An Untargeted Lipidomic Analysis Reveals Depletion of Several Phospholipid Classes in Patients with Familial Hypercholesterolemia on Treatment with Evolocumab
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population and Protocol
2.2. Blood Laboratory Parameters
2.3. Lipid Extraction
2.4. UHPLC-ESI-Q-TOF–MS Analysis
2.5. Lipid Annotation and Data Analysis
2.6. Statistical Analysis
3. Results
3.1. Serum Cholesterol Profile and Lipoprotein Levels after 4- and 12-Week Treatment
3.2. Effects of pcsk9 Inhibitors on Plasma Lipidome
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
CE | cholesteryl ester |
CER | ceramide |
HEX-CER | glucosyl/galactosyl-ceramide |
LAC-CER | lactosyl-ceramide |
S-HEX-CER | 3-O-sulfogalactosylceramide |
DAG | diacylglycerol |
TG | triacylglycerol |
PC | phosphatidylcholine |
PE | phosphatidylethanolamine |
LPC | lysophosphatidylcholine |
LPE | lysophospatidylethanolamine |
PI | phosphatidylinositol |
SM | sphingomyelin |
TAG | triacylglycerol |
References
- Mach, F.; Baigent, C.; Catapano, A.L.; Koskinas, K.C.; Casula, M.; Badimon, L.; Chapman, M.J.; De Backer, G.G.; Delgado, V.; Ference, B.A.; et al. 2019 ESC/EAS Guidelines for the management of dyslipidaemias: Lipid modification to reduce cardiovascular risk. Eur. Heart J. 2020, 41, 111–188. [Google Scholar] [CrossRef]
- Ference, B.A.; Ginsberg, H.N.; Graham, I.; Ray, K.K.; Packard, C.J.; Bruckert, E.; Hegele, R.A.; Krauss, R.M.; Raal, F.J.; Schunkert, H.; et al. Low-density lipoproteins cause atherosclerotic cardiovascular disease. 1. Evidence from genetic, epidemiologic, and clinical studies. A consensus statement from the European Atherosclerosis Society Consensus Panel. Eur. Heart J. 2017, 38, 2459–2472. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, S.; Bittner, V. Familial hypercholesterolemia—Epidemiology, diagnosis, and screening. Curr. Atheroscler. Rep. 2015, 17, 482. [Google Scholar] [CrossRef]
- Cuchel, M.; Bruckert, E.; Ginsberg, H.N.; Raal, F.J.; Santos, R.D.; Hegele, R.A.; Kuivenhoven, J.A.; Nordestgaard, B.G.; Descamps, O.S.; Steinhagen-Thiessen, E.; et al. Homozygous familial hypercholesterolaemia: New insights and guidance for clinicians to improve detection and clinical management. A position paper from the Consensus Panel on Familial Hypercholesterolaemia of the European Atherosclerosis Society. Eur. Heart J. 2014, 35, 2146–2157. [Google Scholar] [CrossRef]
- Nicholls, S.J.; Brandrup-Wognsen, G.; Palmer, M.; Barter, P.J. Meta-analysis of comparative efficacy of increasing dose of Atorvastatin versus Rosuvastatin versus Simvastatin on lowering levels of atherogenic lipids (from VOYAGER). Am. J. Cardiol. 2010, 105, 69–76. [Google Scholar] [CrossRef] [PubMed]
- Ako, J.; Hibi, K.; Tsujita, K.; Hiro, T.; Morino, Y.; Kozuma, K.; Shinke, T.; Otake, H.; Uno, K.; Louie, M.J.; et al. Effect of Alirocumab on Coronary Atheroma Volume in Japanese Patients With Acute Coronary Syndrome—The ODYSSEY J-IVUS Trial. Circ. J. 2019, 83, 2025–2033. [Google Scholar] [CrossRef] [Green Version]
- Schwartz, G.G.; Steg, P.G.; Szarek, M.; Bhatt, D.L.; Bittner, V.A.; Diaz, R.; Edelberg, J.M.; Goodman, S.G.; Hanotin, C.; Harrington, R.A.; et al. Alirocumab and Cardiovascular Outcomes after Acute Coronary Syndrome. N. Engl. J. Med. 2018, 379, 2097–2107. [Google Scholar] [CrossRef]
- Nicholls, S.J.; Puri, R.; Anderson, T.; Ballantyne, C.M.; Cho, L.; Kastelein, J.J.P.; Koenig, W.; Somaratne, R.; Kassahun, H.; Yang, J.; et al. Effect of Evolocumab on Coronary Plaque Composition. J. Am. Coll. Cardiol. 2018, 72, 2012–2021. [Google Scholar] [CrossRef] [PubMed]
- Hilvo, M.; Simolin, H.; Metso, J.; Ruuth, M.; Oorni, K.; Jauhiainen, M.; Laaksonen, R.; Baruch, A. PCSK9 inhibition alters the lipidome of plasma and lipoprotein fractions. Atherosclerosis 2018, 269, 159–165. [Google Scholar] [CrossRef] [Green Version]
- Tarasov, K.; Ekroos, K.; Suoniemi, M.; Kauhanen, D.; Sylvanne, T.; Hurme, R.; Gouni-Berthold, I.; Berthold, H.K.; Kleber, M.E.; Laaksonen, R.; et al. Molecular lipids identify cardiovascular risk and are efficiently lowered by simvastatin and PCSK9 deficiency. J. Clin. Endocrinol. Metab. 2014, 99, E45–E52. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Di Minno, A.; Orsini, R.C.; Chiesa, M.; Cavalca, V.; Calcaterra, I.; Tripaldella, M.; Anesi, A.; Fiorelli, S.; Eligini, S.; Colombo, G.I.; et al. Treatment with PCSK9 Inhibitors in Patients with Familial Hypercholesterolemia Lowers Plasma Levels of Platelet-Activating Factor and Its Precursors: A Combined Metabolomic and Lipidomic Approach. Biomedicines 2021, 9, 1073. [Google Scholar] [CrossRef] [PubMed]
- Stitziel, N.O.; Peloso, G.M.; Abifadel, M.; Cefalu, A.B.; Fouchier, S.; Motazacker, M.M.; Tada, H.; Larach, D.B.; Awan, Z.; Haller, J.F.; et al. Exome sequencing in suspected monogenic dyslipidemias. Circulation. Cardiovasc. Genet. 2015, 8, 343–350. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gentile, M.; Iannuzzo, G.; Mattiello, A.; Marotta, G.; Iannuzzi, A.; Panico, S.; Rubba, P. Association between Lp (a) and atherosclerosis in menopausal women without metabolic syndrome. Biomark. Med. 2016, 10, 397–402. [Google Scholar] [CrossRef] [PubMed]
- Hoefner, D.M.; Hodel, S.D.; O’Brien, J.F.; Branum, E.L.; Sun, D.; Meissner, I.; McConnell, J.P. Development of a rapid, quantitative method for LDL subfractionation with use of the Quantimetrix Lipoprint LDL System. Clin. Chem. 2001, 47, 266–274. [Google Scholar] [CrossRef]
- Gentile, M.; Panico, S.; Mattiello, A.; Ubaldi, S.; Iannuzzo, G.; De Michele, M.; Iannuzzi, A.; Rubba, P. Association between small dense LDL and early atherosclerosis in a sample of menopausal women. Clin. Chim. Acta 2013, 426, 1–5. [Google Scholar] [CrossRef]
- Bligh, E.G.; Dyer, W.J. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 1959, 37, 911–917. [Google Scholar] [CrossRef]
- Chawade, A.; Alexandersson, E.; Levander, F. Normalyzer: A tool for rapid evaluation of normalization methods for omics data sets. J. Proteome Res. 2014, 13, 3114–3120. [Google Scholar] [CrossRef]
- Casula, M.; Olmastroni, E.; Pirillo, A.; Catapano, A.L.; Members Of The Lipigen Steering Commettee. Evaluation of the performance of Dutch Lipid Clinic Network score in an Italian FH population: The LIPIGEN study. Atherosclerosis 2018, 277, 413–418. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kohli, M.; Patel, K.; MacMahon, Z.; Ramachandran, R.; Crook, M.A.; Reynolds, T.M.; Wierzbicki, A.S. Pro-protein subtilisin kexin-9 (PCSK9) inhibition in practice: Lipid clinic experience in 2 contrasting UK centres. Int. J. Clin. Pract. 2017, 71, e13032. [Google Scholar] [CrossRef] [Green Version]
- Lipinski, M.J.; Benedetto, U.; Escarcega, R.O.; Biondi-Zoccai, G.; Lhermusier, T.; Baker, N.C.; Torguson, R.; Brewer, H.B., Jr.; Waksman, R. The impact of proprotein convertase subtilisin-kexin type 9 serine protease inhibitors on lipid levels and outcomes in patients with primary hypercholesterolaemia: A network meta-analysis. Eur. Heart J. 2016, 37, 536–545. [Google Scholar] [CrossRef] [Green Version]
- Page, M.M.; Watts, G.F. PCSK9 in context: A contemporary review of an important biological target for the prevention and treatment of atherosclerotic cardiovascular disease. Diabetes Obes. Metab. 2018, 20, 270–282. [Google Scholar] [CrossRef]
- Qian, L.J.; Gao, Y.; Zhang, Y.M.; Chu, M.; Yao, J.; Xu, D. Therapeutic efficacy and safety of PCSK9-monoclonal antibodies on familial hypercholesterolemia and statin-intolerant patients: A meta-analysis of 15 randomized controlled trials. Sci. Rep. 2017, 7, 238. [Google Scholar] [CrossRef] [Green Version]
- Zafrir, B.; Jubran, A. Lipid-lowering therapy with PCSK9-inhibitors in the real-world setting: Two-year experience of a regional lipid clinic. Cardiovasc. Ther. 2018, 36, e12439. [Google Scholar] [CrossRef]
- Filippatos, T.D.; Kei, A.; Rizos, C.V.; Elisaf, M.S. Effects of PCSK9 Inhibitors on Other than Low-Density Lipoprotein Cholesterol Lipid Variables. J. Cardiovasc. Pharmacol. Ther. 2018, 23, 3–12. [Google Scholar] [CrossRef]
- Janis, M.T.; Tarasov, K.; Ta, H.X.; Suoniemi, M.; Ekroos, K.; Hurme, R.; Lehtimaki, T.; Paiva, H.; Kleber, M.E.; Marz, W.; et al. Beyond LDL-C lowering: Distinct molecular sphingolipids are good indicators of proprotein convertase subtilisin/kexin type 9 (PCSK9) deficiency. Atherosclerosis 2013, 228, 380–385. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Laaksonen, R.; Ekroos, K.; Sysi-Aho, M.; Hilvo, M.; Vihervaara, T.; Kauhanen, D.; Suoniemi, M.; Hurme, R.; Marz, W.; Scharnagl, H.; et al. Plasma ceramides predict cardiovascular death in patients with stable coronary artery disease and acute coronary syndromes beyond LDL-cholesterol. Eur. Heart J. 2016, 37, 1967–1976. [Google Scholar] [CrossRef] [PubMed]
- Taniguchi, M.; Okazaki, T. The role of sphingomyelin and sphingomyelin synthases in cell death, proliferation and migration-from cell and animal models to human disorders. Biochim. Et Biophys. Acta (BBA)-Mol. Cell Biol. Lipids 2014, 1841, 692–703. [Google Scholar] [CrossRef]
- Mu, H.; Wang, X.; Wang, H.; Lin, P.; Yao, Q.; Chen, C. Lactosylceramide promotes cell migration and proliferation through activation of ERK1/2 in human aortic smooth muscle cells. Am. J. Physiol.-Heart Circ. Physiol. 2009, 297, H400–H408. [Google Scholar] [CrossRef] [Green Version]
- Bhunia, A.K.; Han, H.; Snowden, A.; Chatterjee, S. Redox-regulated signaling by lactosylceramide in the proliferation of human aortic smooth muscle cells. J. Biol. Chem. 1997, 272, 15642–15649. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Z.; Fan, Y.; Liu, J.; Li, Y.; Huan, C.; Bui, H.H.; Kuo, M.S.; Park, T.S.; Cao, G.; Jiang, X.C. Impact of sphingomyelin synthase 1 deficiency on sphingolipid metabolism and atherosclerosis in mice. Arterioscler. Thromb. Vasc. Biol. 2012, 32, 1577–1584. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boren, J.; Williams, K.J. The central role of arterial retention of cholesterol-rich apolipoprotein-B-containing lipoproteins in the pathogenesis of atherosclerosis: A triumph of simplicity. Curr. Opin. Lipidol. 2016, 27, 473–483. [Google Scholar] [CrossRef]
- Kitatani, K.; Nemoto, M.; Akiba, S.; Sato, T. Stimulation by de novo-synthesized ceramide of phospholipase A(2)-dependent cholesterol esterification promoted by the uptake of oxidized low-density lipoprotein in macrophages. Cell. Signal. 2002, 14, 695–701. [Google Scholar] [CrossRef]
- Hashizume, T.; Kageura, T.; Sato, T. Different effects of cell-permeable ceramide analogs on platelet activation. Biochem. Mol. Biol. Int. 1998, 44, 489–496. [Google Scholar] [CrossRef] [PubMed]
- Hashizume, T.; Kitatani, K.; Kageura, T.; Hayama, M.; Akiba, S.; Sato, T. Ceramide enhances susceptibility of membrane phospholipids to phospholipase A2 through modification of lipid organization in platelet membranes. Biol. Pharm. Bull. 1999, 22, 1275–1278. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sato, T.; Kageura, T.; Hashizume, T.; Hayama, M.; Kitatani, K.; Akiba, S. Stimulation by ceramide of phospholipase A2 activation through a mechanism related to the phospholipase C-initiated signaling pathway in rabbit platelets. J. Biochem. 1999, 125, 96–102. [Google Scholar] [CrossRef] [PubMed]
- Rhoads, J.P.; Major, A.S. How Oxidized Low-Density Lipoprotein Activates Inflammatory Responses. Crit. Rev. Immunol. 2018, 38, 333–342. [Google Scholar] [CrossRef] [PubMed]
- Di Minno, A.; Gentile, M.; Iannuzzo, G.; Calcaterra, I.; Tripaldella, M.; Porro, B.; Cavalca, V.; Di Taranto, M.D.; Tremoli, E.; Fortunato, G.; et al. Endothelial function improvement in patients with familial hypercholesterolemia receiving PCSK-9 inhibitors on top of maximally tolerated lipid lowering therapy. Thromb. Res. 2020, 194, 229–236. [Google Scholar] [CrossRef]
- Di Minno, M.N.D.; Gentile, M.; Di Minno, A.; Iannuzzo, G.; Calcaterra, I.; Buonaiuto, A.; Di Taranto, M.D.; Giacobbe, C.; Fortunato, G.; Rubba, P.O.F. Changes in carotid stiffness in patients with familial hypercholesterolemia treated with Evolocumab(R): A prospective cohort study. Nutr. Metab. Cardiovasc. Dis. 2020, 30, 996–1004. [Google Scholar] [CrossRef] [PubMed]
Lipid Molecular Species | Lipid Class | Adjusted p-Value | Change |
---|---|---|---|
PC 34:2 [M+H]+ | PC | 0.0042255 | ↓ |
PC 36:2 [M+H]+ | PC | 0.0067707 | ↓ |
PC 36:4 [M+H]+ | PC | 0.020646 | ↓ |
PC 37:6 [M+H]+ | PC | 0.0067707 | ↓ |
PC 38:4 [M+H]+ | PC | 0.04987 | ↓ |
PC (O-32:0) [M+H]+ | PC | 0.043201 | ↓ |
PC (O-36:3) (P-36:2) [M+H]+ | PC | 0.011944 | ↓ |
PC 34:1 (OH) [M+H]+ | PC | 0.039059 | ↓ |
SM (d33:1) [M+H]+ | SM | 0.043486 | ↓ |
SM (d34:0) [M+H]+ | SM | 0.00057655 | ↓ |
SM (d38:2) [M+H]+ | SM | 0.011944 | ↓ |
SM (d40:2) [M+H]+ | SM | 0.011944 | ↓ |
SM (d42:1) [M+H]+ | SM | 0.0071241 | ↓ |
SM (d42:2) [M+H]+ | SM | 0.00057655 | ↓ |
SM (d42:3) [M+H]+ | SM | 0.011944 | ↓ |
TG 47:3 [M+Na]+ | TG | 0.017528 | ↓ |
TG 51:1 [M+Na]+ | TG | 0.016612 | ↓ |
CE 20:4 [M+H]+ | CE | 0.041264 | ↓ |
CE 18:2 [M+H]+ | CE | 0.041264 | ↓ |
CER (d33:1) [M+HCOONH4]− | CER | 0.0071241 | ↓ |
CER (d38:1) [M+HCOONH4]− | CER | 0.043201 | ↓ |
CER (d40:0) [M+HCOONH4]− | CER | 0.012228 | ↓ |
CER (d42:0) [M+HCOONH4]− | CER | 0.016612 | ↓ |
CER (d44:0) [M+HCOONH4]− | CER | 0.043486 | ↓ |
HEX-CER (d42:2) [M+HCOO]− | CER | 0.024282 | ↓ |
PI 38:5 [M−H]− | PI | 0.020376 | ↓ |
CER (d43:1) [M+HCOO]− | CER | 0.0065246 | ↑ |
CER (d44:1) [M+HCOO]− | CER | 0.043288 | ↑ |
S-HEX-CER (d40:2) [M−H]− | CER | 0.047847 | ↑ |
PI 40:5 [M−H]− | PI | 0.043486 | ↑ |
ACL | UI | |||||||
---|---|---|---|---|---|---|---|---|
Lipid Class | T0 | T4 | T12 | (p-Value) | T0 | T4 | T12 | (p-Value) |
LPC | 17.5178 | 17.4820 | 17.4140 | 0.644125 | 0.2203 | 0.2147 | 0.2000 | 0.683932 |
PC | 35.6470 | 35.6681 | 35.6783 | 0.6839315 | 0.9930 | 1.0043 | 1.0048 | 0.81635 |
LPE | 19.7342 | 19.7836 | 19.8026 | 0.881867 | 0.0197 | 0.0141 | 0.0127 | 0.906363 |
PE | 37.4263 | 37.3464 | 37.2701 | 0.024802 * | 1.6802 | 1.5942 | 1.5630 | 0.002333 * |
PI | 37.5724 | 37.5341 | 37.5332 | 0.698246 | 1.3583 | 1.3476 | 1.3451 | 0.771916 |
SM | 37.9698 | 38.0673 | 38.0144 | 0.286808 | 1.4340 | 1.4550 | 1.4485 | 0.113967 |
CER | 41.0776 | 41.0955 | 40.9025 | 0.4175 | 1.2107 | 1.2265 | 1.2168 | 0.609739 |
HEX-CER | 38.8486 | 38.6879 | 38.8002 | 0.103829 | 1.2876 | 1.2578 | 1.2498 | 0.013582 * |
LAC-CER | 34 | 34 | 34 | 1 | 1.0585 | 1.0696 | 1.0746 | 0.043693 * |
S-HEX-CER | 35.3425 | 35.7382 | 35.4966 | 0.04639 * | 1.6535 | 1.6796 | 1.6500 | 0.527907 |
CE | 18.8499 | 18.8671 | 18.8674 | 0.924687 | 2.7793 | 2.7927 | 2.7976 | 0.921739 |
DAG | 36.3020 | 36.2523 | 36.1798 | 0.343138 | 2.6973 | 2.6425 | 2.5910 | 0.088299 |
TG | 52.2924 | 52.2627 | 52.2426 | 0.938821 | 3.3240 | 3.2965 | 3.2587 | 0.795857 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Anesi, A.; Di Minno, A.; Calcaterra, I.; Cavalca, V.; Tripaldella, M.; Porro, B.; Di Minno, M.N.D. An Untargeted Lipidomic Analysis Reveals Depletion of Several Phospholipid Classes in Patients with Familial Hypercholesterolemia on Treatment with Evolocumab. Biomedicines 2021, 9, 1941. https://doi.org/10.3390/biomedicines9121941
Anesi A, Di Minno A, Calcaterra I, Cavalca V, Tripaldella M, Porro B, Di Minno MND. An Untargeted Lipidomic Analysis Reveals Depletion of Several Phospholipid Classes in Patients with Familial Hypercholesterolemia on Treatment with Evolocumab. Biomedicines. 2021; 9(12):1941. https://doi.org/10.3390/biomedicines9121941
Chicago/Turabian StyleAnesi, Andrea, Alessandro Di Minno, Ilenia Calcaterra, Viviana Cavalca, Maria Tripaldella, Benedetta Porro, and Matteo Nicola Dario Di Minno. 2021. "An Untargeted Lipidomic Analysis Reveals Depletion of Several Phospholipid Classes in Patients with Familial Hypercholesterolemia on Treatment with Evolocumab" Biomedicines 9, no. 12: 1941. https://doi.org/10.3390/biomedicines9121941
APA StyleAnesi, A., Di Minno, A., Calcaterra, I., Cavalca, V., Tripaldella, M., Porro, B., & Di Minno, M. N. D. (2021). An Untargeted Lipidomic Analysis Reveals Depletion of Several Phospholipid Classes in Patients with Familial Hypercholesterolemia on Treatment with Evolocumab. Biomedicines, 9(12), 1941. https://doi.org/10.3390/biomedicines9121941