From Monoamines to Systems Psychiatry: Rewiring Depression Science and Care (1960s–2025)
Abstract
1. Framing the Journey—Prompts
2. Early Paradigms and Assumptions (1960s–1990s)
3. Key Mechanistic Pivots in Systems Psychiatry
3.1. Plasticity and Circuit Control of Depressive States
3.1.1. Synaptic Plasticity and Intrinsic Excitability
3.1.2. Glutamate/γ–Aminobutyric Acid (GABA) Microcircuit Control
3.1.3. Circuit-Level Nodes (Drugs and Devices)
3.2. Reward, Motivation, and Stress Systems
3.2.1. Reward, Motivation, and Stress–Opioid Tone
3.2.2. HPA–Circadian–Stress Axis
3.3. Immune–Metabolic–Genomic Modifiers of Risk and Treatment Response
3.3.1. Tryptophan (Trp)–Kynurenine (KYN) Steering
3.3.2. Neuroimmune and Glia
3.3.3. Metabolic–Endocrine Crosstalk
3.3.4. Epigenetic/Transcriptional Gating
3.4. Multi-Point Precision Strategies and Emerging Targets
Multi-Point Strategies and Next-Wave Targets
4. Divergence → Reconnection
5. Clinical Applications Today
6. What We Got Wrong/Right
7. Outlook
8. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| 5-CSRTT | five-choice serial reaction time task |
| AhR | aryl hydrocarbon receptor |
| AMPA | α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid |
| ATAC | assay for transposase-accessible chromatin |
| BMI | body mass index |
| BOLD | blood-oxygen-level–dependent |
| CANTAB | Cambridge Neuropsychological Test Automated Battery |
| CRP | C-reactive protein |
| CSF1R | colony-stimulating factor 1 receptor |
| Dex/CRH | dexamethasone/corticotropin-releasing hormone |
| DLMO | dim light melatonin onset |
| DLPFC | dorsolateral prefrontal cortex |
| DNMTs | DNA methyltransferases |
| DSM | Diagnostic and Statistical Manual of Mental Disorders |
| EEG | electroencephalography |
| EefRT | Effort Expenditure for Rewards Task |
| eEPSPs | evoked excitatory postsynaptic potentials |
| ERK | extracellular signal-regulated kinase |
| EMG | electromyography |
| fMRI | functional magnetic resonance imaging |
| GABA | γ-aminobutyric acid |
| GLP-1 | glucagon-like peptide-1 |
| GR | glucocorticoid receptor |
| HAM-D | Hamilton Depression Rating Scale |
| HbA1c | glycated hemoglobin |
| HDACs | histone deacetylases |
| HOMA-IR | homeostatic model assessment of insulin resistance |
| HPA | hypothalamic–pituitary–adrenal axis |
| IDO | indoleamine 2,3-dioxygenase |
| IFN-α | interferon-alpha |
| IL-6 | interleukin-6 |
| IPSPs | inhibitory postsynaptic potentials |
| κ | kappa |
| KYN | kynurenine |
| KYNA | kynurenic acid |
| LFP | local field potential |
| LPS | lipopolysaccharide |
| LSD1 | lysine-specific demethylase 1 |
| LTD | long-term depression |
| LTP | long-term potentiation |
| MADRS | Montgomery–Åsberg Depression Rating Scale |
| MDD | major depressive disorder |
| MEG | magnetoencephalography |
| NMDA | N-methyl-D-aspartate |
| PET | positron emission tomography |
| PFC | prefrontal cortex |
| QA | quinolinic acid |
| RDoC | Research Domain Criteria |
| REM | rapid eye movement |
| RNA | ribonucleic acid |
| rsfMRI | resting-state functional magnetic resonance imaging |
| SCC | subcallosal cingulate cortex |
| T2D | type 2 diabetes |
| TDO | tryptophan 2,3-dioxygenase |
| TMS | transcranial magnetic stimulation |
| TMS-EEG | transcranial magnetic stimulation–electroencephalography |
| TNF | tumor necrosis factor |
| TRD | treatment-resistant depression |
| Trp | tryptophan |
| vmPFC | ventromedial prefrontal cortex |
| VNS | vagus nerve stimulation |
References
- Hirschfeld, R.M. History and evolution of the monoamine hypothesis of depression. J. Clin. Psychiatry 2000, 61, 4–6. [Google Scholar] [PubMed]
- Boku, S.; Nakagawa, S.; Toda, H.; Hishimoto, A. Neural basis of major depressive disorder: Beyond monoamine hypothesis. Psychiatry Clin. Neurosci. 2018, 72, 3–12. [Google Scholar] [CrossRef]
- Liu, B.; Liu, J.; Wang, M.; Zhang, Y.; Li, L. From Serotonin to Neuroplasticity: Evolvement of Theories for Major Depressive Disorder. Front. Cell Neurosci. 2017, 11, 305. [Google Scholar] [CrossRef]
- Spellman, T.; Liston, C. Toward Circuit Mechanisms of Pathophysiology in Depression. Am. J. Psychiatry 2020, 177, 381–390. [Google Scholar] [CrossRef]
- Fries, G.R.; Saldana, V.A.; Finnstein, J.; Rein, T. Molecular pathways of major depressive disorder converge on the synapse. Mol. Psychiatry 2023, 28, 284–297. [Google Scholar] [CrossRef] [PubMed]
- Brandl, F.; Weise, B.; Mulej Bratec, S.; Jassim, N.; Hoffmann Ayala, D.; Bertram, T.; Ploner, M.; Sorg, C. Common and specific large-scale brain changes in major depressive disorder, anxiety disorders, and chronic pain: A transdiagnostic multimodal meta-analysis of structural and functional MRI studies. Neuropsychopharmacology 2022, 47, 1071–1080. [Google Scholar] [CrossRef]
- Sindermann, L.; Redlich, R.; Opel, N.; Böhnlein, J.; Dannlowski, U.; Leehr, E.J. Systematic transdiagnostic review of magnetic-resonance imaging results: Depression, anxiety disorders and their co-occurrence. J. Psychiatr. Res. 2021, 142, 226–239. [Google Scholar] [CrossRef]
- Arnaud, A.M.; Brister, T.S.; Duckworth, K.; Foxworth, P.; Fulwider, T.; Suthoff, E.D.; Werneburg, B.; Aleksanderek, I.; Reinhart, M.L. Impact of Major Depressive Disorder on Comorbidities: A Systematic Literature Review. J. Clin. Psychiatry 2022, 83, 43390. [Google Scholar] [CrossRef]
- Tanaka, M.; Battaglia, S.; Liloia, D. Navigating Neurodegeneration: Integrating Biomarkers, Neuroinflammation, and Imaging in Parkinson’s, Alzheimer’s, and Motor Neuron Disorders. Biomedicines 2025, 13, 1045. [Google Scholar] [CrossRef]
- Berk, M.; Köhler-Forsberg, O.; Turner, M.; Penninx, B.; Wrobel, A.; Firth, J.; Loughman, A.; Reavley, N.J.; McGrath, J.J.; Momen, N.C.; et al. Comorbidity between major depressive disorder and physical diseases: A comprehensive review of epidemiology, mechanisms and management. World Psychiatry 2023, 22, 366–387. [Google Scholar] [CrossRef]
- Tanaka, M.; Battaglia, S. From Biomarkers to Behavior: Mapping the Neuroimmune Web of Pain, Mood, and Memory. Biomedicines 2025, 13, 2226. [Google Scholar] [CrossRef]
- Bottaccioli, A.G.; Bologna, M.; Bottaccioli, F. Rethinking Depression-Beyond Neurotransmitters: An Integrated Psychoneuroendocrineimmunology Framework for Depression’s Pathophysiology and Tailored Treatment. Int. J. Mol. Sci. 2025, 26, 2759. [Google Scholar] [CrossRef] [PubMed]
- Tozzi, L.; Zhang, X.; Pines, A.; Olmsted, A.M.; Zhai, E.S.; Anene, E.T.; Chesnut, M.; Holt-Gosselin, B.; Chang, S.; Stetz, P.C.; et al. Personalized brain circuit scores identify clinically distinct biotypes in depression and anxiety. Nat. Med. 2024, 30, 2076–2087. [Google Scholar] [CrossRef] [PubMed]
- Jiao, W.; Lin, J.; Deng, Y.; Ji, Y.; Liang, C.; Wei, S.; Jing, X.; Yan, F. The immunological perspective of major depressive disorder: Unveiling the interactions between central and peripheral immune mechanisms. J. Neuroinflamm. 2025, 22, 10. [Google Scholar] [CrossRef]
- Tanaka, M.; Battaglia, S. Dualistic Dynamics in Neuropsychiatry: From Monoaminergic Modulators to Multiscale Biomarker Maps. Biomedicines 2025, 13, 1456. [Google Scholar] [CrossRef]
- Drevets, W.C.; Wittenberg, G.M.; Bullmore, E.T.; Manji, H.K. Immune targets for therapeutic development in depression: Towards precision medicine. Nat. Rev. Drug Discov. 2022, 21, 224–244. [Google Scholar] [CrossRef]
- Tafet, G.E.; Nemeroff, C.B. The Links Between Stress and Depression: Psychoneuroendocrinological, Genetic, and Environmental Interactions. J. Neuropsychiatry Clin. Neurosci. 2016, 28, 77–88. [Google Scholar] [CrossRef]
- Yankelevitch-Yahav, R.; Franko, M.; Huly, A.; Doron, R. The forced swim test as a model of depressive-like behavior. J. Vis. Exp. 2015, 97, 52587. [Google Scholar] [CrossRef]
- Yan, H.C.; Cao, X.; Das, M.; Zhu, X.H.; Gao, T.M. Behavioral animal models of depression. Neurosci. Bull. 2010, 26, 327–337. [Google Scholar] [CrossRef]
- Dale, E.; Bang-Andersen, B.; Sánchez, C. Emerging mechanisms and treatments for depression beyond SSRIs and SNRIs. Biochem. Pharmacol. 2015, 95, 81–97. [Google Scholar] [CrossRef] [PubMed]
- Abelaira, H.M.; Réus, G.Z.; Quevedo, J. Animal models as tools to study the pathophysiology of depression. Braz. J. Psychiatry 2013, 35, S112–S120. [Google Scholar] [CrossRef]
- Sharma, S.; Chawla, S.; Kumar, P.; Ahmad, R.; Kumar Verma, P. The chronic unpredictable mild stress (CUMS) Paradigm: Bridging the gap in depression research from bench to bedside. Brain Res. 2024, 1843, 149123. [Google Scholar] [CrossRef]
- Ji, N.; Lei, M.; Chen, Y.; Tian, S.; Li, C.; Zhang, B. How Oxidative Stress Induces Depression? ASN Neuro 2023, 15, 17590914231181037. [Google Scholar] [CrossRef]
- Bech, P. Modern psychometrics in clinimetrics: Impact on clinical trials of antidepressants. Psychother. Psychosom. 2004, 73, 134–138. [Google Scholar] [CrossRef]
- Regier, D.A.; Narrow, W.E.; Kuhl, E.A.; Kupfer, D.J. The conceptual development of DSM-V. Am. J. Psychiatry 2009, 166, 645–650. [Google Scholar] [CrossRef] [PubMed]
- Hengartner, M.P.; Jakobsen, J.C.; Sørensen, A.; Plöderl, M. Efficacy of new-generation antidepressants assessed with the Montgomery-Asberg Depression Rating Scale, the gold standard clinician rating scale: A meta-analysis of randomised placebo-controlled trials. PLoS ONE 2020, 15, e0229381. [Google Scholar] [CrossRef] [PubMed]
- Khan, A.; Khan, S.R.; Shankles, E.B.; Polissar, N.L. Relative sensitivity of the Montgomery-Asberg Depression Rating Scale, the Hamilton Depression rating scale and the Clinical Global Impressions rating scale in antidepressant clinical trials. Int. Clin. Psychopharmacol. 2002, 17, 281–285. [Google Scholar] [CrossRef]
- Guizzaro, L.; Morgan, D.D.V.; Falco, A.; Gallo, C. Hamilton scale and MADRS are interchangeable in meta-analyses but can disagree at trial level. J. Clin. Epidemiol. 2020, 124, 106–117. [Google Scholar] [CrossRef] [PubMed]
- Leucht, S.; Fennema, H.; Engel, R.R.; Kaspers-Janssen, M.; Szegedi, A. Translating the HAM-D into the MADRS and vice versa with equipercentile linking. J. Affect. Disord. 2018, 226, 326–331. [Google Scholar] [CrossRef]
- Santi, N.S.; Biswal, S.B.; Naik, B.N.; Sahoo, J.P.; Rath, B. Comparison of Hamilton Depression Rating Scale and Montgomery-Åsberg Depression Rating Scale: Baked Straight from a Randomized Study. Cureus 2023, 15, e45098. [Google Scholar] [CrossRef]
- Ratheesh, A.; Berk, M.; Schmaal, L. Can we overcome the heterogeneity of mood disorders in clinical trials? Aust. N. Z. J. Psychiatry 2023, 57, 309–311. [Google Scholar] [CrossRef]
- Su, Z.; Yang, X.; Hou, J.; Liu, S.; Wang, Y.; Chen, Z. Gender differences in the co-occurrence of anxiety and depressive symptoms among early adolescents: A network approach. J. Psychiatr. Res. 2024, 179, 300–305. [Google Scholar] [CrossRef]
- Vasiliadis, H.M.; Desjardins, F.; Roberge, P.; Grenier, S. Sex Differences in Anxiety Disorders in Older Adults. Curr. Psychiatry Rep. 2020, 22, 75. [Google Scholar] [CrossRef]
- Thompson, K.N.; Hübel, C.; Cheesman, R.; Adey, B.N.; Armour, C.; Davies, M.R.; Hotopf, M.; Jones, I.R.; Kalsi, G.; McIntosh, A.M.; et al. Age and sex-related variability in the presentation of generalized anxiety and depression symptoms. Depress. Anxiety 2021, 38, 1054–1065. [Google Scholar] [CrossRef]
- Pavlidi, P.; Kokras, N.; Dalla, C. Sex Differences in Depression and Anxiety. Curr. Top. Behav. Neurosci. 2023, 62, 103–132. [Google Scholar] [CrossRef]
- Kuper, P.; Miguel, C.; Cuijpers, P.; Apfelbacher, C.; Buntrock, C.; Karyotaki, E.; Sprenger, A.A.; Harrer, M. Sample size and geographical region predict effect heterogeneity in psychotherapy research for depression: A meta-epidemiological study. J. Clin. Epidemiol. 2025, 183, 111779. [Google Scholar] [CrossRef] [PubMed]
- Cai, N.; Choi, K.W.; Fried, E.I. Reviewing the genetics of heterogeneity in depression: Operationalizations, manifestations and etiologies. Hum. Mol. Genet. 2020, 29, R10–R18. [Google Scholar] [CrossRef] [PubMed]
- Hickie, I.B.; Berk, M.; Scott, J.; Crouse, J.; Scott, E.; Wray, N.; Iorfino, F. What are the best strategies for stratification of clinical cohorts with depression and other mood disorders? Res. Dir. Depress. 2024, 1, e18. [Google Scholar] [CrossRef]
- Dunlop, K.; Grosenick, L.; Downar, J.; Vila-Rodriguez, F.; Gunning, F.M.; Daskalakis, Z.J.; Blumberger, D.M.; Liston, C. Dimensional and categorical solutions to parsing depression heterogeneity in a large single-site sample. Biol. Psychiatry 2024, 96, 422–434. [Google Scholar] [CrossRef]
- Marsden, W.N. Synaptic plasticity in depression: Molecular, cellular and functional correlates. Prog. Neuropsychopharmacol. Biol. Psychiatry 2013, 43, 168–184. [Google Scholar] [CrossRef] [PubMed]
- Shenoy, S.; Ibrahim, S. Perinatal Depression and the Role of Synaptic Plasticity in Its Pathogenesis and Treatment. Behav. Sci. 2023, 13, 942. [Google Scholar] [CrossRef]
- Brown, J.C.; Higgins, E.S.; George, M.S. Synaptic Plasticity 101: The Story of the AMPA Receptor for the Brain Stimulation Practitioner. Neuromodulation 2022, 25, 1289–1298. [Google Scholar] [CrossRef] [PubMed]
- He, J.G.; Zhou, H.Y.; Wang, F.; Chen, J.G. Dysfunction of Glutamatergic Synaptic Transmission in Depression: Focus on AMPA Receptor Trafficking. Biol. Psychiatry Glob. Open Sci. 2023, 3, 187–196. [Google Scholar] [CrossRef] [PubMed]
- Brager, D.H.; Johnston, D. Plasticity of intrinsic excitability during long-term depression is mediated through mGluR-dependent changes in I(h) in hippocampal CA1 pyramidal neurons. J. Neurosci. 2007, 27, 13926–13937. [Google Scholar] [CrossRef]
- Cavalleri, L.; Merlo Pich, E.; Millan, M.J.; Chiamulera, C.; Kunath, T.; Spano, P.F.; Collo, G. Ketamine enhances structural plasticity in mouse mesencephalic and human iPSC-derived dopaminergic neurons via AMPAR-driven BDNF and mTOR signaling. Mol. Psychiatry 2018, 23, 812–823. [Google Scholar] [CrossRef] [PubMed]
- Appelbaum, L.G.; Shenasa, M.A.; Stolz, L.; Daskalakis, Z. Synaptic plasticity and mental health: Methods, challenges and opportunities. Neuropsychopharmacology 2023, 48, 113–120. [Google Scholar] [CrossRef]
- Cantone, M.; Bramanti, A.; Lanza, G.; Pennisi, M.; Bramanti, P.; Pennisi, G.; Bella, R. Cortical Plasticity in Depression. ASN Neuro 2017, 9, 1759091417711512. [Google Scholar] [CrossRef]
- Hu, Y.T.; Tan, Z.L.; Hirjak, D.; Northoff, G. Brain-wide changes in excitation-inhibition balance of major depressive disorder: A systematic review of topographic patterns of GABA- and glutamatergic alterations. Mol. Psychiatry 2023, 28, 3257–3266. [Google Scholar] [CrossRef]
- Fee, C.; Banasr, M.; Sibille, E. Somatostatin-Positive Gamma-Aminobutyric Acid Interneuron Deficits in Depression: Cortical Microcircuit and Therapeutic Perspectives. Biol. Psychiatry 2017, 82, 549–559. [Google Scholar] [CrossRef]
- Kuki, T.; Fujihara, K.; Miwa, H.; Tamamaki, N.; Yanagawa, Y.; Mushiake, H. Contribution of parvalbumin and somatostatin-expressing GABAergic neurons to slow oscillations and the balance in beta-gamma oscillations across cortical layers. Front. Neural Circuits 2015, 9, 6. [Google Scholar] [CrossRef]
- Chen, G.; Zhang, Y.; Li, X.; Zhao, X.; Ye, Q.; Lin, Y.; Tao, H.W.; Rasch, M.J.; Zhang, X. Distinct Inhibitory Circuits Orchestrate Cortical beta and gamma Band Oscillations. Neuron 2017, 96, 1403–1418.e1406. [Google Scholar] [CrossRef]
- Tsuboi, D.; Nagai, T.; Yoshimoto, J.; Kaibuchi, K. Neuromodulator regulation and emotions: Insights from the crosstalk of cell signaling. Front. Mol. Neurosci. 2024, 17, 1376762. [Google Scholar] [CrossRef]
- Wagatsuma, N.; Nobukawa, S.; Fukai, T. A microcircuit model involving parvalbumin, somatostatin, and vasoactive intestinal polypeptide inhibitory interneurons for the modulation of neuronal oscillation during visual processing. Cereb. Cortex 2023, 33, 4459–4477. [Google Scholar] [CrossRef]
- Tahvili, F.; Vinck, M.; di Volo, M. PV and SOM cells play distinct causal roles in controlling network oscillations and stability. Cell Rep. 2025, 44, 116131. [Google Scholar] [CrossRef] [PubMed]
- Mazza, F.; Guet-McCreight, A.; Valiante, T.A.; Griffiths, J.D.; Hay, E. In-silico EEG biomarkers of reduced inhibition in human cortical microcircuits in depression. PLoS Comput. Biol. 2023, 19, e1010986. [Google Scholar] [CrossRef]
- Rademacher, J.; Grent-’t-Jong, T.; Rivolta, D.; Sauer, A.; Scheller, B.; Gonzalez-Burgos, G.; Metzner, C.; Uhlhaas, P.J. Computational modeling of ketamine-induced changes in gamma-band oscillations: The contribution of parvalbumin and somatostatin interneurons. PLoS Comput. Biol. 2025, 21, e1013118. [Google Scholar] [CrossRef]
- Deng, Z.D.; Luber, B.; Balderston, N.L.; Velez Afanador, M.; Noh, M.M.; Thomas, J.; Altekruse, W.C.; Exley, S.L.; Awasthi, S.; Lisanby, S.H. Device-Based Modulation of Neurocircuits as a Therapeutic for Psychiatric Disorders. Annu. Rev. Pharmacol. Toxicol. 2020, 60, 591–614. [Google Scholar] [CrossRef] [PubMed]
- Vinogradov, S.; Chafee, M.V.; Lee, E.; Morishita, H. Psychosis spectrum illnesses as disorders of prefrontal critical period plasticity. Neuropsychopharmacology 2023, 48, 168–185. [Google Scholar] [CrossRef] [PubMed]
- Idlett-Ali, S.L.; Salazar, C.A.; Bell, M.S.; Short, E.B.; Rowland, N.C. Neuromodulation for treatment-resistant depression: Functional network targets contributing to antidepressive outcomes. Front. Hum. Neurosci. 2023, 17, 1125074. [Google Scholar] [CrossRef]
- Allawala, A.; Bijanki, K.R.; Oswalt, D.; Mathura, R.K.; Adkinson, J.; Pirtle, V.; Shofty, B.; Robinson, M.; Harrison, M.T.; Mathew, S.J.; et al. Prefrontal network engagement by deep brain stimulation in limbic hubs. Front. Hum. Neurosci. 2023, 17, 1291315. [Google Scholar] [CrossRef]
- Tanaka, M.; He, Z.; Han, S.; Battaglia, S. Editorial: Noninvasive brain stimulation: A promising approach to study and improve emotion regulation. Front. Behav. Neurosci. 2025, 19, 1633936. [Google Scholar] [CrossRef]
- Wang, A.; Sun, J. Personalized EEG-guided brain stimulation targeting in major depression via network controllability and multi-objective optimization. BMC Psychiatry 2025, 25, 723. [Google Scholar] [CrossRef]
- Bruijnzeel, A.W. kappa-Opioid receptor signaling and brain reward function. Brain Res. Rev. 2009, 62, 127–146. [Google Scholar] [CrossRef]
- Wallace, C.W.; Holleran, K.M.; Slinkard, C.Y.; Centanni, S.W.; Lapish, C.C.; Jones, S.R. Kappa opioid receptors diminish spontaneous dopamine signals in awake mice through multiple mechanisms. Neuropharmacology 2025, 273, 110458. [Google Scholar] [CrossRef]
- Bekhbat, M.; Li, Z.; Dunlop, B.W.; Treadway, M.T.; Mehta, N.D.; Revill, K.P.; Lucido, M.J.; Hong, C.; Ashchi, A.; Wommack, E.C.; et al. Sustained effects of repeated levodopa (L-DOPA) administration on reward circuitry, effort-based motivation, and anhedonia in depressed patients with higher inflammation. Brain Behav. Immun. 2025, 125, 240–248. [Google Scholar] [CrossRef]
- Treadway, M.; Etuk, S.; Cooper, J.; Hossein, S.; Hahn, E.; Betters, S.; Liu, S.; Arulpragasam, A.; DeVries, B.; Irfan, N.; et al. A randomized proof-of-mechanism trial of TNF antagonism for motivational anhedonia and related corticostriatal circuitry in depressed patients with high inflammation. Res. Sq. 2024, 30, 1407–1417. [Google Scholar] [CrossRef]
- Felger, J.C.; Treadway, M.T. Inflammation Effects on Motivation and Motor Activity: Role of Dopamine. Neuropsychopharmacology 2017, 42, 216–241. [Google Scholar] [CrossRef]
- Lucido, M.J.; Bekhbat, M.; Goldsmith, D.R.; Treadway, M.T.; Haroon, E.; Felger, J.C.; Miller, A.H. Aiding and Abetting Anhedonia: Impact of Inflammation on the Brain and Pharmacological Implications. Pharmacol. Rev. 2021, 73, 1084–1117. [Google Scholar] [CrossRef] [PubMed]
- Hasbi, A.; Madras, B.K.; George, S.R. Daily Δ9-Tetrahydrocannabinol and Withdrawal Increase Dopamine D1-D2 Receptor Heteromer to Mediate Anhedonia- and Anxiogenic-like Behavior Through a Dynorphin and Kappa Opioid Receptor Mechanism. Biol. Psychiatry Glob. Open Sci. 2023, 3, 550–566. [Google Scholar] [CrossRef]
- Thomas, C.S.; Mohammadkhani, A.; Rana, M.; Qiao, M.; Baimel, C.; Borgland, S.L. Optogenetic stimulation of lateral hypothalamic orexin/dynorphin inputs in the ventral tegmental area potentiates mesolimbic dopamine neurotransmission and promotes reward-seeking behaviours. Neuropsychopharmacology 2022, 47, 728–740. [Google Scholar] [CrossRef] [PubMed]
- Albrecht, U. Molecular Mechanisms in Mood Regulation Involving the Circadian Clock. Front. Neurol. 2017, 8, 30. [Google Scholar] [CrossRef]
- Focke, C.M.B.; Iremonger, K.J. Rhythmicity matters: Circadian and ultradian patterns of HPA axis activity. Mol. Cell Endocrinol. 2020, 501, 110652. [Google Scholar] [CrossRef]
- Nader, N.; Chrousos, G.P.; Kino, T. Interactions of the circadian CLOCK system and the HPA axis. Trends Endocrinol. Metab. 2010, 21, 277–286. [Google Scholar] [CrossRef]
- Lightman, S.L.; Birnie, M.T.; Conway-Campbell, B.L. Dynamics of ACTH and Cortisol Secretion and Implications for Disease. Endocr. Rev. 2020, 41, bnaa002. [Google Scholar] [CrossRef] [PubMed]
- Carpenter, J.S.; Crouse, J.J.; Shin, M.; Tonini, E.; Hindmarsh, G.; de Haan, Z.; Iorfino, F.; Robillard, R.; Naismith, S.; Scott, E.M.; et al. Evidence for Internal Misalignment of Circadian Rhythms in Youth with Emerging Mood Disorders. J. Biol. Rhythm. 2025, 40, 424–440. [Google Scholar] [CrossRef]
- Skubic, C.; Zevnik, U.; Nahtigal, K.; Dolenc Grošelj, L.; Rozman, D. Circadian Biomarkers in Humans: Methodological Insights into the Detection of Melatonin and Cortisol. Biomolecules 2025, 15, 1006. [Google Scholar] [CrossRef] [PubMed]
- Schrire, Z.M.; Naismith, S.L.; Pye, J.; Duffy, S.L.; Gordon, C.J.; Lewis, S.J.; Hoyos, C.M. Circadian rhythms and misalignment in older adults and those ‘at risk’for dementia: A study examining correlates of dim-light melatonin onset: Biomarkers (non-neuroimaging)/Prognostic utility. Alzheimer’s Dement. 2020, 16, e045525. [Google Scholar] [CrossRef]
- Scott, M.R.; McClung, C.A. Circadian Rhythms in Mood Disorders. Adv. Exp. Med. Biol. 2021, 1344, 153–168. [Google Scholar] [CrossRef]
- Johnson, C.; Brzezynski, J.; Bair, A.; Smieszek, S.; Bai, H.; Polymeropoulos, C.; Birznieks, G.; Polymeropoulos, M. 0879 Dim Light Melatonin Onset in a Delayed Sleep-Wake Phase Disorder Cohort: Ongoing Clinical Trial Update. Sleep 2025, 48, A382. [Google Scholar] [CrossRef]
- Tanaka, M.; Tóth, F.; Polyák, H.; Szabó, Á.; Mándi, Y.; Vécsei, L. Immune Influencers in Action: Metabolites and Enzymes of the Tryptophan-Kynurenine Metabolic Pathway. Biomedicines 2021, 9, 734. [Google Scholar] [CrossRef]
- Badawy, A.A. Kynurenine Pathway of Tryptophan Metabolism: Regulatory and Functional Aspects. Int. J. Tryptophan Res. 2017, 10, 1178646917691938. [Google Scholar] [CrossRef]
- Naffaa, M.M. Mechanisms of astrocytic and microglial purinergic signaling in homeostatic regulation and implications for neurological disease. Explor. Neurosci. 2025, 4, 100676. [Google Scholar] [CrossRef]
- Bedetta, M.; Pizzo, P.; Lia, A. The Multifaceted Role of P2X7R in Microglia and Astrocytes. Neurochem. Res. 2025, 50, 239. [Google Scholar] [CrossRef]
- Batista, A.F.; Khan, K.A.; Papavergi, M.T.; Lemere, C.A. The Importance of Complement-Mediated Immune Signaling in Alzheimer’s Disease Pathogenesis. Int. J. Mol. Sci. 2024, 25, 817. [Google Scholar] [CrossRef]
- Liu, Y.D.; Chang, Y.H.; Xie, X.T.; Wang, X.Y.; Ma, H.Y.; Liu, M.C.; Zhang, H.M. PET Imaging Unveils Neuroinflammatory Mechanisms in Psychiatric Disorders: From Microglial Activation to Therapeutic Innovation. Mol. Neurobiol. 2025, 62, 15318–15335. [Google Scholar] [CrossRef]
- Werry, E.L.; Bright, F.M.; Piguet, O.; Ittner, L.M.; Halliday, G.M.; Hodges, J.R.; Kiernan, M.C.; Loy, C.T.; Kril, J.J.; Kassiou, M. Recent Developments in TSPO PET Imaging as A Biomarker of Neuroinflammation in Neurodegenerative Disorders. Int. J. Mol. Sci. 2019, 20, 3161. [Google Scholar] [CrossRef] [PubMed]
- Enache, D.; Pariante, C.M.; Mondelli, V. Markers of central inflammation in major depressive disorder: A systematic review and meta-analysis of studies examining cerebrospinal fluid, positron emission tomography and post-mortem brain tissue. Brain Behav. Immun. 2019, 81, 24–40. [Google Scholar] [CrossRef] [PubMed]
- Dupont, A.C.; Largeau, B.; Santiago Ribeiro, M.J.; Guilloteau, D.; Tronel, C.; Arlicot, N. Translocator Protein-18 kDa (TSPO) Positron Emission Tomography (PET) Imaging and Its Clinical Impact in Neurodegenerative Diseases. Int. J. Mol. Sci. 2017, 18, 785. [Google Scholar] [CrossRef] [PubMed]
- Meyer, J.H.; Cervenka, S.; Kim, M.J.; Kreisl, W.C.; Henter, I.D.; Innis, R.B. Neuroinflammation in psychiatric disorders: PET imaging and promising new targets. Lancet Psychiatry 2020, 7, 1064–1074. [Google Scholar] [CrossRef]
- Chen, W.; Kullmann, S.; Rhea, E.M. Expanding the understanding of insulin resistance in brain and periphery. Trends Endocrinol. Metab. 2025, online ahead of print. [Google Scholar] [CrossRef]
- Lanzillotta, S.; Rolfi, L.R.; Zulli, B.; Barone, E. Metabolic breakdown: Linking insulin resistance and mitochondrial dysfunction to neurodegeneration in Alzheimer’s disease. Neural Regen. Res. 2025, online ahead of print. [Google Scholar] [CrossRef]
- Detka, J.; Głombik, K. Insights into a possible role of glucagon-like peptide-1 receptor agonists in the treatment of depression. Pharmacol. Rep. 2021, 73, 1020–1032. [Google Scholar] [CrossRef] [PubMed]
- Hölscher, C. Brain insulin resistance: Role in neurodegenerative disease and potential for targeting. Expert. Opin. Investig. Drugs 2020, 29, 333–348. [Google Scholar] [CrossRef]
- Gault, V.A.; Hölscher, C. GLP-1 receptor agonists show neuroprotective effects in animal models of diabetes. Peptides 2018, 100, 101–107. [Google Scholar] [CrossRef]
- Cooper, D.H.; Ramachandra, R.; Ceban, F.; Di Vincenzo, J.D.; Rhee, T.G.; Mansur, R.B.; Teopiz, K.M.; Gill, H.; Ho, R.; Cao, B.; et al. Glucagon-like peptide 1 (GLP-1) receptor agonists as a protective factor for incident depression in patients with diabetes mellitus: A systematic review. J. Psychiatr. Res. 2023, 164, 80–89. [Google Scholar] [CrossRef]
- Baek, S.Y.; Lee, J.; Kim, T.; Lee, H.; Choi, H.S.; Park, H.; Koh, M.; Kim, E.; Jung, M.E.; Iliopoulos, D.; et al. Development of a novel histone deacetylase inhibitor unveils the role of HDAC11 in alleviating depression by inhibition of microglial activation. Biomed. Pharmacother. 2023, 166, 115312. [Google Scholar] [CrossRef] [PubMed]
- Du, J.; Liu, R.; Ma, L.; Liu, Y.; Wei, W.; Liu, N.; Cao, Q.; Yu, J. Novel histone deacetylase-5 inhibitor T2943 exerts an anti-depressive effect in mice by enhancing GRID1 expression. Sci. Rep. 2025, 15, 4522. [Google Scholar] [CrossRef] [PubMed]
- Sun, Z.; Zhang, B.; Zhou, J.; Luo, Y.; Zhu, X.; Wang, Y.; He, Y.; Zheng, P.; Zhang, L.; Yang, J.; et al. Integrated Single-Cell RNA-seq and ATAC-seq Reveals Heterogeneous Differentiation of CD4+ Naive T Cell Subsets is Associated with Response to Antidepressant Treatment in Major Depressive Disorder. Adv. Sci. 2024, 11, e2308393. [Google Scholar] [CrossRef]
- Taavitsainen, S.; Engedal, N.; Cao, S.; Handle, F.; Erickson, A.; Prekovic, S.; Wetterskog, D.; Tolonen, T.; Vuorinen, E.M.; Kiviaho, A.; et al. Single-cell ATAC and RNA sequencing reveal pre-existing and persistent cells associated with prostate cancer relapse. Nat. Commun. 2021, 12, 5307. [Google Scholar] [CrossRef]
- Grandi, F.C.; Modi, H.; Kampman, L.; Corces, M.R. Chromatin accessibility profiling by ATAC-seq. Nat. Protoc. 2022, 17, 1518–1552. [Google Scholar] [CrossRef]
- Kajumba, M.M.; Kakooza-Mwesige, A.; Nakasujja, N.; Koltai, D.; Canli, T. Treatment-resistant depression: Molecular mechanisms and management. Mol. Biomed. 2024, 5, 43. [Google Scholar] [CrossRef]
- Daeli, J.I.D.; Soemara, A. How Do Combined Pharmacological and Psychotherapeutic Interventions Impact Treatment Outcomes for Patients with Treatment-Resistant Major Depressive Disorder?: A Systematic Review. Int. J. Med. Sci. Health Res. 2025, 12, 49–99. [Google Scholar]
- Ruberto, V.L.; Jha, M.K.; Murrough, J.W. Pharmacological Treatments for Patients with Treatment-Resistant Depression. Pharmaceuticals 2020, 13, 116. [Google Scholar] [CrossRef] [PubMed]
- McIntyre, R.S.; Alsuwaidan, M.; Baune, B.T.; Berk, M.; Demyttenaere, K.; Goldberg, J.F.; Gorwood, P.; Ho, R.; Kasper, S.; Kennedy, S.H.; et al. Treatment-resistant depression: Definition, prevalence, detection, management, and investigational interventions. World Psychiatry 2023, 22, 394–412. [Google Scholar] [CrossRef]
- Amasi-Hartoonian, N.; Pariante, C.M.; Cattaneo, A.; Sforzini, L. Understanding treatment-resistant depression using “omics” techniques: A systematic review. J. Affect. Disord. 2022, 318, 423–455. [Google Scholar] [CrossRef]
- Garcia, G.; Cotner, C.; Spano, R. Precision medicine in psychiatry: Case series on pharmacogenomic solutions for treatment-resistant depression. J. Am. Assoc. Nurse Pract. 2025, 37, 471–476. [Google Scholar] [CrossRef]
- Baum, M.L.; Widge, A.S.; Carpenter, L.L.; McDonald, W.M.; Cohen, B.M.; Nemeroff, C.B. Pharmacogenomic Clinical Support Tools for the Treatment of Depression. Am. J. Psychiatry 2024, 181, 591–607. [Google Scholar] [CrossRef] [PubMed]
- Young, J.W. Development of cross-species translational paradigms for psychiatric research in the Research Domain Criteria era. Neurosci. Biobehav. Rev. 2023, 148, 105119. [Google Scholar] [CrossRef]
- Iturra-Mena, A.M.; Kangas, B.D.; Luc, O.T.; Potter, D.; Pizzagalli, D.A. Electrophysiological signatures of reward learning in the rodent touchscreen-based Probabilistic Reward Task. Neuropsychopharmacology 2023, 48, 700–709. [Google Scholar] [CrossRef] [PubMed]
- Cavanagh, J.F.; Olguin, S.L.; Talledo, J.A.; Kotz, J.E.; Roberts, B.Z.; Nungaray, J.A.; Sprock, J.; Gregg, D.; Bhakta, S.G.; Light, G.A.; et al. Amphetamine alters an EEG marker of reward processing in humans and mice. Psychopharmacology 2022, 239, 923–933. [Google Scholar] [CrossRef]
- Pizzagalli, D.A.; Sherwood, R.J.; Henriques, J.B.; Davidson, R.J. Frontal brain asymmetry and reward responsiveness: A source-localization study. Psychol. Sci. 2005, 16, 805–813. [Google Scholar] [CrossRef]
- Kheirkhah, M.; Duncan, W.C., Jr.; Yuan, Q.; Wang, P.R.; Jamalabadi, H.; Leistritz, L.; Walter, M.; Goldman, D.; Zarate, C.A., Jr.; Hejazi, N.S. REM density predicts rapid antidepressant response to ketamine in individuals with treatment-resistant depression. Neuropsychopharmacology 2025, 50, 941–946. [Google Scholar] [CrossRef]
- Pesonen, A.K.; Gradisar, M.; Kuula, L.; Short, M.; Merikanto, I.; Tark, R.; Räikkönen, K.; Lahti, J. REM sleep fragmentation associated with depressive symptoms and genetic risk for depression in a community-based sample of adolescents. J. Affect. Disord. 2019, 245, 757–763. [Google Scholar] [CrossRef]
- Lechinger, J.; Koch, J.; Weinhold, S.L.; Seeck-Hirschner, M.; Stingele, K.; Kropp-Näf, C.; Braun, M.; Drews, H.J.; Aldenhoff, J.; Huchzermeier, C.; et al. REM density is associated with treatment response in major depression: Antidepressant pharmacotherapy vs. psychotherapy. J. Psychiatr. Res. 2021, 133, 67–72. [Google Scholar] [CrossRef]
- Luc, O.T.; Kangas, B.D. Validation of a touchscreen probabilistic reward task for mice: A reverse-translated assay with cross-species continuity. Cogn. Affect. Behav. Neurosci. 2024, 24, 281–288. [Google Scholar] [CrossRef]
- Palmer, D.; Dumont, J.R.; Dexter, T.D.; Prado, M.A.M.; Finger, E.; Bussey, T.J.; Saksida, L.M. Touchscreen cognitive testing: Cross-species translation and co-clinical trials in neurodegenerative and neuropsychiatric disease. Neurobiol. Learn. Mem. 2021, 182, 107443. [Google Scholar] [CrossRef]
- Molendijk, M.L.; de Kloet, E.R. Coping with the forced swim stressor: Current state-of-the-art. Behav. Brain Res. 2019, 364, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Commons, K.G.; Cholanians, A.B.; Babb, J.A.; Ehlinger, D.G. The Rodent Forced Swim Test Measures Stress-Coping Strategy, Not Depression-like Behavior. ACS Chem. Neurosci. 2017, 8, 955–960. [Google Scholar] [CrossRef] [PubMed]
- Molendijk, M.L.; de Kloet, E.R. Immobility in the forced swim test is adaptive and does not reflect depression. Psychoneuroendocrinology 2015, 62, 389–391. [Google Scholar] [CrossRef] [PubMed]
- Parekh, P.K.; Johnson, S.B.; Liston, C. Synaptic Mechanisms Regulating Mood State Transitions in Depression. Annu. Rev. Neurosci. 2022, 45, 581–601. [Google Scholar] [CrossRef]
- Aleksandrova, L.R.; Wang, Y.T.; Phillips, A.G. Evaluation of the Wistar-Kyoto rat model of depression and the role of synaptic plasticity in depression and antidepressant response. Neurosci. Biobehav. Rev. 2019, 105, 1–23, Erratum in Neurosci Biobehav Rev. 2020, 116, 162–163. [Google Scholar] [CrossRef] [PubMed]
- Petković, A.; Chaudhury, D. Encore: Behavioural animal models of stress, depression and mood disorders. Front. Behav. Neurosci. 2022, 16, 931964. [Google Scholar] [CrossRef] [PubMed]
- Della Valle, A.; De Carlo, S.; Sonsini, G.; Pilati, S.; Perali, A.; Ubaldi, M.; Ciccocioppo, R. Machine learning-based model for behavioural analysis in rodents applied to the forced swim test. Sci. Rep. 2025, 15, 22314. [Google Scholar] [CrossRef]
- Cuthbert, B.N. Research Domain Criteria (RDoC): Progress and Potential. Curr. Dir. Psychol. Sci. 2022, 31, 107–114. [Google Scholar] [CrossRef]
- Anderzhanova, E.; Kirmeier, T.; Wotjak, C.T. Animal models in psychiatric research: The RDoC system as a new framework for endophenotype-oriented translational neuroscience. Neurobiol. Stress. 2017, 7, 47–56. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, M. From Serendipity to Precision: Integrating AI, Multi-Omics, and Human-Specific Models for Personalized Neuropsychiatric Care. Biomedicines 2025, 13, 167. [Google Scholar] [CrossRef]
- Nusslock, R.; Alloy, L.B. Reward processing and mood-related symptoms: An RDoC and translational neuroscience perspective. J. Affect. Disord. 2017, 216, 3–16. [Google Scholar] [CrossRef]
- Cavanagh, J.F.; Gregg, D.; Light, G.A.; Olguin, S.L.; Sharp, R.F.; Bismark, A.W.; Bhakta, S.G.; Swerdlow, N.R.; Brigman, J.L.; Young, J.W. Electrophysiological biomarkers of behavioral dimensions from cross-species paradigms. Transl. Psychiatry 2021, 11, 482, Erratum in Transl Psychiatry. 2022, 12, 290. [Google Scholar] [CrossRef]
- Fernandes, B.S.; Karmakar, C.; Tamouza, R.; Tran, T.; Yearwood, J.; Hamdani, N.; Laouamri, H.; Richard, J.R.; Yolken, R.; Berk, M.; et al. Precision psychiatry with immunological and cognitive biomarkers: A multi-domain prediction for the diagnosis of bipolar disorder or schizophrenia using machine learning. Transl. Psychiatry 2020, 10, 162. [Google Scholar] [CrossRef] [PubMed]
- Sanislow, C.A.; Ferrante, M.; Pacheco, J.; Rudorfer, M.V.; Morris, S.E. Advancing Translational Research Using NIMH Research Domain Criteria and Computational Methods. Neuron 2019, 101, 779–782. [Google Scholar] [CrossRef]
- Morris, S.E.; Sanislow, C.A.; Pacheco, J.; Vaidyanathan, U.; Gordon, J.A.; Cuthbert, B.N. Revisiting the seven pillars of RDoC. BMC Med. 2022, 20, 220. [Google Scholar] [CrossRef] [PubMed]
- Arns, M.; van Dijk, H.; Luykx, J.J.; van Wingen, G.; Olbrich, S. Stratified psychiatry: Tomorrow’s precision psychiatry? Eur. Neuropsychopharmacol. 2022, 55, 14–19. [Google Scholar] [CrossRef] [PubMed]
- Milaneschi, Y.; Kappelmann, N.; Ye, Z.; Lamers, F.; Moser, S.; Jones, P.B.; Burgess, S.; Penninx, B.; Khandaker, G.M. Association of inflammation with depression and anxiety: Evidence for symptom-specificity and potential causality from UK Biobank and NESDA cohorts. Mol. Psychiatry 2021, 26, 7393–7402, Erratum in Mol Psychiatry. 2022, 27, 1856. [Google Scholar] [CrossRef]
- Tanaka, M. Special Issue “Translating Molecular Psychiatry: From Biomarkers to Personalized Therapies”. Int. J. Mol. Sci. 2025, 26, 10238. [Google Scholar] [CrossRef]
- Bekhbat, M.; Treadway, M.T.; Goldsmith, D.R.; Woolwine, B.J.; Haroon, E.; Miller, A.H.; Felger, J.C. Gene signatures in peripheral blood immune cells related to insulin resistance and low tyrosine metabolism define a sub-type of depression with high CRP and anhedonia. Brain Behav. Immun. 2020, 88, 161–165. [Google Scholar] [CrossRef]
- Baune, B.T.; Fromme, S.E.; Aberg, M.; Adli, M.; Afantitis, A.; Akkouh, I.; Andreassen, O.A.; Angulo, C.; Barlati, S.; Brasso, C.; et al. A stratified treatment algorithm in psychiatry: A program on stratified pharmacogenomics in severe mental illness (Psych-STRATA): Concept, objectives and methodologies of a multidisciplinary project funded by Horizon Europe. Eur. Arch. Psychiatry Clin. Neurosci. 2025, 275, 1453–1464. [Google Scholar] [CrossRef]
- Abi-Dargham, A.; Horga, G. The search for imaging biomarkers in psychiatric disorders. Nat. Med. 2016, 22, 1248–1255. [Google Scholar] [CrossRef] [PubMed]
- Guo, Q.; Guo, L.; Wang, Y.; Shang, S. Efficacy and safety of eight enhanced therapies for treatment-resistant depression: A systematic review and network meta-analysis of RCTs. Psychiatry Res. 2024, 339, 116018. [Google Scholar] [CrossRef]
- Łysik, A.; Logoń, K.; Szczygieł, A.; Wołoszczak, J.; Wrześniewska, M.; Leszek, J. Innovative approaches in the treatment-resistant depression: Exploring different therapeutic pathways. GeroScience 2025, 47, 5543–5558. [Google Scholar] [CrossRef]
- Salahudeen, M.S.; Wright, C.M.; Peterson, G.M. Esketamine: New hope for the treatment of treatment-resistant depression? A narrative review. Ther. Adv. Drug Saf. 2020, 11, 2042098620937899. [Google Scholar] [CrossRef]
- Brietzke, E.; Hawken, E.R.; Idzikowski, M.; Pong, J.; Kennedy, S.H.; Soares, C.N. Integrating digital phenotyping in clinical characterization of individuals with mood disorders. Neurosci. Biobehav. Rev. 2019, 104, 223–230. [Google Scholar] [CrossRef] [PubMed]
- Baldwin, H.; Loebel-Davidsohn, L.; Oliver, D.; Salazar de Pablo, G.; Stahl, D.; Riper, H.; Fusar-Poli, P. Real-World Implementation of Precision Psychiatry: A Systematic Review of Barriers and Facilitators. Brain Sci. 2022, 12, 934. [Google Scholar] [CrossRef] [PubMed]
- Dhieb, D.; Bastaki, K. Pharmaco-Multiomics: A New Frontier in Precision Psychiatry. Int. J. Mol. Sci. 2025, 26, 1082. [Google Scholar] [CrossRef]
- Zanardi, R.; Prestifilippo, D.; Fabbri, C.; Colombo, C.; Maron, E.; Serretti, A. Precision psychiatry in clinical practice. Int. J. Psychiatry Clin. Pract. 2021, 25, 19–27. [Google Scholar] [CrossRef] [PubMed]
- Fusar-Poli, P.; Manchia, M.; Koutsouleris, N.; Leslie, D.; Woopen, C.; Calkins, M.E.; Dunn, M.; Tourneau, C.L.; Mannikko, M.; Mollema, T.; et al. Ethical considerations for precision psychiatry: A roadmap for research and clinical practice. Eur. Neuropsychopharmacol. 2022, 63, 17–34. [Google Scholar] [CrossRef]
- Brown, J.E.H.; Young, J.L.; Martinez-Martin, N. Psychiatric genomics, mental health equity, and intersectionality: A framework for research and practice. Front. Psychiatry 2022, 13, 1061705. [Google Scholar] [CrossRef]
- Giusti-Rodríguez, P.; Okewole, N.; Jain, S.; Montalvo-Ortiz, J.L.; Peterson, R.E. Diversifying Psychiatric Genomics: Globally Inclusive Strategies Toward Health Equity. Psychiatr. Clin. N. Am. 2025, 48, 241–256. [Google Scholar] [CrossRef]
- Blackburn, T.P. Depressive disorders: Treatment failures and poor prognosis over the last 50 years. Pharmacol. Res. Perspect. 2019, 7, e00472. [Google Scholar] [CrossRef]
- Oasi, O.; Critchfield, K.L.; Werbart, A. Editorial: Rethinking unsuccessful psychotherapies: When and how do treatments fail? Front. Psychol. 2024, 15, 1514654. [Google Scholar] [CrossRef]
- Petter, J.; Schumacher, L.; Echterhoff, J.; Klein, J.P.; Schramm, E.; Härter, M.; Hautzinger, M.; Kriston, L. Heterogeneity of Treatment Outcomes Across Therapists and Sites in a Randomized Multicentre Psychotherapy Trial. Clin. Psychol. Psychother. 2025, 32, e70087. [Google Scholar] [CrossRef] [PubMed]
- Huneke, N.T.M.; Fusetto Veronesi, G.; Garner, M.; Baldwin, D.S.; Cortese, S. Expectancy Effects, Failure of Blinding Integrity, and Placebo Response in Trials of Treatments for Psychiatric Disorders: A Narrative Review. JAMA Psychiatry 2025, 82, 531–538. [Google Scholar] [CrossRef]
- Bjurner, P.; Isacsson, N.H.; Abdesslem, F.B.; Boman, M.; Forsell, E.; Kaldo, V. Study protocol for a triple-blind randomised controlled trial evaluating a machine learning-based predictive clinical decision support tool for internet-delivered cognitive behaviour therapy (ICBT) for depression and anxiety. Internet Interv. 2025, 40, 100816. [Google Scholar] [CrossRef]
- Lutz, W.; Deisenhofer, A.K.; Rubel, J.; Bennemann, B.; Giesemann, J.; Poster, K.; Schwartz, B. Prospective evaluation of a clinical decision support system in psychological therapy. J. Consult. Clin. Psychol. 2022, 90, 90–106. [Google Scholar] [CrossRef]
- Kwan, J.L.; Lo, L.; Ferguson, J.; Goldberg, H.; Diaz-Martinez, J.P.; Tomlinson, G.; Grimshaw, J.M.; Shojania, K.G. Computerised clinical decision support systems and absolute improvements in care: Meta-analysis of controlled clinical trials. BMJ 2020, 370, m3216. [Google Scholar] [CrossRef]
- Rybak, Y.E.; Lai, K.S.P.; Ramasubbu, R.; Vila-Rodriguez, F.; Blumberger, D.M.; Chan, P.; Delva, N.; Giacobbe, P.; Gosselin, C.; Kennedy, S.H.; et al. Treatment-resistant major depressive disorder: Canadian expert consensus on definition and assessment. Depress. Anxiety 2021, 38, 456–467. [Google Scholar] [CrossRef] [PubMed]
- Mora, F.; Ramos-Quiroga, J.A.; Baca-García, E.; Crespo, J.M.; Gutiérrez-Rojas, L.; Madrazo, A.; Pérez Costillas, L.; Saiz, P.A.; Tordera, V.; Vieta, E. Treatment-resistant depression and intranasal esketamine: Spanish consensus on theoretical aspects. Front. Psychiatry 2025, 16, 1623659. [Google Scholar] [CrossRef] [PubMed]
- Ivarsson, M.; Danielsson, H.; Imms, C. Measurement issues in longitudinal studies of mental health problems in children with neurodevelopmental disorders. BMC Psychol. 2025, 13, 267. [Google Scholar] [CrossRef] [PubMed]
- Lee, W.; Bindman, J.; Ford, T.; Glozier, N.; Moran, P.; Stewart, R.; Hotopf, M. Bias in psychiatric case-control studies: Literature survey. Br. J. Psychiatry 2007, 190, 204–209. [Google Scholar] [CrossRef]
- Abbaz Yazdian, F.; Khodabakhshi-Koolaee, A. Exploring the Counselors and Psychotherapists Perceptions of Therapeutic Errors in the Treatment Room. SAGE Open 2024, 14, 21582440241257320. [Google Scholar] [CrossRef]
- Hayes, S.C.; Hofmann, S.G. “Third-wave” cognitive and behavioral therapies and the emergence of a process-based approach to intervention in psychiatry. World Psychiatry 2021, 20, 363–375. [Google Scholar] [CrossRef]
- Tanaka, M. Parkinson’s Disease: Bridging Gaps, Building Biomarkers, and Reimagining Clinical Translation. Cells 2025, 14, 1161. [Google Scholar] [CrossRef]
- Meehan, A.J.; Lewis, S.J.; Fazel, S.; Fusar-Poli, P.; Steyerberg, E.W.; Stahl, D.; Danese, A. Clinical prediction models in psychiatry: A systematic review of two decades of progress and challenges. Mol. Psychiatry 2022, 27, 2700–2708. [Google Scholar] [CrossRef]
- Figueiredo Godoy, A.C.; Frota, F.F.; Araújo, L.P.; Valenti, V.E.; Pereira, E.; Detregiachi, C.R.P.; Galhardi, C.M.; Caracio, F.C.; Haber, R.S.A.; Fornari Laurindo, L.; et al. Neuroinflammation and Natural Antidepressants: Balancing Fire with Flora. Biomedicines 2025, 13, 1129. [Google Scholar] [CrossRef]
- Haslbeck, J.; Ryan, O.; Robinaugh, D.J.; Waldorp, L.J.; Borsboom, D. Modeling psychopathology: From data models to formal theories. Psychol. Methods 2022, 27, 930. [Google Scholar] [CrossRef]
- Halassa, M.M.; Frank, M.J.; Garety, P.; Ongur, D.; Airan, R.D.; Sanacora, G.; Dzirasa, K.; Suresh, S.; Fitzpatrick, S.M.; Rothman, D.L. Developing algorithmic psychiatry via multi-level spanning computational models. Cell Rep. Med. 2025, 6, 102094. [Google Scholar] [CrossRef] [PubMed]
- Tan, T.; Wang, W.; Liu, T.; Zhong, P.; Conrow-Graham, M.; Tian, X.; Yan, Z. Neural circuits and activity dynamics underlying sex-specific effects of chronic social isolation stress. Cell Rep. 2021, 34, 108874. [Google Scholar] [CrossRef] [PubMed]
- Bowman, R.; Frankfurt, M.; Luine, V. Sex differences in anxiety and depression: Insights from adult rodent models of chronic stress and neural plasticity. Front. Behav. Neurosci. 2025, 19, 1591973. [Google Scholar] [CrossRef]
- Mingardi, J.; Giovenzana, M.; Nicosia, N.; Misztak, P.; Ieraci, A.; Musazzi, L. Sex and Circadian Rhythm Dependent Behavioral Effects of Chronic Stress in Mice and Modulation of Clock Genes in the Prefrontal Cortex. Int. J. Mol. Sci. 2025, 26, 6410. [Google Scholar] [CrossRef] [PubMed]
- Bekhbat, M.; Ulukaya, G.B.; Bhasin, M.K.; Felger, J.C.; Miller, A.H. Cellular and immunometabolic mechanisms of inflammation in depression: Preliminary findings from single cell RNA sequencing and a tribute to Bruce McEwen. Neurobiol. Stress. 2022, 19, 100462. [Google Scholar] [CrossRef]
- Koppe, G.; Meyer-Lindenberg, A.; Durstewitz, D. Deep learning for small and big data in psychiatry. Neuropsychopharmacology 2021, 46, 176–190. [Google Scholar] [CrossRef]
- Driessen, E.; Efthimiou, O.; Wienicke, F.J.; Breunese, J.; Cuijpers, P.; Debray, T.P.A.; Fisher, D.J.; Fokkema, M.; Furukawa, T.A.; Hollon, S.D.; et al. Developing a multivariable prediction model to support personalized selection among five major empirically-supported treatments for adult depression. Study protocol of a systematic review and individual participant data network meta-analysis. PLoS ONE 2025, 20, e0322124. [Google Scholar] [CrossRef]
- Luedtke, A.; Sadikova, E.; Kessler, R.C. Sample size requirements for multivariate models to predict between-patient differences in best treatments of major depressive disorder. Clin. Psychol. Sci. 2019, 7, 445–461. [Google Scholar] [CrossRef]
- Watkins, E.R.; Newbold, A. Factorial Designs Help to Understand How Psychological Therapy Works. Front. Psychiatry 2020, 11, 429. [Google Scholar] [CrossRef]
- Ciolino, J.D.; Scholtens, D.M.; Bonner, L.B. Factorial Clinical Trial Designs. JAMA 2025, 333, 532–533. [Google Scholar] [CrossRef]
- Watkins, E.; Newbold, A.; Tester-Jones, M.; Javaid, M.; Cadman, J.; Collins, L.M.; Graham, J.; Mostazir, M. Implementing multifactorial psychotherapy research in online virtual environments (IMPROVE-2): Study protocol for a phase III trial of the MOST randomized component selection method for internet cognitive-behavioural therapy for depression. BMC Psychiatry 2016, 16, 345. [Google Scholar] [CrossRef]
- Kotecha, G.; Ventz, S.; Fortini, S.; Trippa, L. Uncertainty directed factorial clinical trials. Biostatistics 2024, 25, 833–851. [Google Scholar] [CrossRef] [PubMed]
- Victor, T.A.; Khalsa, S.S.; Simmons, W.K.; Feinstein, J.S.; Savitz, J.; Aupperle, R.L.; Yeh, H.W.; Bodurka, J.; Paulus, M.P. Tulsa 1000: A naturalistic study protocol for multilevel assessment and outcome prediction in a large psychiatric sample. BMJ Open 2018, 8, e016620. [Google Scholar] [CrossRef] [PubMed]
- Nelson, B.; McGorry, P.D.; Wichers, M.; Wigman, J.T.W.; Hartmann, J.A. Moving from Static to Dynamic Models of the Onset of Mental Disorder: A Review. JAMA Psychiatry 2017, 74, 528–534. [Google Scholar] [CrossRef]
- Harkness, A.R.; Reynolds, S.M.; Lilienfeld, S.O. A review of systems for psychology and psychiatry: Adaptive systems, personality psychopathology five (PSY-5), and the DSM-5. J. Pers. Assess. 2014, 96, 121–139. [Google Scholar] [CrossRef]


| Human Construct | Preclinical Assay | Readout | Clinical Analog | Status | Design Tip |
|---|---|---|---|---|---|
| Anhedonia/motivational deficit | Effort-based decision tasks (progressive ratio, T-maze barrier, operant sucrose) | Breakpoint, lever presses, willingness to work under stress or inflammation | Probabilistic reward tasks, EEfRT, ventral striatal BOLD, anhedonia scales | Emerging trial biomarker | Separate hedonic “liking” from motivational “wanting”; include stress/inflammation challenge blocks. |
| Negative affect/threat bias | Fear conditioning and extinction; chronic social defeat | Freezing/avoidance, extinction curves, startle, social withdrawal | Fear-learning and extinction tasks, startle paradigms, threat-bias tasks in anxious/MDD subgroups | Robust basic science; limited clinical use | Use as domain-specific endpoint in anxious and trauma-loaded depression; pair behavior with EEG/fMRI. |
| Cognitive control/executive dysfunction | Attentional set-shifting, 5-CSRTT, reversal learning | Errors, omissions, reaction times, perseveration indexes | Set-shifting (e.g., CANTAB), n-back, Stroop, Trail Making, DLPFC activation | Secondary endpoint in several trials | Pre-stratify “cognitively loaded” depression; link change to functioning and return-to-work outcomes. |
| Sleep and circadian disruption | Rodent EEG/EMG with chronic stress or light-cycle shift; REM-deprivation models | REM latency/density, NREM slow-wave power, activity rhythms, phase shifts | Polysomnography, actigraphy, DLMO, sleep/circadian questionnaires | Strong observational; emerging endpoints | Align dosing and assessments with chronotype; treat sleep/circadian metrics as primary modifiable targets. |
| HPA axis and stress reactivity | Chronic mild stress, restraint, social defeat; Dex/CRH challenges | Corticosterone profiles, GR sensitivity, coping style, stress-induced behavioral shift | Cortisol awakening response, DST, lab stress tests, hair cortisol | Mixed but promising for subtyping | Sample across diurnal cycle; co-model stress markers with symptom domains (anergy, anxiety, cognitive fog). |
| Inflammation–KYN steering | LPS/IFN-α or stress-sensitized immune activation; Trp–KYN pathway assays | KYN/Trp ratio, QA/KYNA balance, microglial activation, cytokine panels | CRP, IL-6/TNF panels, plasma KYN/Trp, symptom clusters (anergia, anhedonia, psychomotor slowing) | High translational interest | Pre-specify “inflammation-high” strata; collect longitudinal KYN panels and align with treatment response. |
| Metabolic–endocrine load | High-fat diet, genetic obesity, insulin-resistance models | Glucose tolerance, insulin signaling, adiposity, spontaneous activity | BMI, waist-to-hip ratio, HOMA-IR, HbA1c, metabolic-syndrome indices | Growing but underused in trials | Embed metabolic panels into TRD studies; design dedicated obesity/T2D depression trials with functional endpoints. |
| Synaptic plasticity/rapid-acting response | Ketamine/psychedelic paradigms; LTP/LTD, in vivo spine imaging, AMPA-forward assays | Spine density, AMPA/NMDA ratio, LTP/LTD magnitude, early oscillatory changes | Early EEG/MEG plasticity markers, TMS-LTP readouts, 24–72 h symptom and cognition shifts | Strong mechanistic, clinical for ketamine | Build in early (24–72 h) windows and plasticity markers as key secondary endpoints in rapid-acting trials. |
| Network-level connectivity biotypes | Chemogenetic/optogenetic PFC–striatal/limbic manipulation; rodent rsfMRI/EEG | Resting-state connectivity, oscillatory coupling, causal node influence, behavior under circuit control | rsfMRI biotypes, TMS-EEG connectivity, SCC/vmPFC network markers for neuromodulation targeting | Emerging targeting tool | Require “target engagement” thresholds for drugs/devices; enrich samples by baseline network topology. |
| Digital behavior and passive monitoring | Home-cage automated monitoring of movement, sleep, and social interaction | Continuous activity, sleep–wake structure, social proximity, exploration patterns | Smartphone-based mobility, call/text patterns, speech and behavior passively captured by sensors | Early exploratory | Predefine digital endpoints (e.g., mobility, social withdrawal) and link them to functional and relapse outcomes. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Tanaka, M. From Monoamines to Systems Psychiatry: Rewiring Depression Science and Care (1960s–2025). Biomedicines 2026, 14, 35. https://doi.org/10.3390/biomedicines14010035
Tanaka M. From Monoamines to Systems Psychiatry: Rewiring Depression Science and Care (1960s–2025). Biomedicines. 2026; 14(1):35. https://doi.org/10.3390/biomedicines14010035
Chicago/Turabian StyleTanaka, Masaru. 2026. "From Monoamines to Systems Psychiatry: Rewiring Depression Science and Care (1960s–2025)" Biomedicines 14, no. 1: 35. https://doi.org/10.3390/biomedicines14010035
APA StyleTanaka, M. (2026). From Monoamines to Systems Psychiatry: Rewiring Depression Science and Care (1960s–2025). Biomedicines, 14(1), 35. https://doi.org/10.3390/biomedicines14010035
