ACE-Dependent Alzheimer’s Disease: Blood ACE Phenotyping of the Most Prevalent and Damaging ACE Missense Mutation—Y215C (rs3730025)
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Participants
2.2. WES and WGS
2.3. Chemicals
2.4. Immunological Estimation of the Levels of Blood ACE
2.5. Identification of the Genetic Variants That Influence Blood ACE Levels
2.6. Annotating Genetic Variation in ACE Protein Found in UK Biobank (UKB)
2.7. Search of Protective Variants
2.8. Statistical Analysis
2.9. Use of Generative Artificial Intelligence (AI)
3. Results and Discussion
3.1. Quantification of Blood ACE in Carriers of the Y215C ACE Mutation
3.2. Identification of Possible False-Negative or False-Positive Alterations in Blood ACE Levels
3.3. Search for Genes (Variants) Protective for ACE-Dependent AD
4. Limitations of Our Study
5. Conclusions
- The precipitation of ACE activity from EDTA-containing plasma obtained from 84 carriers of the Y215C ACE mutation (using the strong mAb 9B9 to ACE) demonstrated that a significant portion of these carriers had decreased ACE levels in the blood. Thus, they could be considered at increased risk for late-onset AD. The mAbs 5B3/1G12 binding ratio was revealed as a sensitive marker for the circulating Y215C ACE mutant.
- Some carriers of the Y215C ACE mutation demonstrated significant heterogeneity in blood ACE levels. This observation indicates that information about mutations in other genes that can influence ACE shedding should also be obtained for a given individual. Otherwise, blood ACE values could be misleading, as false-negative or false-positive.
- Analysis of 2388 variants which may change ACE shedding was performed using sequencing and proteomic data from 35,500+ Icelanders [21]. Several gene-modifiers were identified, including two possible candidates for ACE secretases, ADAM9 and ADAMTS13.
- The presence of this damaging ACE mutation, Y215C, does not guarantee a low level of ACE in the subject. Blood ACE phenotyping and analysis of WES also should be performed to identify patients with false-negative or -positive blood ACE to avoid inaccurate conclusions about the risk for ACE-dependent AD in carriers of this ACE mutation.
- Although GWAS did not identify statistically significant protective variants at the cohort level, the comparative analysis of carriers with elevated versus decreased circulating ACE levels revealed numerous rare variants present exclusively in individuals with preserved ACE levels. These variants did not converge on a single canonical pathway, suggesting that compensatory mechanisms counteracting the deleterious effect of the Y215C mutation are mediated by distinct, individual-specific genetic modifiers. This variability underscores the importance of personalized genomic interpretation when assessing ACE-dependent AD risk.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zheng, Q.; Wang, X. Alzheimer’s Disease: Insights into Pathology, Molecular Mechanisms, and Therapy. Protein Cell 2025, 16, 83–120. [Google Scholar] [CrossRef]
- Schwartzentruber, J.; Cooper, S.; Liu, J.Z.; Barrio-Hernandez, I.; Bello, E.; Kumasaka, N.; Young, A.M.H.; Franklin, R.J.M.; Johnson, T.; Estrada, K.; et al. Genome-Wide Meta-Analysis, Fine-Mapping and Integrative Prioritization Implicate New Alzheimer’s Disease Risk Genes. Nat. Genet. 2021, 53, 392–402. [Google Scholar] [CrossRef]
- Lambert, J.-C.; Ramirez, A.; Grenier-Boley, B.; Bellenguez, C. Step by Step: Towards a Better Understanding of the Genetic Architecture of Alzheimer’s Disease. Mol. Psychiatry 2023, 28, 2716–2727. [Google Scholar] [CrossRef] [PubMed]
- Bang, J.Y.; Yoo, Y. Rationale and Emerging Evidence for Microglial Replacement in Alzheimer’s Disease. Mol. Cells 2025, 48, 100265. [Google Scholar] [CrossRef]
- Kehoe, P.G.; Russ, C.; McIlroy, S.; Williams, H.; Holmans, P.; Holmes, C.; Liolitsa, D.; Vahidassr, D.; Powell, J.; McGleenon, B.; et al. Variation in DCP1, Encoding ACE, Is Associated with Susceptibility to Alzheimer Disease. Nat. Genet. 1999, 21, 71–72. [Google Scholar] [CrossRef] [PubMed]
- Sassi, C.; Ridge, P.G.; Nalls, M.A.; Gibbs, R.; Ding, J.; Lupton, M.K.; Troakes, C.; Lunnon, K.; Al-Sarraj, S.; Brown, K.S.; et al. Influence of Coding Variability in APP-Aβ Metabolism Genes in Sporadic Alzheimer’s Disease. PLoS ONE 2016, 11, e0150079. [Google Scholar] [CrossRef] [PubMed]
- Gao, J.; Bi, X.; Jiang, W.; Wang, Y. Integration of Multi-Omics Quantitative Trait Loci Evidence Reveals Novel Susceptibility Genes for Alzheimer’s Disease. Sci. Rep. 2025, 15, 30158. [Google Scholar] [CrossRef]
- Kim, M.S.; Park, S.; Kim, J.H.; Myung, W.; Song, M.; Do, R.; Nho, K.; Kim, E.; Hwang, S.; Yu, Z.; et al. ACE Inhibition Increases Alzheimer’s Disease Risk by Promoting Tau Phosphorylation. MedRxiv 2025. [Google Scholar] [CrossRef] [PubMed]
- Danilov, S.M.; Adzhubei, I.A.; Kozuch, A.J.; Petukhov, P.A.; Popova, I.A.; Choudhury, A.; Sengupta, D.; Dudek, S.M. Carriers of Heterozygous Loss-of-Function ACE Mutations Are at Risk for Alzheimer’s Disease. Biomedicines 2024, 12, 162. [Google Scholar] [CrossRef]
- Hu, J.; Igarashi, A.; Kamata, M.; Nakagawa, H. Angiotensin-Converting Enzyme Degrades Alzheimer Amyloid β-Peptide (Aβ); Retards Aβ Aggregation, Deposition, Fibril Formation; and Inhibits Cytotoxicity. J. Biol. Chem. 2001, 276, 47863–47868. [Google Scholar] [CrossRef]
- Hemming, M.L.; Selkoe, D.J. Amyloid β-Protein Is Degraded by Cellular Angiotensin-Converting Enzyme (ACE) and Elevated by an ACE Inhibitor. J. Biol. Chem. 2005, 280, 37644–37650. [Google Scholar] [CrossRef]
- Zou, K.; Maeda, T.; Watanabe, A.; Liu, J.; Liu, S.; Oba, R.; Satoh, Y.; Komano, H.; Michikawa, M. Aβ42-to-Aβ40- and Angiotensin-Converting Activities in Different Domains of Angiotensin-Converting Enzyme. J. Biol. Chem. 2009, 284, 31914–31920. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Ando, F.; Fujita, Y.; Liu, J.; Maeda, T.; Shen, X.; Kikuchi, K.; Matsumoto, A.; Yokomori, M.; Tanabe-Fujimura, C.; et al. A Clinical Dose of Angiotensin-Converting Enzyme (ACE) Inhibitor and Heterozygous ACE Deletion Exacerbate Alzheimer’s Disease Pathology in Mice. J. Biol. Chem. 2019, 294, 9760–9770. [Google Scholar] [CrossRef] [PubMed]
- Xie, X.-Y.; Zhao, Q.-H.; Huang, Q.; Dammer, E.; Chen, S.; Ren, R.-J.; Wang, G. Genetic Profiles of Familial Late-Onset Alzheimer’s Disease in China: The Shanghai FLOAD Study. Genes Dis. 2022, 9, 1639–1649. [Google Scholar] [CrossRef]
- Samokhodskaya, L.M.; Jain, M.S.; Kurilova, O.V.; Bobkov, A.P.; Kamalov, A.A.; Dudek, S.M.; Danilov, S.M. Phenotyping Angiotensin-Converting Enzyme in Blood: A Necessary Approach for Precision Medicine. J. Appl. Lab. Med. 2021, 6, 1179–1191. [Google Scholar] [CrossRef]
- Kryukova, O.V.; Islanov, I.O.; Zaklyazminskaya, E.V.; Korostin, D.O.; Belova, V.A.; Cheranev, V.V.; Repinskaia, Z.A.; Tonevitskaya, S.A.; Petukhov, P.A.; Dudek, S.M.; et al. Effects of Angiotensin-I-Converting Enzyme (ACE) Mutations Associated with Alzheimer’s Disease on Blood ACE Phenotype. Biomedicines 2024, 12, 2410. [Google Scholar] [CrossRef]
- Kryukova, O.V.; Korostin, D.O.; Belova, V.A.; Cheranev, V.V.; Repinskaia, Z.A.; Uporov, I.V.; Dudek, S.M.; Kost, O.A.; Rebrikov, D.V.; Danilov, S.M. Effect of ACE Mutations on Blood ACE Phenotype Parameters. PLoS ONE 2024, 19, e0308289. [Google Scholar] [CrossRef]
- Korf, E.A.; Belinskaia, D.A.; Glotov, A.S.; Glotov, O.S.; Novokovich, Y.S.; Korostin, D.O.; Rebrikov, D.V.; Dudek, S.M.; Goncharov, N.V.; Danilov, S.M. ACE-Dependent Alzheimer’s Disease: Further Assessment of the Impact of ACE Mutations on Blood ACE Levels. BBA-Mol. Basis Dis. 2025, 1871, 167817. [Google Scholar] [CrossRef] [PubMed]
- Mironenko, I.V.; Kryukova, O.V.; Buianova, A.A.; Churov, A.V.; Arbatsky, M.S.; Kubrikova, A.A.; Petrusenko, Y.S.; Repinskaia, Z.A.; Shmitko, A.O.; Ilyina, G.A.; et al. ACE-Dependent Alzheimer’s Disease: Circulating ACE Phenotypes in Heterozygous Carriers of Rare ACE Variants. Int. J. Mol. Sci. 2025, 26, 9099. [Google Scholar] [CrossRef]
- Balyasnikova, I.V.; Minshall, R.D.; Zou, K.; Tang, W.-J.; Dudek, S.D.; Danilov, S.M. Impaired Surface Expression of the Most Frequent and Damaging ACE Mutation Y215C; Department of Medicine, Division of Pulmonary, Critical Care, Sleep and Allergy, University of Illinois: Chicago, IL, USA, 2026; manuscript in preparation. [Google Scholar]
- Ferkingstad, E.; Sulem, P.; Atlason, B.A.; Sveinbjornsson, G.; Magnusson, M.I.; Styrmisdottir, E.L.; Gunnarsdottir, K.; Helgason, A.; Oddsson, A.; Halldorsson, B.V.; et al. Large-Scale Integration of the Plasma Proteome with Genetics and Disease. Nat. Genet. 2021, 53, 1712–1721. [Google Scholar] [CrossRef]
- Danilov, S.M.; Kalinin, S.; Chen, Z.; Vinokour, E.I.; Nesterovitch, A.B.; Schwartz, D.E.; Gribouval, O.; Gubler, M.-C.; Minshall, R.D. Angiotensin I-Converting Enzyme Gln1069Arg Mutation Impairs Trafficking to the Cell Surface Resulting in Selective Denaturation of the C-Domain. PLoS ONE 2010, 5, e10438. [Google Scholar] [CrossRef]
- Belova, V.; Pavlova, A.; Afasizhev, R.; Moskalenko, V.; Korzhanova, M.; Krivoy, A.; Cheranev, V.; Nikashin, B.; Bulusheva, I.; Rebrikov, D.; et al. System Analysis of the Sequencing Quality of Human Whole Exome Samples on BGI NGS Platform. Sci. Rep. 2022, 12, 609. [Google Scholar] [CrossRef]
- Danilov, S.; Savoie, F.; Lenoir, B.; Jeunemaitre, X.; Azizi, M.; Tarnow, L.; Alhenc-Gelas, F. Development of Enzyme-Linked Immunoassays for Human Angiotensin I Converting Enzyme Suitable for Large-Scale Studies. J. Hypertens. 1996, 14, 719–727. [Google Scholar] [CrossRef]
- Cídl, K.; Strelcová, L.; Znojil, V.; Váchi, J. Angiotensin I-Converting Enzyme (ACE) Polymorphism and ABO Blood Groups as Factors Codetermining Plasma ACE Activity. Exp. Hematol. 1996, 24, 790–794. [Google Scholar]
- Sun, B.B.; Chiou, J.; Traylor, M.; Benner, C.; Hsu, Y.-H.; Richardson, T.G.; Surendran, P.; Mahajan, A.; Robins, C.; Vasquez-Grinnell, S.G.; et al. Plasma Proteomic Associations with Genetics and Health in the UK Biobank. Nature 2023, 622, 329–338. [Google Scholar] [CrossRef]
- Liu, X.; Li, C.; Mou, C.; Dong, Y.; Tu, Y. dbNSFP v4: A Comprehensive Database of Transcript-Specific Functional Predictions and Annotations for Human Nonsynonymous and Splice-Site SNVs. Genome Med. 2020, 12, 103. [Google Scholar] [CrossRef] [PubMed]
- Purcell, S.; Neale, B.; Todd-Brown, K.; Thomas, L.; Ferreira, M.A.R.; Bender, D.; Maller, J.; Sklar, P.; De Bakker, P.I.W.; Daly, M.J.; et al. PLINK: A Tool Set for Whole-Genome Association and Population-Based Linkage Analyses. Am. J. Hum. Genet. 2007, 81, 559–575. [Google Scholar] [CrossRef] [PubMed]
- Hijikata, A.; Suyama, M.; Kikugawa, S.; Matoba, R.; Naruto, T.; Enomoto, Y.; Kurosawa, K.; Harada, N.; Yanagi, K.; Kaname, T.; et al. Exome-Wide Benchmark of Difficult-to-Sequence Regions Using Short-Read next-Generation DNA Sequencing. Nucleic Acids Res. 2024, 52, 114–124. [Google Scholar] [CrossRef] [PubMed]
- McLaren, W.; Gil, L.; Hunt, S.E.; Riat, H.S.; Ritchie, G.R.S.; Thormann, A.; Flicek, P.; Cunningham, F. The Ensembl Variant Effect Predictor. Genome Biol. 2016, 17, 122. [Google Scholar] [CrossRef]
- Danilov, S.M.; Balyasnikova, I.V.; Danilova, A.S.; Naperova, I.A.; Arablinskaya, N.E.; Borisov, S.E.; Metzger, R.; Franke, F.E.; Schwartz, D.E.; Gachok, I.V.; et al. Conformational Fingerprinting of the Angiotensin I-Converting Enzyme (ACE). 1. Application in Sarcoidosis. J. Proteome Res. 2010, 9, 5782–5793. [Google Scholar] [CrossRef]
- Danilov, S.M. Conformational Fingerprinting Using Monoclonal Antibodies (on the Example of Angiotensin I-Converting Enzyme-ACE). Mol. Biol. 2017, 51, 906–920. [Google Scholar] [CrossRef]
- Popova, I.A.; Lubbe, L.; Petukhov, P.A.; Kalantarov, G.F.; Trakht, I.N.; Chernykh, E.R.; Leplina, O.Y.; Lyubimov, A.V.; Garcia, J.G.N.; Dudek, S.M.; et al. Epitope Mapping of Novel Monoclonal Antibodies to Human Angiotensin I-converting Enzyme. Protein Sci. 2021, 30, 1577–1593. [Google Scholar] [CrossRef]
- Danilov, S.M.; Jain, M.S.; Petukhov, P.A.; Kurilova, O.V.; Ilinsky, V.V.; Trakhtman, P.E.; Dadali, E.L.; Samokhodskaya, L.M.; Kamalov, A.A.; Kost, O.A. Blood ACE Phenotyping for Personalized Medicine: Revelation of Patients with Conformationally Altered ACE. Biomedicines 2023, 11, 534. [Google Scholar] [CrossRef] [PubMed]
- Rigat, B.; Hubert, C.; Alhenc-Gelas, F.; Cambien, F.; Corvol, P.; Soubrier, F. An Insertion/Deletion Polymorphism in the Angiotensin I-Converting Enzyme Gene Accounting for Half the Variance of Serum Enzyme Levels. J. Clin. Investig. 1990, 86, 1343–1346. [Google Scholar] [CrossRef]
- Costerousse, O.; Allegrini, J.; Lopez, M.; Alhenc-Gelas, F. Angiotensin I-Converting Enzyme in Human Circulating Mononuclear Cells: Genetic Polymorphism of Expression in T-Lymphocytes. Biochem. J. 1993, 290, 33–40. [Google Scholar] [CrossRef] [PubMed]
- Danser, A.H.J.; Schalekamp, M.A.D.H.; Bax, W.A.; Van Den Brink, A.M.; Saxena, P.R.; Riegger, G.A.J.; Schunkert, H. Angiotensin-Converting Enzyme in the Human Heart: Effect of the Deletion/Insertion Polymorphism. Circulation 1995, 92, 1387–1388. [Google Scholar] [CrossRef]
- Biller, H.; Zissel, G.; Ruprecht, B.; Nauck, M.; Busse Grawitz, A.; Müller-Quernheim, J. Genotype-Corrected Reference Values for Serum Angiotensin-Converting Enzyme. Eur. Respir. J. 2006, 28, 1085–1091. [Google Scholar] [CrossRef]
- Kruit, A.; Grutters, J.C.; Gerritsen, W.B.M.; Kos, S.; Wodzig, W.K.W.H.; Van Den Bosch, J.M.M.; Ruven, H.J.T. ACE I/D-Corrected Z-Scores to Identify Normal and Elevated ACE Activity in Sarcoidosis. Respir. Med. 2007, 101, 510–515. [Google Scholar] [CrossRef]
- Tiret, L.; Rigat, B.; Visvikis, S.; Breda, C.; Corvol, P.; Cambien, F.; Soubrier, F. Evidence, from Combined Segregation and Linkage Analysis, That a Variant of the Angiotensin I-Converting Enzyme (ACE) Gene Controls Plasma ACE Levels. Am. J. Hum. Genet. 1992, 51, 197–205. [Google Scholar] [PubMed]
- Federal Medical-Biological Agency of Russia. Database of Genetic Variant Frequencies in the Russian Population, Application version 1.1.3 (17 March 2025), Database Version 59.1 (3 October 2024). Available online: https://gdbpop.nir.cspfmba.ru/ (accessed on 10 November 2025).
- Gordon, K.; Balyasnikova, I.V.; Nesterovitch, A.B.; Schwartz, D.E.; Sturrock, E.D.; Danilov, S.M. Fine Epitope Mapping of Monoclonal Antibodies 9B9 and 3G8 to the N Domain of Angiotensin-Converting Enzyme (CD143) Defines a Region Involved in Regulating Angiotensin-Converting Enzyme Dimerization and Shedding. Tissue Antigens 2010, 75, 136–150. [Google Scholar] [CrossRef]
- Schramm, C.; Charbonnier, C.; Zaréa, A.; Lacour, M.; Wallon, D.; CNRMAJ Collaborators; Boland, A.; Deleuze, J.F.; Olaso, R.; ADES Consortium; et al. Penetrance Estimation of Alzheimer Disease in SORL1 Loss-of-Function Variant Carriers Using a Family-Based Strategy and Stratification by APOE Genotypes. Genome Med. 2022, 14, 69. [Google Scholar] [CrossRef] [PubMed]
- Chirinos, J.A.; Cohen, J.B.; Zhao, L.; Hanff, T.; Sweitzer, N.; Fang, J.; Corrales-Medina, V.; Ammar, R.; Morley, M.; Zamani, P.; et al. Clinical and Proteomic Correlates of Plasma ACE2 (Angiotensin-Converting Enzyme 2) in Human Heart Failure. Hypertension 2020, 76, 1526–1536. [Google Scholar] [CrossRef]
- Wall, J.D.; Pritchard, J.K. Haplotype Blocks and Linkage Disequilibrium in the Human Genome. Nat. Rev. Genet. 2003, 4, 587–597. [Google Scholar] [CrossRef] [PubMed]
- Shipilina, D.; Pal, A.; Stankowski, S.; Chan, Y.F.; Barton, N.H. On the Origin and Structure of Haplotype Blocks. Mol. Ecol. 2023, 32, 1441–1457. [Google Scholar] [CrossRef] [PubMed]
- Hooper, N.M.; Keen, J.; Pappin, D.J.C.; Turner, A.J. Pig Kidney Angiotensin Converting Enzyme. Purification and Characterization of Amphipathic and Hydrophilic Forms of the Enzyme Establishes C -Terminal Anchorage to the Plasma Membrane. Biochem. J. 1987, 247, 85–93. [Google Scholar] [CrossRef]
- Wei, L.; Alhenc-Gelas, F.; Soubrier, F.; Michaud, A.; Corvol, P.; Clauser, E. Expression and Characterization of Recombinant Human Angiotensin I-Converting Enzyme. Evidence for a C-Terminal Transmembrane Anchor and for a Proteolytic Processing of the Secreted Recombinant and Plasma Enzymes. J. Biol. Chem. 1991, 266, 5540–5546. [Google Scholar] [CrossRef]
- Balyasnikova, I.V.; Karran, E.H.; Albrecht, R.F.; Danilov, S.M. Epitope-Specific Antibody-Induced Cleavage of Angiotensin-Converting Enzyme from the Cell Surface. Biochem. J. 2002, 362, 585–595. [Google Scholar] [CrossRef]
- Parkin, E.; Turner, A.; Hooper, N. Secretase-Mediated Cell Surface Shedding of the Angiotensin-Converting Enzyme. PPL 2004, 11, 423–432. [Google Scholar] [CrossRef]
- Ehlers, M.R.W.; Gordon, K.; Schwager, S.L.U.; Sturrock, E.D. Shedding the Load of Hypertension: The Proteolytic Processing of Angiotensin-Converting Enzyme. S. Afr. Med. J. 2012, 102, 461–464. [Google Scholar] [CrossRef]
- English, W.R.; Corvol, P.; Murphy, G. LPS Activates ADAM9 Dependent Shedding of ACE from Endothelial Cells. Biochem. Biophys. Res. Commun. 2012, 421, 70–75. [Google Scholar] [CrossRef]
- Webers, M.; Yu, Y.; Eyll, J.; Vanderliek-Kox, J.; Schun, K.; Michely, A.; Schumertl, T.; Garbers, C.; Dietrich, J.; Jonigk, D.D.; et al. The Metalloproteinase ADAM10 Sheds Angiotensin-converting Enzyme (ACE) from the Pulmonary Endothelium as a Soluble, Functionally Active Convertase. FASEB J. 2024, 38, e70105. [Google Scholar] [CrossRef]
- Scharfenberg, F.; Helbig, A.; Sammel, M.; Benzel, J.; Schlomann, U.; Peters, F.; Wichert, R.; Bettendorff, M.; Schmidt-Arras, D.; Rose-John, S.; et al. Degradome of Soluble ADAM10 and ADAM17 Metalloproteases. Cell. Mol. Life Sci. 2020, 77, 331–350. [Google Scholar] [CrossRef]
- Allinson, T.M.J.; Parkin, E.T.; Condon, T.P.; Schwager, S.L.U.; Sturrock, E.D.; Turner, A.J.; Hooper, N.M. The Role of ADAM10 and ADAM17 in the Ectodomain Shedding of Angiotensin Converting Enzyme and the Amyloid Precursor Protein. Eur. J. Biochem. 2004, 271, 2539–2547. [Google Scholar] [CrossRef]
- Yu, Y.; Babendreyer, A.; Pabst, A.; Michely, A.; Martin, C.; Kühnel, M.P.; Jonigk, D.D.; Düsterhöft, S.; Ludwig, A. ADAM10 and ADAM17 Differently Mediate Induced Pulmonary ACE Release by Either Direct Proteolysis or Indirect Upregulation Protein Synthesis. BBA-Mol. Cell Res. 2026, in press. [Google Scholar] [CrossRef] [PubMed]
- Emilsson, V.; Ilkov, M.; Lamb, J.R.; Finkel, N.; Gudmundsson, E.F.; Pitts, R.; Hoover, H.; Gudmundsdottir, V.; Horman, S.R.; Aspelund, T.; et al. Co-Regulatory Networks of Human Serum Proteins Link Genetics to Disease. Science 2018, 361, 769–773. [Google Scholar] [CrossRef]
- Pagliari, M.T.; Lotta, L.A.; De Haan, H.G.; Valsecchi, C.; Casoli, G.; Pontiggia, S.; Martinelli, I.; Passamonti, S.M.; Rosendaal, F.R.; Peyvandi, F. Next-Generation Sequencing and In Vitro Expression Study of ADAMTS13 Single Nucleotide Variants in Deep Vein Thrombosis. PLoS ONE 2016, 11, e0165665. [Google Scholar] [CrossRef]
- Visscher, P.M.; Wray, N.R.; Zhang, Q.; Sklar, P.; McCarthy, M.I.; Brown, M.A.; Yang, J. 10 Years of GWAS Discovery: Biology, Function, and Translation. Am. J. Hum. Genet. 2017, 101, 5–22. [Google Scholar] [CrossRef]
- Frayling, T. Genome-Wide Association Studies: The Good, the Bad and the Ugly. Clin. Med. 2014, 14, 428–431. [Google Scholar] [CrossRef] [PubMed]
- Uffelmann, E.; Huang, Q.Q.; Munung, N.S.; De Vries, J.; Okada, Y.; Martin, A.R.; Martin, H.C.; Lappalainen, T.; Posthuma, D. Genome-Wide Association Studies. Nat. Rev. Methods Primers 2021, 1, 59. [Google Scholar] [CrossRef]
- Fadista, J.; Manning, A.K.; Florez, J.C.; Groop, L. The (in)Famous GWAS P-Value Threshold Revisited and Updated for Low-Frequency Variants. Eur. J. Hum. Genet. 2016, 24, 1202–1205. [Google Scholar] [CrossRef]
- Yao, C.; Chen, G.; Song, C.; Keefe, J.; Mendelson, M.; Huan, T.; Sun, B.B.; Laser, A.; Maranville, J.C.; Wu, H.; et al. Genome-wide Mapping of Plasma Protein QTLs Identifies Putatively Causal Genes and Pathways for Cardiovascular Disease. Nat. Commun. 2018, 9, 3268. [Google Scholar] [CrossRef]
- Suhre, K.; Chen, Q.; Halama, A.; Mendez, K.; Dahlin, A.; Stephan, N.; Thareja, G.; Sarwath, H.; Guturu, H.; Dwaraka, V.B.; et al. A Genome-Wide Association Study of Mass Spectrometry Proteomics Using a Nanoparticle Enrichment Platform. Nat. Genet. 2025, 57, 2987–2996. [Google Scholar] [CrossRef]
- Danilov, S.M.; Sadovnikova, E.; Scharenborg, N.; Balyasnikova, I.V.; Svinareva, D.A.; Semikina, E.L.; Parovichnikova, E.N.; Savchenko, V.G.; Adema, G.J. Angiotensin-Converting Enzyme (CD143) Is Abundantly Expressed by Dendritic Cells and Discriminates Human Monocyte-Derived Dendritic Cells from Acute Myeloid Leukemia-Derived Dendritic Cells. Exp. Hematol. 2003, 31, 1301–1309. [Google Scholar] [CrossRef]
- Nikolaeva, M.A.; Balyasnikova, I.V.; Alexinskaya, M.A.; Metzger, R.; Franke, F.E.; Albrecht, R.F.; Kulakov, V.I.; Sukhikh, G.T.; Danilov, S.M. Testicular Isoform of Angiotensin I-Converting Enzyme (ACE, CD143) on the Surface of Human Spermatozoa: Revelation and Quantification Using Monoclonal Antibodies. Am. J. Reprod. Immunol. 2006, 55, 54–68. [Google Scholar] [CrossRef]
- Gal’tseva, I.V.; Savchenko, V.G.; Sudarikov, A.B.; Pashin, L.E.; Parovichnikova, E.N.; Danilov, S.M. Leukemic dendritic cells in patients with acute myeloid leukemia. Ter. Arkhiv 2009, 81, 20–28. [Google Scholar]
- Lopera, F.; Marino, C.; Chandrahas, A.S.; O’Hare, M.; Villalba-Moreno, N.D.; Aguillon, D.; Baena, A.; Sanchez, J.S.; Vila-Castelar, C.; Ramirez Gomez, L.; et al. Resilience to Autosomal Dominant Alzheimer’s Disease in a Reelin-COLBOS Heterozygous Man. Nat. Med. 2023, 29, 1243–1252. [Google Scholar] [CrossRef]
- Rogaeva, E.; Meng, Y.; Lee, J.H.; Gu, Y.; Kawarai, T.; Zou, F.; Katayama, T.; Baldwin, C.T.; Cheng, R.; Hasegawa, H.; et al. The Neuronal Sortilin-Related Receptor SORL1 Is Genetically Associated with Alzheimer Disease. Nat. Genet. 2007, 39, 168–177. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, V.; Subkhangulova, A.; Willnow, T.E. Sorting Receptor SORLA: Cellular Mechanisms and Implications for Disease. Cell. Mol. Life Sci. 2017, 74, 1475–1483. [Google Scholar] [CrossRef] [PubMed]
- Richards, S.; Aziz, N.; Bale, S.; Bick, D.; Das, S.; Gastier-Foster, J.; Grody, W.W.; Hegde, M.; Lyon, E.; Spector, E.; et al. Standards and Guidelines for the Interpretation of Sequence Variants: A Joint Consensus Recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet. Med. 2015, 17, 405–424. [Google Scholar] [CrossRef] [PubMed]
- Brehme, M.; Voisine, C.; Rolland, T.; Wachi, S.; Soper, J.H.; Zhu, Y.; Orton, K.; Villella, A.; Garza, D.; Vidal, M.; et al. A Chaperome Subnetwork Safeguards Proteostasis in Aging and Neurodegenerative Disease. Cell Rep. 2014, 9, 1135–1150. [Google Scholar] [CrossRef]
- Ge, S.X.; Jung, D.; Yao, R. ShinyGO: A Graphical Gene-Set Enrichment Tool for Animals and Plants. Bioinformatics 2020, 36, 2628–2629. [Google Scholar] [CrossRef] [PubMed]
- The 1000 Genomes Project Consortium. A Global Reference for Human Genetic Variation. Nature 2015, 526, 68–74. [Google Scholar] [CrossRef] [PubMed]
- Collins, R.L.; Brand, H.; Karczewski, K.J.; Zhao, X.; Alföldi, J.; Francioli, L.C.; Khera, A.V.; Lowther, C.; Gauthier, L.D.; Wang, H.; et al. A Structural Variation Reference for Medical and Population Genetics. Nature 2020, 581, 444–451. [Google Scholar] [CrossRef] [PubMed]





| No. of Subjects | MAF (/100,000) | No. of Y215C Carriers | |
|---|---|---|---|
| Population/race (dbSNP) | |||
| European | 349,976 | 1444 | 5054 |
| African | 36,268 | 312 | 113 |
| Latinos | 9570 | 170 | 16 |
| Asian | 12,238 | 57 | 7 |
| South Asian | 8960 | 1 | 0.1 |
| Total | 434,616 | 1267 | 5507 |
| TOPMED | 264,690 | 924 | 2447 |
| Known major cohorts | |||
| UK Biobank [26] | 54,512 | 1626 | 951 |
| Icelanders [21] | 35,559 | 1534 | 545 |
| Cohorts theoretically available in Russia | |||
| FMBA [41] | 120,762 | 2571 | 3105 |
| RUSEQ (Genetico) | 12,976 | 1318 | 171 |
| Genomed | 37,620 | 1881 | 708 |
| RSMU | 4657 | 1181 | 55 |
| RUSS-AGE | 290 | 2411 | 7 |
| Longevity | 200 | 2500 | 5 |
| No. | rsID | Gene | UNIPROT Number | Protein Position | AA | Beta Value | p-Value | Poly-Phen-2 | ImpMAF/100,000 | MAF dbSNP/100,000 |
|---|---|---|---|---|---|---|---|---|---|---|
| 1 | rs8176743 | ABO | P16442 | 234 | G/S | 0.351 | 5.356 × 10−105 | 0.168 | 6.488 | 10,587 |
| 2 | rs8176746 | ABO | - | 265 | L/M | 0.35 | 8.358 × 10−105 | 0.09 | 6.496 | 10,589 |
| 3 | rs8176747 | ABO | - | 267 | G/A | 0.35 | 9.314 × 10−105 | 0.003 | 6.497 | 10,589 |
| 4 | rs750712925 | ACE | P12821 | 45 | G/R | −1.288 | 6.8 × 10−15 | 0.142 | 82 | 1.9 |
| 5 | rs3730025 | ACE | - | 244 | Y/C | −1.217 | 3.306 × 10−291 | 0.998 | 1.534 | 924 |
| 6 | rs757694144 | ACE | - | 482 | R/P | −1.349 | 1.50 × 10−7 | 0.246 | 34 | 0.4 |
| 7 | rs372416620 | ACE | - | 1243 | V/I | 0.371 | 6.70 × 10−9 | 0.061 | 469 | 5.7 |
| 8 | rs145825553 | ADAMTS13 | Q76LX8 | 421 | R/C | 0.394 | 2.40 × 10−8 | 0.994 | 334 | 45 |
| 9 | rs771742994 | BCAS3 | Q9H6U6 | 480 | S/I | −1.162 | 2.20 × 10−12 | 0.991 | 88 | 5.7 |
| 10 | rs117181531 | DDX42 | Q86XP3 | 754 | S/I | 0.429 | 4.50 × 10−9 | 0.114 | 317 | 180 |
| 11 | rs117595304 | GBGT1 | Q8N5D6 | 66 | Y/C | −0.363 | 1.20 × 10−9 | 0.817 | 457 | 311 |
| 12 | rs367887663 | MFSD6L | Q8IWD5 | 323 | H/D | 0.505 | 3.50 × 10−8 | 0.902 | 166 | 7.2 |
| 13 | rs1352161075 | MILR1 | Q7Z6M3 | 159 | T/I | 0.376 | 1.20 × 10−10 | 0.035 | 539 | 3.4 |
| 14 | rs201723860 | SMARCD2 | Q92925 | 201 | T/M | 0.478 | 7.00 × 10−8 | 0.985 | 242 | 15 |
| 15 | rs750512077 | STRADA | Q7RTN6 | 215 | R/H | −0.405 | 2.80 × 10−9 | 0.999 | 352 | 1.5 |
| 16 | rs370863314 | TANC2 | Q9HCD6 | 2015 | R/P | 0.479 | 8.20 × 10−9 | 0.066 | 232 | 10 |
| 17 | rs780968826 | TEX2 | Q8IWB9 | 375 | E/K | 0.366 | 9.00 × 10−10 | 0.003 | 486 | 0.5 |
| No. | rsID | Ref | Alt | Mut | Protein | AA | MAF/100,000 | Poly-Phen-2 | SE | BETA UKBB | Beta Iceland | p-Value Iceland | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| dbSNP | UK Biobank | ||||||||||||
| 1 | rs532691783 | - | GCTGCC | ins | 13, SP | L/LLP | 6 | 197 | - | 0.078 | −0.288 | NA | NA |
| 2 | rs3730025 | A | G | ms | 244 | Y215C | 924 | 1682 | 0.998 | 0.023 | −0.422 | −1.227 | 3.31 × 10−291 |
| 3 | rs4303 | G | T | ms | 261 | A232S | 1118 | 337 | 0.811 | 0.057 | −0.152 | NA | NA |
| 4 | rs149412997 | G | A | ms | 267 | G238R | 117 | 84 | 0.965 | 0.119 | −0.140 | NA | NA |
| 5 | rs35141294 | C | T | ms | 324 | R295W | 851 | 100 | 0.984 | 0.106 | −0.245 | 0.136 | 0.742838 |
| 6 | rs56394458 | G | A | ms | 354 | G325R | 539 | 884 | 0.999 | 0.034 | 0.343 | 0.265 | 3.68 × 10−10 |
| 7 | rs150466411 | C | T | ms | 381 | T352M | 67 | 139 | 0.993 | 0.08 | 0.0560 | −0.281 | 0.269633 |
| 8 | rs28730839 | C | G | ms | 485 | P456R | 47 | 95 | 0.249 | 0.099 | 0.305 | NA | NA |
| 9 | rs12709426 | A | G | ms | 592 | D563G | 1588 | 213 | 0.072 | 0.071 | −0.254 | NA | NA |
| 10 | rs147429960 | C | G | ms | 660 | S631C | 95 | 148 | 0.335 | 0.089 | 0.044 | NA | NA |
| 11 | rs117647476 | A | G | ms | 798 | I769V | 192 | 463 | 0.004 | 0.048 | 0.154 | 0.145 | 6.08 × 10−5 |
| 12 | rs3730043 | C | T | ms | 916 | T887M | 419 | 856 | 0.980 | 0.033 | 0.044 | 0.138 | 0.043456 |
| 13 | rs141750591 | G | A | ms | 978 | V949M | 23 | 80 | 0.996 | 0.117 | 0.018 | 0.004 | 0.989591 |
| 14 | rs4980 | G | A | ms | 1279 | R1250Q | 493 | 496 | 0.010 | 0.050 | 0.295 | 0.156 | 0.015164 |
| 15 | rs4364 | C | A | ms | 1286 | R1257S | 156 | 355 | 0.130 | 0.059 | −0.294 | NA | NA |
| 16 | rs12720745 | G | A | ms | 1290 | R1261Q | 691 | 58 | 0 | 0.142 | −0.046 | NA | NA |
| No | Gene, Coding DNA (rsID) | Patient Identifier | MAF/100,000 | |||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1737 | 1340 | 181 | 614 | 615 | HSY004 | HWY602 | JQW970 | KJB939 | OTS421 | OTX780 | SRZ900 | TXM676 | VYA317 | XLK932 | gnomAD v.4.1.0 | FMBA [41] | ||
| 1 | CD34, c.398C>T (rs148688256) | - | - | - | - | - | Het | - | Het | - | - | - | - | - | - | Het | 192 | 1020 |
| 2 | TMEM240, c.454G>A (rs146206869) | - | - | - | Het | - | - | - | - | - | - | Het | - | Het | - | - | 3364 | 2825 |
| 3 | CHST15, c.98C>T (rs34639461) | - | Het | - | - | - | - | - | - | - | - | Het | - | Het | - | - | 2984 | 2880 |
| 4 | ACCSL, c.133G>A (rs11037840) | - | - | - | - | - | - | Het | Het | - | - | - | Het | - | - | - | 450 | 1220 |
| 5 | MYRFL, c.2072C>T (rs61754226) | Het | - | - | - | - | - | - | - | - | - | Het | - | - | - | Het | 690 | 620 |
| 6 | TMCC3, c.564G>A (rs149007412) | - | Het | - | - | - | - | - | Het | - | - | - | - | - | Het | - | 674 | 1270 |
| 7 | LTBP2, c.4769T>C (rs139932140) | - | - | - | - | - | - | - | Het | - | - | - | Het | - | - | - | 773 | 1805 |
| 8 | RPAP1, c.146C>T (rs112536229) | Het | - | Het | - | - | - | - | Het | - | - | - | - | - | - | - | 1157 | 1680 |
| 9 | CFAP161, c.850C>T (rs2279997) | - | - | - | - | Het | - | Het | Het | - | - | - | - | - | - | - | 1080 | 1290 |
| 10 | PKD1, c.10529C>T (rs45478794) | Het | - | - | - | - | - | - | Het | Het | Het | - | - | - | Het | - | 1320 | 1820 |
| 11 | ARMC5, c.508A>G (rs35923277) | - | - | - | - | - | - | - | - | Het | - | Het | Het | - | - | - | 4147 | 4510 |
| 12 | ZNF469, c.1994C>T (rs184583062) | - | - | - | - | - | - | - | Het | Het | - | Het | - | - | - | - | 783 | 900 |
| 13 | KIF1C, c.2105C>T (rs138935423) | - | Het | - | Het | Het | - | - | - | - | Het | - | - | - | - | - | 752 | 1280 |
| 14 | PER1, c.2575C>T (rs112980285) | - | - | - | - | - | - | - | Het | - | - | - | Het | - | Het | - | 2368 | 1810 |
| 15 | PIEZO2, c.4203C>G (rs79261438) | Het | - | Het | - | - | - | - | - | - | - | Het | - | - | Het | - | 2986 | 2700 |
| 16 | HSH2D, c.410C>T (rs36088948) | - | - | Het | - | - | - | - | - | Het | - | - | - | Het | Het | - | 6876 | 4430 |
| 17 | SCAMP4, c.596C>T (rs75734024) | - | Het | - | - | - | - | - | - | Het | - | - | - | - | Het | - | 1726 | 1460 |
| 18 | ZNF568, c.1088C>T (rs1667364) | - | - | - | - | - | - | - | - | Het | - | Het | - | - | Het | - | 1874 | 1340 |
| 19 | CEACAM21, c.253_255dup (rs3030812) | - | - | - | - | Het | - | - | - | - | Het | - | - | Het | - | - | 4181 | 3740 |
| 20 | CEACAM21, c.333C>G (rs78133615) | - | - | - | - | Het | - | - | - | - | Het | - | - | Het | - | - | 4109 | 3730 |
| 21 | PLIN5, c.73C>T (rs11085080) | - | - | - | - | - | - | Hom | - | Het | Het | - | - | - | - | - | 6443 | 4910 |
| 22 | NOP53, c.91G>C (rs78530808) | - | - | - | - | Het | - | Het | - | - | - | - | Het | - | - | - | 1801 | 2850 |
| 23 | NRP2, c.2716_2717insA (rs200483574) | - | - | Het | - | Het | - | - | - | - | Het | - | - | - | - | - | 4437 | 4340 |
| 24 | GCFC2, c.1812+399dup (rs11423284) | - | - | Het | Het | - | - | - | - | - | - | Het | - | - | - | - | 3960 | 1638 |
| 25 | MKKS, c.1015A>G (rs137853909) | Het | - | - | - | - | Het | - | - | - | - | Het | - | - | - | - | 417 | 1030 |
| 26 | CNBD2, c.622A>G (rs6142471) | - | - | - | - | Het | - | - | Het | - | Het | - | - | - | - | - | 112 | 749 |
| 27 | BPI, c.1051C>T (rs5743523) | - | - | - | Het | Het | - | Het | - | - | - | Het | - | - | - | - | 2502 | 4070 |
| 28 | SHANK3, c.2347G>A (rs61729471) | - | - | - | - | - | Het | - | - | - | - | - | Het | - | Het | - | 3357 | 4580 |
| 29 | HCLS1, c.1162G>A (rs77852202) | Het | - | - | - | - | Het | - | - | - | Het | - | - | - | - | - | 5512 | 3560 |
| 30 | DLG1, c.2357G>A (rs78190191) | Het | - | Het | - | - | - | - | - | - | - | - | - | - | - | - | 2017 | 3080 |
| 31 | CCDC149, c.1525C>T (rs74764772) | - | Het | - | - | - | - | - | Het | - | - | - | - | Het | - | - | 946 | 2600 |
| 32 | DNAJC21, c.1024G>A (rs144600070) | - | - | - | - | - | Het | - | - | Het | - | - | - | - | - | Het | 457 | 859 |
| 33 | PHACTR2, c.4G>A (rs41285023) | Het | - | - | - | - | - | - | - | - | Het | Het | - | - | - | - | 2244 | 1270 |
| 34 | TBC1D32, c.3695A>C (rs56300302) | Het | - | - | Het | - | - | - | Het | - | - | - | - | - | - | - | 1632 | 1638 |
| 35 | SCUBE3, c.1229C>T (rs3800381) | - | - | - | - | - | - | - | Het | - | - | - | - | Het | - | Het | 198 | 392 |
| 36 | TSC22D4, c.1150C>T (rs34666277) | Het | - | - | - | Hom | - | - | - | - | - | - | - | - | Het | - | 626 | 800 |
| 37 | CUX1, c.1573C>G (rs138450169) | - | Het | - | Het | - | - | - | - | Het | - | - | - | - | - | - | 689 | 1244 |
| 38 | CRB2, c.278G>A (rs138381817) | Het | - | - | - | - | - | - | - | - | - | - | Het | - | - | - | 730 | 896 |
| 39 | DENND1A, c.2534C>A (rs189947178) | Het | Het | - | - | - | - | - | - | - | - | - | Het | - | - | - | 679 | 896 |
| 40 | TMC1, c.421C>T (rs11143384) | - | Het | Het | Hom | - | - | - | - | - | - | - | - | - | - | - | 957 | 990 |
| 41 | MAN1B1, c.1896+22G>A (rs117994893) | Het | - | Het | - | - | - | - | Het | - | - | - | - | - | - | - | 3454 | 4550 |
| 42 | TXLNG, c.736A>G (rs5969783) | - | - | Het | - | Het | - | - | - | - | - | - | - | - | - | Het | 2885 | 2600 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Buianova, A.A.; Adzhubei, I.A.; Kryukova, O.V.; Kost, O.A.; Mironenko, I.V.; Kozuch, A.S.; Ilyina, G.A.; Kuznetsova, A.A.; Repinskaia, Z.A.; Churov, A.V.; et al. ACE-Dependent Alzheimer’s Disease: Blood ACE Phenotyping of the Most Prevalent and Damaging ACE Missense Mutation—Y215C (rs3730025). Biomedicines 2026, 14, 275. https://doi.org/10.3390/biomedicines14020275
Buianova AA, Adzhubei IA, Kryukova OV, Kost OA, Mironenko IV, Kozuch AS, Ilyina GA, Kuznetsova AA, Repinskaia ZA, Churov AV, et al. ACE-Dependent Alzheimer’s Disease: Blood ACE Phenotyping of the Most Prevalent and Damaging ACE Missense Mutation—Y215C (rs3730025). Biomedicines. 2026; 14(2):275. https://doi.org/10.3390/biomedicines14020275
Chicago/Turabian StyleBuianova, Anastasiia A., Ivan A. Adzhubei, Olga V. Kryukova, Olga A. Kost, Iaroslav V. Mironenko, Alex S. Kozuch, Galit A. Ilyina, Anna A. Kuznetsova, Zhanna A. Repinskaia, Alexey V. Churov, and et al. 2026. "ACE-Dependent Alzheimer’s Disease: Blood ACE Phenotyping of the Most Prevalent and Damaging ACE Missense Mutation—Y215C (rs3730025)" Biomedicines 14, no. 2: 275. https://doi.org/10.3390/biomedicines14020275
APA StyleBuianova, A. A., Adzhubei, I. A., Kryukova, O. V., Kost, O. A., Mironenko, I. V., Kozuch, A. S., Ilyina, G. A., Kuznetsova, A. A., Repinskaia, Z. A., Churov, A. V., Dudek, S. M., Rebrikov, D. V., & Danilov, S. M. (2026). ACE-Dependent Alzheimer’s Disease: Blood ACE Phenotyping of the Most Prevalent and Damaging ACE Missense Mutation—Y215C (rs3730025). Biomedicines, 14(2), 275. https://doi.org/10.3390/biomedicines14020275

