A Novel Aberrant HbF Peak with Electrophoretic Shift in A1c of a Patient with Chronic Lymphocytic Leukemia (CLL) Was Reversible to Give Interpretable Results
Abstract
1. Introduction
| Select F Zone HbF and Other Potential Variants | |||||||
|---|---|---|---|---|---|---|---|
| Wilamette | Denmark | Languidic | Chiapas | Hoshida | Sardinia | Ta-Li | |
| HbA2 Wayne | HbQ Thailand | Porto Alegre | HbG Georgia | HbG San Jose | Hb Sabine | Hb Bassett | HbA2 J-Rovigo |
| HbP India | Hb Burke | Hb Verdun | Hb Dunn | Hb Sassari | Hb Alabama | Hb Bunbury | Hb Les Lias |
| Hb Hazebrouck | Denatured Hb D-punjab | Hb Manitoba-I | Hb Manitoba-II | Hb Chapel Hill | Hb Barcelona | Hb Rampa | Hb Sawara |
| Hb Boyle Heights | Hb Attleboro | Hb Vanderbilt | Hb Port Phillip | Hb Hirose | Hb Tarrant | HB Abruzzo | Hb Atago |
| Hb Sunnybrook | Denatured HbS | Hb Deer Lodge | Hb Delficht | Hb Swan River | Hb Kansas | Hb Tak | Hb Tamano |
2. Materials and Methods
2.1. SEBIA Capi 3 System A1c Determination
2.2. Buffy Coat Depletion Sample Preparation
2.3. High White Blood Cell Blood Sample Dilution and Assay Procedure
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| HbA1c | Hemoglobin A1c |
| HbA0 | Hemoglobin A0 |
| HbF | Hemoglobin F |
| HbS | Hemoglobin S |
| HbA | Hemoglobin A |
| HbD | Hemoglobin D |
| HbC | Hemoglobin C |
| CLL | Chronic Lymphocytic Leukemia |
| WBC | White Blood Cell |
| IGHV | Immunoglobulin Heavy Chain |
| T2DM | Type 2 Diabetes Mellitus |
| K+ | Potassium |
| K-EDTA | Potassium Ethylenediaminetetraacetic Acid |
| EHMT2 | Euchromatic Histone-lysine Methyltransferase 2 |
| PRMT5 | Protein Arginine Methyltransferase 5 |
| KDM1A/LSD1 | Lysine-specific Demethylase 1 |
| DNMT1 | DNA Methyltransferase 1 |
| HBG | Hemoglobin F Gene |
References
- Lima-Oliveira, G.; Salvagno, G.L.; Danese, E.; Brocco, G.; Guidi, G.C.; Lippi, G. Contamination of lithium heparin blood by K2-ethylenediaminetetraacetic acid (EDTA): An experimental evaluation. Biochem. Med. 2014, 24, 359–367. [Google Scholar] [CrossRef] [PubMed]
- Ercan, Ş.; Ramadan, B.; Gerenli, O. Order of draw of blood samples affect potassium results without K-EDTA contamination during routine workflow. Biochem. Med. 2021, 31, 020704. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Thom, C.S.; Dickson, C.F.; Gell, D.A.; Weiss, M.J. Hemoglobin variants: Biochemical properties and clinical correlates. Cold Spring Harb. Perspect. Med. 2013, 3, a011858. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ahmed, S.G.; Ibrahim, U.A. Non-S Sickling Hemoglobin Variants: Historical, Genetic, Diagnostic, and Clinica Perspectives. Oman Med. J. 2021, 36, e261. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Pu, L.J.; Shen, Y.; Lu, L.; Zhang, R.Y.; Zhang, Q.; Shen, W.F. Increased blood glycohemoglobin A1c levels lead to overestimation of arterial oxygen saturation by pulse oximetry in patients with type 2 diabetes. Cardiovasc. Diabetol. 2012, 11, 110. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Karami, A.; Baradaran, A. Comparative evaluation of three different methods for HbA1c measurement with High-performance liquid chromatography in diabetic patients. Adv. Biomed. Res. 2014, 3, 94. [Google Scholar] [CrossRef] [PubMed]
- Eckerbom, S.; Bergqvist, Y.; Jeppsson, J.O. Improved method for analysis of glycated haemoglobin by ion exchange chromatography. Ann. Clin. Biochem. 1994, 31, 355–360. [Google Scholar] [CrossRef]
- Obrenovich, M.; Monnier, V. Apoptotic Killing of Fibroblasts by Matrix-Bound Advanced Glycation Endproducts. Sci. Aging Knowl. Environ. 2005, 2005, pe3. [Google Scholar] [CrossRef]
- Muralidharan, M.; Bhat, V.; Mandal, A.K. Structural analysis of glycated human hemoglobin using native mass spectrometry. FEBS J. 2020, 287, 61247–61254. [Google Scholar] [CrossRef]
- Rabbani, N.; Thornalley, P.J. An Introduction to the Special Issue “Protein Glycation in Food, Nutrition, Health and Disease”. Int. J. Mol. Sci. 2022, 23, 13053. [Google Scholar] [CrossRef]
- Unnikrishnan, R.; Anjana, R.M.; Mohan, V. Drugs affecting HbA1c levels. Indian J. Endocrinol. Metab. 2012, 16, 528–531. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wolk, M.; Martin, J.E.; Nowicki, M. Foetal haemoglobin-blood cells (F-cells) as a feature of embryonic tumours (blastomas). Br. J. Cancer 2007, 97, 412–419. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Heylen, O.; Van Neyghem, S.; Exterbille, S.; Wehlou, C.; Gorus, F.; Weets, I. Evaluation of the Sebia CAPILLARYS 2 flex piercing for the measurement of HbA1c on venous and capillary blood samples. Am. J. Clin. Pathol. 2014, 141, 867–877. [Google Scholar] [CrossRef]
- Bianchi, N.; Zuccato, C.; Lampronti, I.; Borgatti, M.; Gambari, R. Fetal Hemoglobin Inducers from the Natural World: A Novel Approach for Identification of Drugs for the Treatment of {beta}-Thalassemia and Sickle-Cell Anemia. Evid. Based Complement. Altern. Med. 2009, 6, 141–151. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Chen, X.; Skutt-Kakaria, K.; Davison, J.; Ou, Y.-L.; Choi, E.; Malik, P.; Loeb, K.; Wood, B.; Georges, G.; Torok-Storb, B. G9a/GLP-dependent histone H3K9me2 patterning during human hematopoietic stem cell lineage commitment. Genes Dev. 2012, 26, 2499–2511. [Google Scholar] [CrossRef]
- Cannon, M.; Phillips, H.; Smith, S.; Williams, K.; Brinton, L.; Gregory, C.; Landes, K.; Desai, P.; Byrd, J.; Lapalombella, R. Large-Scale Drug Screen Identifies FDA-Approved Drugs for Repurposing in Sickle-Cell Disease. J. Clin. Med. 2020, 9, 2276. [Google Scholar] [CrossRef]
- Renneville, A.; Van Galen, P.; Canver, M.C.; McConkey, M.; Krill-Burger, J.M.; Dorfman, D.M.; Holson, E.B.; Bernstein, B.E.; Orkin, S.H.; Bauer, D.E. EHMT1 and EHMT2 inhibition induces fetal hemoglobin expression. Blood J. Am. Soc. Hematol. 2015, 126, 1930–1939. [Google Scholar] [CrossRef]
- Fard, A.D.; Hosseini, S.A.; Shahjahani, M.; Salari, F.; Jaseb, K. Evaluation of Novel Fetal Hemoglobin Inducer Drugs in Treatment ofβ-Hemoglobinopathy Disorders. Int. J. Hematol. Oncol. Stem Cell Res. 2013, 7, 47–54. [Google Scholar] [PubMed] [PubMed Central]
- Lavelle, D.; Engel, J.D.; Saunthararajah, Y. Fetal Hemoglobin Induction by Epigenetic Drugs. Semin. Hematol. 2018, 55, 60–67. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Jacobs, J.W.; Gisriel, S.D.; Iyer, K.; Hauser, R.G.; El-Khoury, J.M. Unexpectedly low hemoglobin A1c in a patient with chronic lymphocytic leukemia. Clin. Chim. Acta 2022, 531, 91–93. [Google Scholar] [CrossRef] [PubMed]
- Bou-Fakhredin, R.; De Franceschi, L.; Motta, I.; Cappellini, M.D.; Taher, A.T. Pharmacological Induction of Fetal Hemoglobin in β-Thalassemia and Sickle Cell Disease: An Updated Perspective. Pharmaceuticals 2022, 15, 753. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sangerman, J.; Lee, M.S.; Yao, X.; Oteng, E.; Hsiao, C.-H.; Li, W.; Zein, S.; Ofori-Acquah, S.F.; Pace, B.S. Mechanism for fetal hemoglobin induction by histone deacetylase inhibitors involves γ-glo activation by CREB1 and ATF-2. Blood 2006, 108, 3590–3599. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Cao, H.; Stamatoyannopoulos, G.; Jung, M. Induction of human γ globin gene expression by histone deacetylase inhibitors. Blood 2004, 103, 701–709. [Google Scholar] [CrossRef]
- Witt, O.; Mönkemeyer, S.; Kanbach, K.; Pekrun, A. Induction of fetal hemoglobin synthesis by valproate: Modulation of MAPkinase pathways. Am. J. Hematol. 2002, 71, 45–46. [Google Scholar] [CrossRef]
- Chu, B.F.; Karpenko, M.J.; Liu, Z.; Aimiuwu, J.; Villalona-Calero, M.A.; Chan, K.K.; Grever, M.R.; Otterson, G.A. Phase I study of 5-aza-2′-deoxycytidine in combination with valproic acid in non-small-cell lung cancer. Cancer Chemother. Pharmacol. 2013, 71, 115–121. [Google Scholar] [CrossRef] [PubMed]
- Perrine, S.P.; Wargin, W.A.; Boosalis, M.S.; Wallis, W.J.; Case, S.; Keefer, J.R.; Faller, D.V.; Welch, W.C.; Berenson, R.J. Evaluation of Safety and Pharmacokinetics of Sodium 2, 2 Dimethylbutyrate, a Novel Short Chain Fatty Acid Derivative, in a Phase 1, Double-Blind, Placebo-Controlled, Single-Dose, and Repeat-Dose Studies in Healthy Volunteers. J. Clin. Pharmacol. 2011, 51, 1186–1194. [Google Scholar] [CrossRef][Green Version]
- Zein, S.; Li, W.; Ramakrishnan, V.; Lou, T.-F.; Sivanand, S.; Mackie, A.; Pace, B. Identification of fetal hemoglobin-inducing agents using the human leukemia KU812 cell line. Exp. Biol. Med. 2010, 235, 1385–1394. [Google Scholar] [CrossRef]
- Munugalavadla, V.; Kapur, R. Role of c-Kit and erythropoietin receptor in erythropoiesis. Crit. Rev. Oncol./Hematol. 2005, 54, 63. [Google Scholar] [CrossRef] [PubMed]
- Hebbel, R.P.; Vercellotti, G.M.; Pace, B.S.; Solovey, A.N.; Kollander, R.; Abanonu, C.F.; Nguyen, J.; Vineyard, J.V.; Belcher, J.D.; Abdulla, F.; et al. The HDAC inhibitors trichostatin A and suberoylanilide hydroxamic acid exhibit multiple modalities of benefit for the vascular pathobiology of sickle transgenic mice. Blood 2010, 115, 2483–2490. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Li, H.; Ko, C.H.; Tsang, S.Y.; Leung, P.C.; Fung, M.C.; Fung, K.P. The ethanol extract of Fructus trichosanthis promotes fetal hemoglobin production via p38 MAPK activation and ERK inactivation in K562 cells. Evid.-Based Complement. Altern. Med. 2011, 2011, 657056. [Google Scholar] [CrossRef]
- Lu, Y.; Wei, Z.; Yang, G.; Lai, Y.; Liu, R. Investigating the Efficacy and Safety of Thalidomide for Treating Patients With ß-Thalassemia: A Meta-Analysis. Front. Pharmacol. 2022, 12, 814302. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Krivega, I.; Byrnes, C.; de Vasconcellos, J.F.; Lee, Y.T.; Kaushal, M.; Dean, A.; Miller, J.L. Inhibition of G9a methyltransferase stimulates fetal hemoglobin production by facilitating LCR/γ-globin looping. Blood J. Am. Soc. Hematol. 2015, 126, 665–672. [Google Scholar] [CrossRef] [PubMed]



| Initial Count | Volume of Saline Added | Resulting Count | Chromatogram |
|---|---|---|---|
| 116 × 103/μL | none | 116 × 103/μL | Normal |
| 125 × 103/μL | 10 μL | 119 × 103/μL | Normal |
| 370 × 103/μL | 100 μL | 315 × 103/μL | Abnormal |
| 315 × 103/μL | 150 μL | 250 × 103/μL | Abnormal |
| 250 × 103/μL | 150 μL | 184 × 103/μL | Abnormal |
| 184 × 103/μL | 40 μL | 164 × 103/μL | Abnormal |
| 164 × 103/μL | 30 μL | 159 × 103/μL | Abnormal |
| 159 × 103/μL | 10 μL | 155 × 103/μL | Abnormal |
| 155 × 103/μL | 20 μL | 152 × 103/μL | Abnormal |
| 152 × 103/μL | 30 μL | 138 × 103/μL | Abnormal |
| 138 × 103/μL | 10 μL | 129 × 103/μL | Normal |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Obrenovich, M.E.; Schroer, E.A.; Li, Y.; Quam, R.; Munoz, A.; Khan, S. A Novel Aberrant HbF Peak with Electrophoretic Shift in A1c of a Patient with Chronic Lymphocytic Leukemia (CLL) Was Reversible to Give Interpretable Results. Biomedicines 2026, 14, 171. https://doi.org/10.3390/biomedicines14010171
Obrenovich ME, Schroer EA, Li Y, Quam R, Munoz A, Khan S. A Novel Aberrant HbF Peak with Electrophoretic Shift in A1c of a Patient with Chronic Lymphocytic Leukemia (CLL) Was Reversible to Give Interpretable Results. Biomedicines. 2026; 14(1):171. https://doi.org/10.3390/biomedicines14010171
Chicago/Turabian StyleObrenovich, Mark E., Elizabeth A. Schroer, Yi Li, Ronald Quam, Angel Munoz, and Shagufta Khan. 2026. "A Novel Aberrant HbF Peak with Electrophoretic Shift in A1c of a Patient with Chronic Lymphocytic Leukemia (CLL) Was Reversible to Give Interpretable Results" Biomedicines 14, no. 1: 171. https://doi.org/10.3390/biomedicines14010171
APA StyleObrenovich, M. E., Schroer, E. A., Li, Y., Quam, R., Munoz, A., & Khan, S. (2026). A Novel Aberrant HbF Peak with Electrophoretic Shift in A1c of a Patient with Chronic Lymphocytic Leukemia (CLL) Was Reversible to Give Interpretable Results. Biomedicines, 14(1), 171. https://doi.org/10.3390/biomedicines14010171
