Should Neurogenic Supine Hypertension Be Treated? Insights from Hypertension-Mediated Organ Damage Studies—A Narrative Review
Abstract
1. Introduction
2. Definition of Supine Hypertension in the Context of Autonomic Failure
3. Epidemiology of Autonomic Failure Disorders
4. Parkinson’s Disease or Other Alpha-Synucleinopathies and Hypertension Incidence/Prevalence
5. Pathophysiology of Neurogenic Supine Hypertension
6. Neurodegenerative Synucleinopathies and Organ Damage
6.1. Carotid Intima-Media Thickness
6.2. Arterial Stiffness
6.3. Renal Function and Parkinson’s Disease or Other Alpha-Synucleinopathies: Evidence from Observational and Longitudinal Studies
6.4. Cerebral Lesions (White Matter Hyperintensities)
6.5. Left Ventricle Hypertrophy
6.6. Critical Summary About Hypertension-Mediated Organ Damage in Neurodegenerative Synucleinopathies
7. Clinical Implications
8. Modification of Life Style
9. Antihypertensive Therapy
10. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| ABPM | ambulatory BP monitoring |
| AIx@75 | augmentation index at 75 bpm |
| BP | blood pressure |
| CAVI | cardio-ankle vascular index |
| CVRF | Cardiovascular Risk Factor |
| cIMT | carotid intima-media thickness |
| CKD | Chronic Kidney Disease |
| DLB | dementia with Lewy bodies |
| DMT2 | Diabetes Mellitus Type 2 |
| eGFR | estimated glomerular filtration rate |
| HC | Healthy controls |
| LVH | left ventricular hypertrophy |
| MSA | multiple system atrophy |
| nOH | neurogenic orthostatic hypotension |
| nSH | neurogenic supine hypertension |
| PAF | pure autonomic failure |
| PD | Parkinson’s disease |
| Cf-PWV | Carotid-femoral-pulse wave velocity |
| WMH | white matter hyperintensities |
References
- Park, H.; Kam, T.-I.; Dawson, V.L.; Dawson, T.M. α-Synuclein Pathology as a Target in Neurodegenerative Diseases. Nat. Rev. Neurol. 2025, 21, 32–47. [Google Scholar] [CrossRef]
- Fanciulli, A.; Göbel, G.; Ndayisaba, J.P.; Granata, R.; Duerr, S.; Strano, S.; Colosimo, C.; Poewe, W.; Pontieri, F.E.; Wenning, G.K. Supine Hypertension in Parkinson’s Disease and Multiple System Atrophy. Clin. Auton. Res. 2016, 26, 97–105. [Google Scholar] [CrossRef]
- Gibbons, C.H.; Schmidt, P.; Biaggioni, I.; Frazier-Mills, C.; Freeman, R.; Isaacson, S.; Karabin, B.; Kuritzky, L.; Lew, M.; Low, P.; et al. The Recommendations of a Consensus Panel for the Screening, Diagnosis, and Treatment of Neurogenic Orthostatic Hypotension and Associated Supine Hypertension. J. Neurol. 2017, 264, 1567–1582. [Google Scholar] [CrossRef] [PubMed]
- Parati, G.; Pengo, M.F.; Avolio, A.; Azizi, M.; Bothe, T.L.; Burnier, M.; Cappuccio, F.P.; La Sierra, A.D.; Fava, C.; Gironacci, M.M.; et al. Nocturnal Blood Pressure: Pathophysiology, Measurement and Clinical Implications. Position Paper of the European Society of Hypertension. J. Hypertens. 2025, 43, 1296–1318. [Google Scholar] [CrossRef] [PubMed]
- Mancia, G.; Kreutz, R.; Brunström, M.; Burnier, M.; Grassi, G.; Januszewicz, A.; Muiesan, M.L.; Tsioufis, K.; Agabiti-Rosei, E.; Algharably, E.A.E.; et al. 2023 ESH Guidelines for the Management of Arterial Hypertension The Task Force for the Management of Arterial Hypertension of the European Society of Hypertension: Endorsed by the International Society of Hypertension (ISH) and the European Renal Association (ERA). J. Hypertens. 2023, 41, 1874–2071. [Google Scholar] [CrossRef]
- Parati, G.; Stergiou, G.; O’Brien, E.; Asmar, R.; Beilin, L.; Bilo, G.; Clement, D.; de la Sierra, A.; de Leeuw, P.; Dolan, E.; et al. European Society of Hypertension Practice Guidelines for Ambulatory Blood Pressure Monitoring. J. Hypertens. 2014, 32, 1359–1366. [Google Scholar] [CrossRef]
- Park, J.-W.; Okamoto, L.E.; Biaggioni, I. Advances in the Pathophysiology and Management of Supine Hypertension in Patients with Neurogenic Orthostatic Hypotension. Curr. Hypertens. Rep. 2022, 24, 45–54. [Google Scholar] [CrossRef]
- Macleod, A.D.; Taylor, K.S.M.; Counsell, C.E. Mortality in Parkinson’s Disease: A Systematic Review and Meta-Analysis. Mov. Disord. 2014, 29, 1615–1622. [Google Scholar] [CrossRef]
- Xu, T.; Dong, W.; Liu, J.; Yin, P.; Wang, Z.; Zhang, L.; Zhou, M. Disease Burden of Parkinson’s Disease in China and Its Provinces from 1990 to 2021: Findings from the Global Burden of Disease Study 2021. Lancet Reg. Health West Pac. 2024, 46, 101078. [Google Scholar] [CrossRef] [PubMed]
- Ryu, D.-W.; Han, K.; Cho, A.-H. Mortality and Causes of Death in Patients with Parkinson’s Disease: A Nationwide Population-Based Cohort Study. Front. Neurol. 2023, 14, 1236296. [Google Scholar] [CrossRef]
- Gonzalez, M.C.; Dalen, I.; Maple-Grødem, J.; Tysnes, O.-B.; Alves, G. Parkinson’s Disease Clinical Milestones and Mortality. NPJ Park. Dis. 2022, 8, 58. [Google Scholar] [CrossRef]
- Vann Jones, S.A.; O’Brien, J.T. The Prevalence and Incidence of Dementia with Lewy Bodies: A Systematic Review of Population and Clinical Studies. Psychol. Med. 2014, 44, 673–683. [Google Scholar] [CrossRef]
- Isik, A.T.; Dost, F.S.; Yavuz, I.; Ontan, M.S.; Ates Bulut, E.; Kaya, D. Orthostatic Hypotension in Dementia with Lewy Bodies: A Meta-Analysis of Prospective Studies. Clin. Auton. Res. 2023, 33, 133–141. [Google Scholar] [CrossRef]
- Wenning, G.K.; Colosimo, C.; Geser, F.; Poewe, W. Multiple System Atrophy. Lancet Neurol. 2004, 3, 93–103. [Google Scholar] [CrossRef]
- Bjornsdottir, A.; Gudmundsson, G.; Blondal, H.; Olafsson, E. Incidence and Prevalence of Multiple System Atrophy: A Nationwide Study in Iceland. J. Neurol. Neurosurg. Psychiatry 2013, 84, 136–140. [Google Scholar] [CrossRef]
- Schrag, A.; Ben-Shlomo, Y.; Quinn, N.P. Prevalence of Progressive Supranuclear Palsy and Multiple System Atrophy: A Cross-Sectional Study. Lancet 1999, 354, 1771–1775. [Google Scholar] [CrossRef] [PubMed]
- Coon, E.A.; Mandrekar, J.N.; Berini, S.E.; Benarroch, E.E.; Sandroni, P.; Low, P.A.; Singer, W. Predicting Phenoconversion in Pure Autonomic Failure. Neurology 2020, 95, e889–e897. [Google Scholar] [CrossRef] [PubMed]
- Becker, C.; Jick, S.S.; Meier, C.R. Use of Antihypertensives and the Risk of Parkinson Disease. Neurology 2008, 70, 1438–1444. [Google Scholar] [CrossRef] [PubMed]
- Paganini-Hill, A. Risk Factors for Parkinson’s Disease: The Leisure World Cohort Study. Neuroepidemiology 2001, 20, 118–124. [Google Scholar] [CrossRef]
- Powers, K.M.; Smith-Weller, T.; Franklin, G.M.; Longstreth, W.T.; Swanson, P.D.; Checkoway, H. Diabetes, Smoking, and Other Medical Conditions in Relation to Parkinson’s Disease Risk. Park. Relat. Disord. 2006, 12, 185–189. [Google Scholar] [CrossRef]
- Ng, Y.-F.; Ng, E.; Lim, E.-W.; Prakash, K.M.; Tan, L.C.S.; Tan, E.-K. Case-Control Study of Hypertension and Parkinson’s Disease. NPJ Park. Dis. 2021, 7, 63. [Google Scholar] [CrossRef]
- Umehara, T.; Matsuno, H.; Toyoda, C.; Oka, H. Clinical Characteristics of Supine Hypertension in de Novo Parkinson Disease. Clin. Auton. Res. 2016, 26, 15–21. [Google Scholar] [CrossRef]
- Celedonio, J.E.; Arnold, A.C.; Dupont, W.D.; Ramirez, C.E.; Diedrich, A.; Okamoto, L.E.; Raj, S.R.; Robertson, D.; Peltier, A.C.; Biaggioni, I.; et al. Residual Sympathetic Tone Is Associated with Reduced Insulin Sensitivity in Patients with Autonomic Failure. Clin. Auton. Res. 2015, 25, 309–315. [Google Scholar] [CrossRef]
- Mantovani, G.; Marozzi, I.; Rafanelli, M.; Rivasi, G.; Volpato, S.; Ungar, A. Supine Hypertension: A State of the Art. Auton. Neurosci. 2022, 241, 102988. [Google Scholar] [CrossRef]
- Tulbă, D.; Cozma, L.; Bălănescu, P.; Buzea, A.; Băicuș, C.; Popescu, B.O. Blood Pressure Patterns in Patients with Parkinson’s Disease: A Systematic Review. J. Pers. Med. 2021, 11, 129. [Google Scholar] [CrossRef]
- Hou, L.; Li, Q.; Jiang, L.; Qiu, H.; Geng, C.; Hong, J.-S.; Li, H.; Wang, Q. Hypertension and Diagnosis of Parkinson’s Disease: A Meta-Analysis of Cohort Studies. Front. Neurol. 2018, 9, 162. [Google Scholar] [CrossRef] [PubMed]
- Yoo, S.-W.; Oh, Y.-S.; Ryu, D.-W.; Ha, S.; Kim, Y.; Yoo, J.-Y.; Kim, J.-S. A 3-Year Natural History of Orthostatic Blood Pressure Dysregulation in Early Parkinson’s Disease. NPJ Park. Dis. 2023, 9, 96. [Google Scholar] [CrossRef]
- Moss Lopes, P.R.; Westphal Filho, F.L.; Mendes Filho, F.D.S.M.; Falcão, C.E.R.; Arca, V.M.; Parmera, J.B. Prevalence of Supine Hypertension in Alpha-Synucleinopathies: A Systematic Review and Meta-Analysis. Mov. Disord. Clin. Pract. 2025, 12, 1703–1713. [Google Scholar] [CrossRef] [PubMed]
- Biaggioni, I. The Pharmacology of Autonomic Failure: From Hypotension to Hypertension. Pharmacol. Rev. 2017, 69, 53–62. [Google Scholar] [CrossRef] [PubMed]
- Arnold, A.C.; Okamoto, L.E.; Gamboa, A.; Shibao, C.; Raj, S.R.; Robertson, D.; Biaggioni, I. Angiotensin II, Independent of Plasma Renin Activity, Contributes to the Hypertension of Autonomic Failure. Hypertension 2013, 61, 701–706. [Google Scholar] [CrossRef]
- Biaggioni, I.; Garcia, F.; Inagami, T.; Haile, V. Hyporeninemic Normoaldosteronism in Severe Autonomic Failure. J. Clin. Endocrinol. Metab. 1993, 76, 580–586. [Google Scholar] [CrossRef]
- Arnold, A.C.; Okamoto, L.E.; Gamboa, A.; Black, B.K.; Raj, S.R.; Elijovich, F.; Robertson, D.; Shibao, C.A.; Biaggioni, I. Mineralocorticoid Receptor Activation Contributes to the Supine Hypertension of Autonomic Failure. Hypertension 2016, 67, 424–429. [Google Scholar] [CrossRef]
- Gamboa, A.; Shibao, C.; Diedrich, A.; Paranjape, S.Y.; Farley, G.; Christman, B.; Raj, S.R.; Robertson, D.; Biaggioni, I. Excessive Nitric Oxide Function and Blood Pressure Regulation in Patients with Autonomic Failure. Hypertension 2008, 51, 1531–1536. [Google Scholar] [CrossRef]
- Lee, J.-M.; Park, K.-W.; Seo, W.-K.; Park, M.H.; Han, C.; Jo, I.; Ahn Jo, S. Carotid Intima-Media Thickness in Parkinson’s Disease. Mov. Disord. 2007, 22, 2446–2449. [Google Scholar] [CrossRef]
- Zambito Marsala, S.; Gioulis, M.; Pistacchi, M.; Lo Cascio, C. Parkinson’s Disease and Cerebrovascular Disease: Is There a Link? A Neurosonological Case-Control Study. Neurol. Sci. 2016, 37, 1707–1711. [Google Scholar] [CrossRef] [PubMed]
- Alves, M.; Pita Lobo, P.; Kauppila, L.A.; Rebordão, L.; Cruz, M.M.; Soares, F.; Cruz, J.; Tornada, A.; Caldeira, D.; Reimão, S.; et al. Cardiovascular and Cerebrovascular Risk Markers in Parkinson’s Disease: Results from a Case-Control Study. Eur. J. Neurol. 2021, 28, 2669–2679. [Google Scholar] [CrossRef] [PubMed]
- Yan, L.-Y.; He, Q.-F.; Lu, M.-Y.; Wang, S.-L.; Qi, Z.-Q.; Dong, H.-R. Association between Carotid Plaque and Parkinson’s Disease. Ann. Transl. Med. 2019, 7, 94. [Google Scholar] [CrossRef]
- Alexa, D.; Constantinescu, A.; Baltag, D.; Ignat, B.; Bolbocean, O.; Popescu, C.D. Parkinson’s Disease and Carotid Intima-Media Thickness. Rev. Med. Chir. Soc. Med. Nat. Iasi. 2014, 118, 52–56. [Google Scholar]
- Rektor, I.; Goldemund, D.; Bednařík, P.; Sheardová, K.; Michálková, Z.; Telecká, S.; Dufek, M.; Rektorová, I. Impairment of Brain Vessels May Contribute to Mortality in Patients with Parkinson’s Disease. Mov. Disord. 2012, 27, 1169–1172. [Google Scholar] [CrossRef] [PubMed]
- Milazzo, V.; Maule, S.; Di Stefano, C.; Tosello, F.; Totaro, S.; Veglio, F.; Milan, A. Cardiac Organ Damage and Arterial Stiffness in Autonomic Failure: Comparison With Essential Hypertension. Hypertension 2015, 66, 1168–1175. [Google Scholar] [CrossRef]
- Yuphiwa Ngomane, A.; Martins de Abreu, R.; Fernandes, B.; Roque Marçal, I.; Veiga Guimarães, G.; Gomes Ciolac, E. Analysis of Cardiovascular Hemodynamic and Autonomic Variables in Individuals with Systemic Arterial Hypertension, Type 2 Diabetes Mellitus, and Parkinson’s Disease: A Comparative Study. Clin. Exp. Hypertens. 2022, 44, 119–126. [Google Scholar] [CrossRef]
- Park, J.H.; Han, S.W.; Baik, J.S. A Comparative Study of Central Hemodynamics in Parkinson’s Disease. J. Mov. Disord. 2017, 10, 135–139. [Google Scholar] [CrossRef]
- Kim, J.-S.; Lee, S.-H.; Oh, Y.-S.; Park, J.-W.; An, J.-Y.; Choi, H.-S.; Lee, K.-S. Arterial Stiffness and Cardiovascular Autonomic Dysfunction in Patients with Parkinson’s Disease. Neurodegener. Dis. 2017, 17, 89–96. [Google Scholar] [CrossRef]
- Suzuki, J.; Sakakibara, R.; Tateno, F.; Tsuyusaki, Y.; Kishi, M.; Ogata, T.; Tomaru, T.; Shirai, K.; Kurosu, T. Parkinson’s Disease and the Cardio-Ankle Vascular Stiffness Index. Intern. Med. 2014, 53, 421–426. [Google Scholar] [CrossRef] [PubMed]
- Franzen, K.; Fliegen, S.; Koester, J.; Martin, R.C.; Deuschl, G.; Reppel, M.; Mortensen, K.; Schneider, S.A. Central Hemodynamics and Arterial Stiffness in Idiopathic and Multiple System Atrophy. J. Neurol. 2017, 264, 327–332. [Google Scholar] [CrossRef]
- Yang, G.; Wang, L.Z.; Zhang, R.; Zhang, X.Y.; Yu, Y.; Ma, H.R.; He, X.G. Study on the Correlation between Blood Urea Nitrogen, Creatinine Level, Proteinuria and Parkinson’s Disease. Neurol. India 2023, 71, 1217–1221. [Google Scholar] [CrossRef] [PubMed]
- Nam, G.E.; Kim, N.H.; Han, K.; Choi, K.M.; Chung, H.S.; Kim, J.W.; Han, B.; Cho, S.J.; Jung, S.J.; Yu, J.H.; et al. Chronic Renal Dysfunction, Proteinuria, and Risk of Parkinson’s Disease in the Elderly. Mov. Disord. 2019, 34, 1184–1191. [Google Scholar] [CrossRef]
- Garland, E.M.; Gamboa, A.; Okamoto, L.; Raj, S.R.; Black, B.K.; Davis, T.L.; Biaggioni, I.; Robertson, D. Renal Impairment of Pure Autonomic Failure. Hypertension 2009, 54, 1057–1061. [Google Scholar] [CrossRef]
- Peng, H.; Wu, L.; Chen, Q.; Chen, S.; Wu, S.; Shi, X.; Ma, J.; Yang, H.; Li, X. Association between Kidney Function and Parkinson’s Disease Risk: A Prospective Study from the UK Biobank. BMC Public Health 2024, 24, 2225. [Google Scholar] [CrossRef] [PubMed]
- Kwon, M.J.; Kim, J.-K.; Kim, J.H.; Kim, J.-H.; Kim, M.-J.; Kim, N.Y.; Choi, H.G.; Kim, E.S. Exploring the Link between Chronic Kidney Disease and Parkinson’s Disease: Insights from a Longitudinal Study Using a National Health Screening Cohort. Nutrients 2023, 15, 3205. [Google Scholar] [CrossRef]
- Palma, J.-A.; Redel-Traub, G.; Porciuncula, A.; Samaniego-Toro, D.; Millar Vernetti, P.; Lui, Y.W.; Norcliffe-Kaufmann, L.; Kaufmann, H. The Impact of Supine Hypertension on Target Organ Damage and Survival in Patients with Synucleinopathies and Neurogenic Orthostatic Hypotension. Park. Relat. Disord. 2020, 75, 97–104. [Google Scholar] [CrossRef] [PubMed]
- Lim, T.S.; Lee, P.H.; Kim, H.S.; Yong, S.W. White Matter Hyperintensities in Patients with Multiple System Atrophy. J. Neurol. 2009, 256, 1663–1670. [Google Scholar] [CrossRef]
- Tha, K.K.; Terae, S.; Yabe, I.; Miyamoto, T.; Soma, H.; Zaitsu, Y.; Fujima, N.; Kudo, K.; Sasaki, H.; Shirato, H. Microstructural White Matter Abnormalities of Multiple System Atrophy: In Vivo Topographic Illustration by Using Diffusion-Tensor MR Imaging. Radiology 2010, 255, 563–569. [Google Scholar] [CrossRef] [PubMed]
- Umoto, M.; Miwa, H.; Ando, R.; Kajimoto, Y.; Kondo, T. White Matter Hyperintensities in Patients with Multiple System Atrophy. Park. Relat. Disord. 2012, 18, 17–20. [Google Scholar] [CrossRef] [PubMed]
- Oh, Y.-S.; Kim, J.-S.; Yang, D.-W.; Koo, J.-S.; Kim, Y.-I.; Jung, H.-O.; Lee, K.-S. Nighttime Blood Pressure and White Matter Hyperintensities in Patients with Parkinson Disease. Chronobiol. Int. 2013, 30, 811–817. [Google Scholar] [CrossRef]
- Oh, Y.-S.; Kim, J.-S.; Park, H.-E.; Song, I.-U.; Park, J.-W.; Yang, D.-W.; Son, B.-C.; Lee, S.-H.; Lee, K.-S. Association between Urine Protein/Creatinine Ratio and Cognitive Dysfunction in Lewy Body Disorders. J. Neurol. Sci. 2016, 362, 258–262. [Google Scholar] [CrossRef]
- Chen, L.; Qiao, T.; Ma, C.; Liu, C.; Chen, Y.; Zhang, H.; Xu, Y. Nighttime Systolic Blood Pressure Reduction Rate and Periventricular White Matter Hyperintensity Were Associated with Cognitive Function in Parkinson’s Disease. Neurol. Sci. 2025, 46, 3107–3115. [Google Scholar] [CrossRef]
- Maule, S.; Milan, A.; Grosso, T.; Veglio, F. Left Ventricular Hypertrophy in Patients with Autonomic Failure. Am. J. Hypertens. 2006, 19, 1049–1054. [Google Scholar] [CrossRef]
- Vagaonescu, T.D.; Saadia, D.; Tuhrim, S.; Phillips, R.A.; Kaufmann, H. Hypertensive Cardiovascular Damage in Patients with Primary Autonomic Failure. Lancet 2000, 355, 725–726. [Google Scholar] [CrossRef]
- Di Stefano, C.; Sobrero, G.; Milazzo, V.; Vallelonga, F.; Romagnolo, A.; Zibetti, M.; Milan, A.; Veglio, F.; Maule, S. Cardiac Organ Damage in Patients with Parkinson’s Disease and Reverse Dipping. J. Hypertens. 2020, 38, 289–294. [Google Scholar] [CrossRef]
- Piqueras-Flores, J.; López-García, A.; Moreno-Reig, Á.; González-Martínez, A.; Hernández-González, A.; Vaamonde-Gamo, J.; Jurado-Román, A. Structural and Functional Alterations of the Heart in Parkinson’s Disease. Neurol. Res. 2018, 40, 53–61. [Google Scholar] [CrossRef] [PubMed]
- Huijben, A.M.T.; Mattace-Raso, F.U.S.; Deinum, J.; Lenders, J.; van den Meiracker, A.H. Aortic Augmentation Index and Pulse Wave Velocity in Response to Head-up Tilting: Effect of Autonomic Failure. J. Hypertens. 2012, 30, 307–314. [Google Scholar] [CrossRef] [PubMed]
- Kanegusuku, H.; Cucato, G.G.; Longano, P.; Okamoto, E.; Piemonte, M.E.P.; Correia, M.A.; Ritti-Dias, R.M. Acute Cardiovascular Responses to Self-Selected Intensity Exercise in Parkinson’s Disease. Int. J. Sports Med. 2022, 43, 177–182. [Google Scholar] [CrossRef]
- Okamoto, L.E.; Celedonio, J.E.; Smith, E.C.; Paranjape, S.Y.; Black, B.K.; Wahba, A.; Park, J.-W.; Shibao, C.A.; Diedrich, A.; Biaggioni, I. Continuous Positive Airway Pressure for the Treatment of Supine Hypertension and Orthostatic Hypotension in Autonomic Failure. Hypertension 2023, 80, 650–658. [Google Scholar] [CrossRef]
- Okamoto, L.E.; Celedonio, J.E.; Smith, E.C.; Gamboa, A.; Shibao, C.A.; Diedrich, A.; Paranjape, S.Y.; Black, B.K.; Muldowney, J.A.S.; Peltier, A.C.; et al. Local Passive Heat for the Treatment of Hypertension in Autonomic Failure. J. Am. Heart Assoc. 2021, 10, e018979. [Google Scholar] [CrossRef] [PubMed]
- Mehr, P.E.; Ortiz, P.J.; O’Rourke, K.R.; Ding, T.; Hackstadt, A.J.; Kulapatana, S.; Diedrich, A.; Claassen, D.O.; Biaggioni, I.; Peltier, A.C.; et al. Peripheral Autonomic Failure Is Associated with More Severe Postprandial Hypotension Compared to Central Autonomic Failure. Clin. Auton. Res. 2025, 35, 607–616. [Google Scholar] [CrossRef]
- McEvoy, J.W.; McCarthy, C.P.; Bruno, R.M.; Brouwers, S.; Canavan, M.D.; Ceconi, C.; Christodorescu, R.M.; Daskalopoulou, S.S.; Ferro, C.J.; Gerdts, E.; et al. 2024 ESC Guidelines for the Management of Elevated Blood Pressure and Hypertension. Eur. Heart J. 2024, 45, 3912–4018. [Google Scholar] [CrossRef]
- Jones, D.W.; Ferdinand, K.C.; Taler, S.J.; Johnson, H.M.; Shimbo, D.; Abdalla, M.; Altieri, M.M.; Bansal, N.; Bello, N.A.; Bress, A.P.; et al. 2025 AHA/ACC/AANP/AAPA/ABC/ACCP/ACPM/AGS/AMA/ASPC/NMA/PCNA/SGIM Guideline for the Prevention, Detection, Evaluation, and Management of High Blood Pressure in Adults. JACC 2025, 86, 1567–1678. [Google Scholar] [CrossRef]
| Study | HMOD | Sample Size and Type of Patients | Design | Conclusion |
|---|---|---|---|---|
| Lee [34] | cIMT & carotid plaques | 43 PD vs. 86 matched HC | case–control | cIMT was lower in PD than in HC |
| Zambito Masala [35] | cIMT & carotid plaques | 30 PD vs. 30 HC | case–control | cIMT was lower in PD than in HC |
| Alves [36] | cIMT & carotid plaques | 102 PD vs. 102 HC | case–control | No difference in cIMT but more plaques in PD |
| Yan [37] | cIMT & carotid plaques | 68 PD vs. 81 HC | case–control | No difference in cIMT and plaques between PD and HC |
| Alexa [38] | cIMT & carotid plaques | 54 PD vs. 50 HC | case–control | cIMT was higher in PD than in HC |
| Rektor [39] | cIMT & carotid plaques | 57 PD whose 18 died | longitudinal | More-severe vascular impairment in deceased patients |
| Milazzo [40] | arterial stiffness | 27 AF (5 MSA + 7 PAF + 15 PD) vs. 27 HT + 27 HC | case–control | cf-PWV lower in HC than both in MSA+PAF and EH |
| Awassi Yuphiwa [41] | arterial stiffness | 50 (PD vs. HT vs. DMT2) | case–control | T2DM has lower PWV than PD |
| Park [42] | arterial stiffness | 70 PD 77 HC | case–control | No significant difference in the AIx between PD and HC |
| Kim [43] | arterial stiffness | 125 PD vs. 22 HC | case–control | ba-PWV higher only in PD with autonomic failure |
| Suzuki [44] | arterial stiffness | 63 PD vs. 63 HC | case–control | ba-PWV was smaller in PD than HC |
| Franzen [45] | arterial stiffness | 32 PTS (27 PD, 5 MSA) 15 HC matched for CVRF | case–control | Aix@75 was lower and PWV higher in PD+MSA+PAF vs. HC |
| Yang [46] | renal function | 200 PD vs. 110 HC | case–control | Elevated creatinine, and u-protein associates with PD |
| Nam [47] | renal function | 3,580,435 individuals aged ≥65 years who had undergone health checkups | longitudinal | eGFR associates with increased risk of PD |
| Garland [48] | renal function | 64 male pts with PAF whose 48% with supine HT (Systolic BP > 150 mmHg) | case–control. | eGFR lower in pts with nSH |
| Peng [49] | renal function | 400,571 UK Biobank participants | long. | eGFR associates with increased risk of PD |
| Kwon [50] | renal function | Korean National Health Insurance Service-Health Screening Cohort (16,559 with CKD & 66,236 control) | longitudinal | The general CKD population may not exhibit a greater propensity for PD than their non-CKD counterparts |
| Palma [51] | renal function | 57 (35 MSA, 14 PD & 8 PAF) | observational | PD+MSA+PAF with nSH has lower eGFR than PD+MSA+PAF without nSH |
| Lim [52] | WMH | 63 MSA vs. 63 age- and sex-matched HC | case–control | The median grading score of WMH was higher in MSA than in HC |
| Tha [53] | WMH | 16 MSA vs. 16 HC | case–control | WMH in patients with MSA were significantly larger that in HC |
| Umoto [54] | WMH | 22 MSA vs. 22 PD vs. 22 HC | case–control | WMHs in patients with MSA were statistically greater than in PD patients or HC |
| Oh [55] | WMH | 129 PD patients (27 normal BP dipping; 102 non-dipping) | observational | Nocturnal hypertension (not non-dipping) associates with increased WMH score |
| Palma [51] | WMH | 57 (35 MSA, 14 PD & 8 PAF) | observational | PD+MSA+PAF with nSH has higher WMH volumes than PD+MSA+PAF without nSH |
| Oh [56] | WMH | 53 PD-normal cognition, 76 had PD-mild cognitive impairment), 43 had PD-dementia and 14 had DLB | cross-sectional | U-protein/creatinine ratio and WMH higher in PD with dementia & DLB than in PD with mild cognitive impairment or normal cognition |
| Chen [57] | WMH | 52 PD patients (13 normal BP dipping; 39 non-dipping) | Patients in the non-dipping group exhibited a significantly higher volume of periventricular WMH | |
| Maule [58] | LVH | 25 AF (21 MSA, 3 PAF, 1 amylpoidosis) vs. 20 HT | case–control | LVM is similar in patients with autonomic failure and HC |
| Vagaonescu [59] | LVH | 6 PAF & 8 MSA vs. 14 HC | case–control | LVH lower in HC than both in MSA+PAF and EH |
| Di Stefano [60] | LVH | 26 PD with reverse dipping + 26 PD without reverse dipping + 26 HT | case–control | LVH higher in PD with reverse BP dipping than PF without reverse dipping |
| Piqueras-Flores [61] | LVH | 50 PD vs. 50 HC | case–control | LVMi higher in PD than HC |
| Palma [51] | LVH | 57 (35 MSA, 14 PD & 8 PAF) | observational | PD+MSA+PAF with nSH has higher LVM than PD+MSA+PAF without nSH |
| Milazzo [40] | LVH | 27 AF (5 MSA+7 PAF + 15 PD) vs. 27 HT + 27 HC | case–control | LVH lower in HC than both in AF and EH |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Fava, C.; Stocchetti, F.; Bonafini, S. Should Neurogenic Supine Hypertension Be Treated? Insights from Hypertension-Mediated Organ Damage Studies—A Narrative Review. Biomedicines 2026, 14, 40. https://doi.org/10.3390/biomedicines14010040
Fava C, Stocchetti F, Bonafini S. Should Neurogenic Supine Hypertension Be Treated? Insights from Hypertension-Mediated Organ Damage Studies—A Narrative Review. Biomedicines. 2026; 14(1):40. https://doi.org/10.3390/biomedicines14010040
Chicago/Turabian StyleFava, Cristiano, Federica Stocchetti, and Sara Bonafini. 2026. "Should Neurogenic Supine Hypertension Be Treated? Insights from Hypertension-Mediated Organ Damage Studies—A Narrative Review" Biomedicines 14, no. 1: 40. https://doi.org/10.3390/biomedicines14010040
APA StyleFava, C., Stocchetti, F., & Bonafini, S. (2026). Should Neurogenic Supine Hypertension Be Treated? Insights from Hypertension-Mediated Organ Damage Studies—A Narrative Review. Biomedicines, 14(1), 40. https://doi.org/10.3390/biomedicines14010040

