabe, A.N. The threat of antimicrobial resistance in developing countries: Causes and control strategies. Antimicrob Resist Infect Control. 2017, 6, 47. [Google Scholar] [CrossRef] [PubMed]
- Sharma, D.; Patel, R.P.; Zaidi, S.T.R.; Camerino, G.M.; Aldo, B.; Moraes, L.A. Interplay of the quality of ciprofloxacin and antibiotic resistance in developing countries. Front Pharmacol. 2017, 8, 546. [Google Scholar] [CrossRef] [PubMed]
- Osei-Safo, D.; Egbo, H.A.; Nettey, H.; Konadu, D.Y.; Addae-Mensah, I. Evaluation of the quality of some antibiotics distributed in Accra and Lagos. Int J Pharm Sci Res. 2016, 7, 1991–2000. [Google Scholar]
- Kariuki, S.; Dougan, G. Antibacterial resistance in sub-Saharan Africa: An underestimated emergency. Ann N Y Acad Sci. 2014, 1323, 43–55. [Google Scholar] [CrossRef]
- Tadesse, B.T.; Ashley, E.A.; Ongarello, S.; et al. Antimicrobial resistance in Africa: A systematic review. BMC Infect Dis. 2017, 17, 616. [Google Scholar] [CrossRef]
- NCDC. Antimicrobial use and resistance in Nigeria. 2017. Available online: http://www.ncdc.gov.ng/themes/common/docs/proto cols/56_1510840387.pdf (accessed on 4 March 2020).
- Olowo-okere, A.; Abdullahi, M.A.; Ladidi, B.K.; et al. Emergence of metallo-b-lactamase producing Gram-negative bacteria in a hospital with no history of carbapenem usage in northwest Nigeria. Ife J Sci. 2019, 21, 323–331. [Google Scholar] [CrossRef]
- Yusuf, I.; Arzai, A.H.; Haruna, M.; Sharif, A.A.; Getso, M.I. Detection of multi drug resistant bacteria in major hospitals in Kano, North-West, Nigeria. Braz J Microbiol. 2014, 45, 791–798. [Google Scholar] [CrossRef]
- Nigerian Bureau of Statistics. Demographic statistics bulletin. 2017. Available online: www.nigerianstat.gov.ng (accessed on 12 April 2020).
- EUCAST. European Committee on Antimicrobial Susceptibility Testing Breakpoint tables for interpretation of MICs and zone diameters European Committee on Antimicrobial Susceptibility Testing Breakpoint tables for interpretation of MICs and zone diameters. 2019. Available online: www.eucast.org/mic_distributions_and_ecoffs (accessed on 12 April 2020).
- EUCAST. EUCAST guidelines for detection of resistance mechanisms and specific resistances of clinical and/or epidemiological importance. 2019. Available online: https://www.eucast.org/resistance_mechanisms (accessed on 12 April 2020).
- Bakour, S.; Garcia, V.; Loucif, L.; et al. Rapid identification of carbapenemase-producing Enterobacteriaceae, Pseudomonas aeruginosa and Acinetobacter baumannii using a modified Carba NP test. New Microbes New Infect. 2015, 7, 89–93. [Google Scholar] [CrossRef]
- Magiorakos, A.; Srinivasan, A.; Carey, R.B.; et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: An international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect. 2012, 18, 268–281. [Google Scholar] [CrossRef] [PubMed]
- Kadri, S.S.; Adjemian, J.; Lai, L.; et al. Difficult-to-treat resistance in Gram-negative bacteremia at 173 US hospitals: Retrospective cohort analysis of prevalence, predictors, and outcome of resistance to all first-line agents. Clin Infect Dis. 2018, 67, 1803–1814. [Google Scholar] [CrossRef] [PubMed]
- Tacconelli, E.; Sifakis, F.; Harbarth, S.; et al. Surveillance for control of antimicrobial resistance. Lancet Infect Dis. 2018, 18, e99–e106. [Google Scholar] [CrossRef]
- Ventola, C.L. The antibiotic resistance crisis: Part 2: Management strategies and new agents. P T. 2015, 40, 344–352. [Google Scholar] [PubMed]
- Olowo-Okere, A.; Ibrahim, Y.K.E.; Sani, A.S.; Atata, R.F.; Olayinka, B.O. Prevalence of surgical site infection in a Nigerian university teaching hospital. J Pharm Allied Sci. 2017, 14, 2430–2438. [Google Scholar]
- Iliyasu, G.; Dayyab, F.; Habib, Z.G.; et al. Knowledge and practices of infection control among healthcare workers in a Tertiary Referral Center in North-Western Nigeria. Ann Afr Med. 2015, 15, 34–40. [Google Scholar] [CrossRef]
- Makama, J.G.; Iribhogbe, P.; Ameh, E.A. Overcrowding of accident & emergency units: Is it a growing concern in Nigeria? Afr Health Sci. 2015, 15, 457–465. [Google Scholar] [CrossRef]
- Abubakar, H.M.; Musa, I. Overcrowding: The need for taskforce in hospital emergency departments. Int J Med Eval Phys Rep. 2018, 3, 18–25. [Google Scholar]
- WHO. Global priority list of antibiotic-resistant bacteria to guide research, discovery, and development of new antibiotics. 2017. Available online: https://www.who.int/medicines/publications/global-priority-list-antibiotic-resistant-bacteria/en/ (accessed on 12 April 2020).
- Makanjuola, O.B.; Fayemiwo, S.A.; Okesola, A.O.; et al. Pattern of multidrug resistant bacteria associated with intensive care unit infections in Ibadan, Nigeria. Ann Ib Postgrad Med. 2018, 16, 162–169. [Google Scholar]
- Agyepong, N.; Govinden, U.; Owusu-Ofori, A.; Essack, S.Y. Multidrug-resistant gram-negative bacterial infections in a teaching hospital in Ghana. Antimicrob Resist Infect Control. 2018, 7, 37. [Google Scholar] [CrossRef]
- Raji, M.A.; Jamal, W.; Ojemhen, O.; Rotimi, V.O. Point-surveillance of antibiotic resistance in Enterobacteriaceae isolates from patients in a Lagos Teaching Hospital, Nigeria. J Infect Public Health. 2013, 6, 431–437. [Google Scholar] [CrossRef]
- Oli, A.N.; Ogbuagu, V.I.; Ejikeugwu, C.P.; et al. Multi-antibiotic resistance and factors affecting carriage of extended spectrum β-lactamase-producing Enterobacteriaceae in pediatric population of Enugu metropolis, Nigeria. Med Sci (Basel). 2019, 7, 104. [Google Scholar] [CrossRef] [PubMed]
- Alaka, O.O.; Orimolade, E.A.; Ojo, O.O.; Onipede, A.O. The phenotypic detection of carbapenem resistant organisms in orthopaedic wound infections in Ile-Ife, Nigeria. Acta Sci Microbiol. 2019, 2, 35–42. [Google Scholar]
- Mailafia, S.; Nafarnda, W.; Sugun, M.Y. Occurrence and antimicrobial susceptibility patterns of Aeromonas hydrophila isolates among diarrhoeic patients from University of Abuja Teaching Hospital, Nigeria. J Pure Appl Microbiol. 2017, 11, 63–70. [Google Scholar] [CrossRef]
- Ryan, M.P.; Pembroke, J.T. Brevundimonas spp: Emerging global opportunistic pathogens. Virulence. 2018, 9, 480–493. [Google Scholar] [CrossRef]
- Whistler, T.; Sangwichian, O.; Jorakate, P.; et al. Identification of Gram negative nonfermentative bacteria: How hard can it be? PLoS Negl Trop Dis. 2019, 13, e0007729. [Google Scholar] [CrossRef]
- Sanguinetti, M.; Posteraro, B. Mass spectrometry applications in microbiology beyond microbe identification: Progress and potential. Expert Rev Proteomics. 2016, 13, 965–977. [Google Scholar] [CrossRef]
- Ajibola, O.; Omisakin, O.A.; Eze, A.A.; Omoleke, S.A. Self-medication with antibiotics, attitude and knowledge of antibiotic resistance among community residents and undergraduate students in Northwest Nigeria. Diseases. 2018, 6, 32. [Google Scholar] [CrossRef]
- Umar, L.W.; Isah, A.; Musa, S.; Umar, B. Prescribing pattern and antibiotic use for hospitalized children in a Northern Nigerian Teaching Hospital. Ann Afr Med. 2018, 17, 26–32. [Google Scholar] [CrossRef]
- Shallcross, L.J.; Davies, D.S. Antibiotic overuse: A key driver of antimicrobial resistance. Br J Gen Pract. 2014, 64, 604–605. [Google Scholar] [CrossRef]
- Ayoub Moubareck, C.; Hammoudi Halat, D.; Akkawi, C.; et al. Role of outer membrane permeability, efflux mechanism, and carbapenemases in carbapenem-nonsusceptible Pseudomonas aeruginosa from Dubai hospitals: Results of the first cross-sectional survey. Int J Infect Dis 2019, 84, 143–150. [Google Scholar] [CrossRef]
- Musa, B.M.; Imam, H.; Lendel, A.; et al. The burden of extended-spectrum β-lactamase-producing Enterobacteriaceae in Nigeria: A systematic review and meta-analysis. Trans R Soc Trop Med Hyg. 2020, 114, 241–248. [Google Scholar] [CrossRef]
- Tanko, N.; Bolaji, R.O.; Olayinka, A.T.; Olayinka, B.O. A systematic review on the prevalence of extended spectrum beta lactamase producing Gram-negative bacteria in Nigeria. J Glob Antimicrob Resist. 2020, 22, 488–496. [Google Scholar] [CrossRef] [PubMed]
- Shettima, S.A.; Tickler, I.A.; Dela Cruz, C.M.; Tenover, F.C. Characterization of carbapenem-resistant Gram-negative organisms from clinical specimens in Yola, Nigeria. J Glob Antimicrob Resist. 2020, 21, 42–45. [Google Scholar] [CrossRef] [PubMed]
- Beyene, D.; Bitew, A.; Fantew, S.; Mihret, A.; Evans, M. Multidrug-resistant profile and prevalence of extended spectrum β-lactamase and carbapenemase production in fermentative Gram-negative bacilli recovered from patients and specimens referred to National Reference. PLoS ONE 2019, 14, e0222911. [Google Scholar] [CrossRef]
- Codjoe, F.S.; Donkor, E.S.; Smith, T.J.; Miller, K. Phenotypic and genotypic characterization of carbapenem-resistant Gram-negative bacilli pathogens from hospitals in Ghana. Microb Drug Resist. 2019, 25, 1449–1457. [Google Scholar] [CrossRef] [PubMed]


![]() |
![]() |
![]() |
![]() |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Olowo-Okere, A.; Ibrahim, Y.K.E.; Nabti, L.Z.; Olayinka, B.O. High Prevalence of Multidrug-Resistant Gram-Negative Bacterial Infections in Northwest Nigeria. GERMS 2020, 10, 310-321. https://doi.org/10.18683/germs.2020.1223
Olowo-Okere A, Ibrahim YKE, Nabti LZ, Olayinka BO. High Prevalence of Multidrug-Resistant Gram-Negative Bacterial Infections in Northwest Nigeria. GERMS. 2020; 10(4):310-321. https://doi.org/10.18683/germs.2020.1223
Chicago/Turabian StyleOlowo-Okere, Ahmed, Yakubu Kokori Enevene Ibrahim, Larbi Zakaria Nabti, and Busayo Olalekan Olayinka. 2020. "High Prevalence of Multidrug-Resistant Gram-Negative Bacterial Infections in Northwest Nigeria" GERMS 10, no. 4: 310-321. https://doi.org/10.18683/germs.2020.1223
APA StyleOlowo-Okere, A., Ibrahim, Y. K. E., Nabti, L. Z., & Olayinka, B. O. (2020). High Prevalence of Multidrug-Resistant Gram-Negative Bacterial Infections in Northwest Nigeria. GERMS, 10(4), 310-321. https://doi.org/10.18683/germs.2020.1223




