Network Analysis to Identify MicroRNAs Involved in Alzheimer’s Disease and to Improve Drug Prioritization
Abstract
1. Introduction
2. Materials and Methods
2.1. Construction of an Integrated microRNA–Protein Disease Module
2.2. Literature Mining to Search Alzheimer-Related microRNAs
2.3. Statistical Analyses
2.4. Protein and microRNA Expression in Brain Tissues
2.5. Other Networks Construction and Centrality Measures
2.6. Node Depletion Analyses
2.7. Local Networks Visualization
3. Results
3.1. Alzheimer-Associated Genes Interact Preferentially with Other AD-Linked Genes

3.2. Prediction of microRNAs Potentially Involved in the Disease
3.3. Centrality Measures and In Silico Knock-Out Experiments in the Human Interactome
3.4. In Silico Knock-Out Experiments in Alzheimer-Focused Interactome
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Evans, W.; Meslin, E.M.; Kai, J.; Qureshi, N. Precision Medicine—Are We There Yet? A Narrative Review of Precision Medicine’s Applicability in Primary Care. J. Pers. Med. 2024, 14, 418. [Google Scholar] [CrossRef]
- Cohen, P.; Cross, D.; Jänne, P.A. Kinase Drug Discovery 20 Years after Imatinib: Progress and Future Directions. Nat. Rev. Drug Discov. 2021, 20, 551–569. [Google Scholar] [CrossRef] [PubMed]
- Haque, U.S.; Kohut, M.; Yokota, T. DG9-Conjugated Morpholino Rescues Phenotype in Spinal Muscular Atrophy Mice. Methods Mol. Biol. 2026, 2963, 15–40. [Google Scholar] [CrossRef]
- Takeshima, Y.; Lee, T.; Shimomura, H. Development and Future Prospects of Exon-Skipping Therapy for Duchenne Muscular Dystrophy. Brain Dev. 2025, 47, 104457. [Google Scholar] [CrossRef]
- Bartel, D.P. Metazoan MicroRNAs. Cell 2018, 173, 20–51. [Google Scholar] [CrossRef]
- Duchaine, T.F.; Fabian, M.R. Mechanistic Insights into MicroRNA-Mediated Gene Silencing. Cold Spring Harb. Perspect. Biol. 2019, 11, a032771. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Zhang, Y.; Wang, J.; Xia, Y.; Zhang, J.; Chen, L. Recent Advances in Alzheimer’s Disease: Mechanisms, Clinical Trials and New Drug Development Strategies. Signal Transduct. Target. Ther. 2024, 9, 211. [Google Scholar] [CrossRef] [PubMed]
- Ballard, C.; Gauthier, S.; Corbett, A.; Brayne, C.; Aarsland, D.; Jones, E. Alzheimer’s Disease. Lancet 2011, 377, 1019–1031. [Google Scholar] [CrossRef]
- Nelson, P.T.; Wang, W.-X. MiR-107 Is Reduced in Alzheimer’s Disease Brain Neocortex: Validation Study. J. Alzheimer’s Dis. 2010, 21, 75–79. [Google Scholar] [CrossRef]
- Hébert, S.S.; Horré, K.; Nicolaï, L.; Papadopoulou, A.S.; Mandemakers, W.; Silahtaroglu, A.N.; Kauppinen, S.; Delacourte, A.; De Strooper, B. Loss of microRNA Cluster miR-29a/b-1 in Sporadic Alzheimer’s Disease Correlates with Increased BACE1/Beta-Secretase Expression. Proc. Natl. Acad. Sci. USA 2008, 105, 6415–6420. [Google Scholar] [CrossRef]
- Zovoilis, A.; Agbemenyah, H.Y.; Agis-Balboa, R.C.; Stilling, R.M.; Edbauer, D.; Rao, P.; Farinelli, L.; Delalle, I.; Schmitt, A.; Falkai, P.; et al. microRNA-34c Is a Novel Target to Treat Dementias. EMBO J. 2011, 30, 4299–4308. [Google Scholar] [CrossRef]
- Lukiw, W.J. NF-κB-Regulated, Proinflammatory miRNAs in Alzheimer’s Disease. Alzheimer’s Res. Ther. 2012, 4, 47. [Google Scholar] [CrossRef]
- Wang, M.; Qin, L.; Tang, B. MicroRNAs in Alzheimer’s Disease. Front. Genet. 2019, 10, 153. [Google Scholar] [CrossRef]
- Li, Y.-B.; Fu, Q.; Guo, M.; Du, Y.; Chen, Y.; Cheng, Y. MicroRNAs: Pioneering Regulators in Alzheimer’s Disease Pathogenesis, Diagnosis, and Therapy. Transl. Psychiatry 2024, 14, 367. [Google Scholar] [CrossRef]
- Wei, W.; Wang, Z.-Y.; Ma, L.-N.; Zhang, T.-T.; Cao, Y.; Li, H. MicroRNAs in Alzheimer’s Disease: Function and Potential Applications as Diagnostic Biomarkers. Front. Mol. Neurosci. 2020, 13, 160. [Google Scholar] [CrossRef] [PubMed]
- Rupaimoole, R.; Slack, F.J. MicroRNA Therapeutics: Towards a New Era for the Management of Cancer and Other Diseases. Nat. Rev. Drug Discov. 2017, 16, 203–222. [Google Scholar] [CrossRef] [PubMed]
- Winkle, M.; El-Daly, S.M.; Fabbri, M.; Calin, G.A. Noncoding RNA Therapeutics—Challenges and Potential Solutions. Nat. Rev. Drug Discov. 2021, 20, 629–651. [Google Scholar] [CrossRef]
- Menche, J.; Sharma, A.; Kitsak, M.; Ghiassian, S.D.; Vidal, M.; Loscalzo, J.; Barabási, A.-L. Disease Networks. Uncovering Disease-Disease Relationships through the Incomplete Interactome. Science 2015, 347, 1257601. [Google Scholar] [CrossRef] [PubMed]
- Albert, R.; Jeong, H.; Barabasi, A.L. Error and Attack Tolerance of Complex Networks. Nature 2000, 406, 378–382. [Google Scholar] [CrossRef]
- Azevedo, H.; Moreira-Filho, C.A. Topological Robustness Analysis of Protein Interaction Networks Reveals Key Targets for Overcoming Chemotherapy Resistance in Glioma. Sci. Rep. 2015, 5, 16830. [Google Scholar] [CrossRef]
- Morselli Gysi, D.; Barabási, A.-L. Noncoding RNAs Improve the Predictive Power of Network Medicine. Proc. Natl. Acad. Sci. USA 2023, 120, e2301342120. [Google Scholar] [CrossRef]
- Porras, P.; Barrera, E.; Bridge, A.; Del-Toro, N.; Cesareni, G.; Duesbury, M.; Hermjakob, H.; Iannuccelli, M.; Jurisica, I.; Kotlyar, M.; et al. Towards a Unified Open Access Dataset of Molecular Interactions. Nat. Commun. 2020, 11, 6144. [Google Scholar] [CrossRef]
- The IMEx Consortium Curators; Khadake, J.; Meldal, B.; Panni, S.; Thorneycroft, D.; Van Roey, K.; Abbani, S.; Salwinski, L.; Pellegrini, M.; Iannuccelli, M.; et al. Capturing Variation Impact on Molecular Interactions in the IMEx Consortium Mutations Data Set. Nat. Commun. 2019, 10, 10, Erratum in Nat. Commun. 2019, 10, 1098. https://doi.org/10.1038/s41467-018-07709-6.. [Google Scholar]
- Panneerselvam, K.; Tiwari, K.K.; Licata, L.; Panni, S.; Ricard-Blum, S.; Balu, S.; Huget, S.; Medina Reyes, J.J.; Ragueneau, E.; Perfetto, L.; et al. Mining Alzheimer’s Interactomes, Macromolecular Complexes and Pathways for Drug Discovery. Proteomics 2025, 25, e70018. [Google Scholar] [CrossRef]
- Del Toro, N.; Shrivastava, A.; Ragueneau, E.; Meldal, B.; Combe, C.; Barrera, E.; Perfetto, L.; How, K.; Ratan, P.; Shirodkar, G.; et al. The IntAct Database: Efficient Access to Fine-Grained Molecular Interaction Data. Nucleic Acids Res. 2022, 50, D648–D653. [Google Scholar] [CrossRef]
- Szklarczyk, D.; Kirsch, R.; Koutrouli, M.; Nastou, K.; Mehryary, F.; Hachilif, R.; Gable, A.L.; Fang, T.; Doncheva, N.T.; Pyysalo, S.; et al. The STRING Database in 2023: Protein-Protein Association Networks and Functional Enrichment Analyses for Any Sequenced Genome of Interest. Nucleic Acids Res. 2023, 51, D638–D646. [Google Scholar] [CrossRef] [PubMed]
- Oughtred, R.; Rust, J.; Chang, C.; Breitkreutz, B.-J.; Stark, C.; Willems, A.; Boucher, L.; Leung, G.; Kolas, N.; Zhang, F.; et al. The BioGRID Database: A Comprehensive Biomedical Resource of Curated Protein, Genetic, and Chemical Interactions. Protein Sci. 2021, 30, 187–200. [Google Scholar] [CrossRef] [PubMed]
- Ragueneau, E.; Shrivastava, A.; Morris, J.H.; del-Toro, N.; Hermjakob, H.; Porras, P. IntAct App: A Cytoscape Application for Molecular Interaction Network Visualization and Analysis. Bioinformatics 2021, 37, 3684–3685. [Google Scholar] [CrossRef] [PubMed]
- Villaveces, J.M.; Jiménez, R.C.; Porras, P.; Del-Toro, N.; Duesbury, M.; Dumousseau, M.; Orchard, S.; Choi, H.; Ping, P.; Zong, N.C.; et al. Merging and Scoring Molecular Interactions Utilising Existing Community Standards: Tools, Use-Cases and a Case Study. Database 2015, 2015, bau131. [Google Scholar] [CrossRef]
- Cui, S.; Yu, S.; Huang, H.-Y.; Lin, Y.-C.-D.; Huang, Y.; Zhang, B.; Xiao, J.; Zuo, H.; Wang, J.; Li, Z.; et al. miRTarBase 2025: Updates to the Collection of Experimentally Validated microRNA-Target Interactions. Nucleic Acids Res. 2025, 53, D147–D156. [Google Scholar] [CrossRef]
- Panni, S.; Pizzolotto, R. Integrated Analysis of microRNA Targets Reveals New Insights into Transcriptional-Post-Transcriptional Regulatory Cross-Talk. Biology 2025, 14, 43. [Google Scholar] [CrossRef]
- Ghoussaini, M.; Mountjoy, E.; Carmona, M.; Peat, G.; Schmidt, E.M.; Hercules, A.; Fumis, L.; Miranda, A.; Carvalho-Silva, D.; Buniello, A.; et al. Open Targets Genetics: Systematic Identification of Trait-Associated Genes Using Large-Scale Genetics and Functional Genomics. Nucleic Acids Res. 2021, 49, D1311–D1320. [Google Scholar] [CrossRef] [PubMed]
- Fromm, B.; Zhong, X.; Tarbier, M.; Friedländer, M.R.; Hackenberg, M. The Limits of Human microRNA Annotation Have Been Met. RNA 2022, 28, 781–785. [Google Scholar] [CrossRef]
- Bindea, G.; Mlecnik, B.; Hackl, H.; Charoentong, P.; Tosolini, M.; Kirilovsky, A.; Fridman, W.-H.; Pagès, F.; Trajanoski, Z.; Galon, J. ClueGO: A Cytoscape Plug-in to Decipher Functionally Grouped Gene Ontology and Pathway Annotation Networks. Bioinformatics 2009, 25, 1091–1093. [Google Scholar] [CrossRef] [PubMed]
- Sathe, G.; Albert, M.; Darrow, J.; Saito, A.; Troncoso, J.; Pandey, A.; Moghekar, A. Quantitative Proteomic Analysis of the Frontal Cortex in Alzheimer’s Disease. J. Neurochem. 2021, 156, 988–1002. [Google Scholar] [CrossRef] [PubMed]
- Rishik, S.; Hirsch, P.; Grandke, F.; Fehlmann, T.; Keller, A. miRNATissueAtlas 2025: An Update to the Uniformly Processed and Annotated Human and Mouse Non-Coding RNA Tissue Atlas. Nucleic Acids Res. 2025, 53, D129–D137. [Google Scholar] [CrossRef]
- Basheer, N.; Smolek, T.; Hassan, I.; Liu, F.; Iqbal, K.; Zilka, N.; Novak, P. Does Modulation of Tau Hyperphosphorylation Represent a Reasonable Therapeutic Strategy for Alzheimer’s Disease? From Preclinical Studies to the Clinical Trials. Mol. Psychiatry 2023, 28, 2197–2214. [Google Scholar] [CrossRef]
- Panni, S.; Panneerselvam, K.; Porras, P.; Duesbury, M.; Perfetto, L.; Licata, L.; Hermjakob, H.; Orchard, S. The Landscape of microRNA Interaction Annotation: Analysis of Three Rare Disorders as a Case Study. Database 2025, 2023, baad066, Erratum in Database 2025, 2025, baae131. https://doi.org/10.1093/database/baad066.. [Google Scholar] [CrossRef]
- Huntley, R.P.; Kramarz, B.; Sawford, T.; Umrao, Z.; Kalea, A.; Acquaah, V.; Martin, M.J.; Mayr, M.; Lovering, R.C. Expanding the Horizons of microRNA Bioinformatics. RNA 2018, 24, 1005–1017. [Google Scholar] [CrossRef]
- Wang, Y.; Tang, Y.; Teng, L.; Wu, Y.; Zhao, X.; Pei, G. Association of Beta-Arrestin and TRAF6 Negatively Regulates Toll-like Receptor-Interleukin 1 Receptor Signaling. Nat. Immunol. 2006, 7, 139–147. [Google Scholar] [CrossRef]
- Seegar, T.C.M.; Killingsworth, L.B.; Saha, N.; Meyer, P.A.; Patra, D.; Zimmerman, B.; Janes, P.W.; Rubinstein, E.; Nikolov, D.B.; Skiniotis, G.; et al. Structural Basis for Regulated Proteolysis by the α-Secretase ADAM10. Cell 2017, 171, 1638–1648.e7. [Google Scholar] [CrossRef] [PubMed]
- Yuan, X.-Z.; Sun, S.; Tan, C.-C.; Yu, J.-T.; Tan, L. The Role of ADAM10 in Alzheimer’s Disease. J. Alzheimer’s Dis. 2017, 58, 303–322. [Google Scholar] [CrossRef]
- Vinayagam, A.; Gibson, T.E.; Lee, H.-J.; Yilmazel, B.; Roesel, C.; Hu, Y.; Kwon, Y.; Sharma, A.; Liu, Y.-Y.; Perrimon, N.; et al. Controllability Analysis of the Directed Human Protein Interaction Network Identifies Disease Genes and Drug Targets. Proc. Natl. Acad. Sci. USA 2016, 113, 4976–4981. [Google Scholar] [CrossRef]
- Scardoni, G.; Montresor, A.; Tosadori, G.; Laudanna, C. Node Interference and Robustness: Performing Virtual Knock-out Experiments on Biological Networks: The Case of Leukocyte Integrin Activation Network. PLoS ONE 2014, 9, e88938. [Google Scholar] [CrossRef]
- Millar, N.L.; Donnelly, I.; McInnes, I.B.; Ball, D.; Leung, P.M.; Kirwadi, A.; Gilchrist, D.S. First in Human Study of a microRNA29a Mimic (TenoMiR) in Patients with Lateral Elbow Tendinopathy—A Randomised, Placebo Controlled Phase 1 Trial. medRxiv 2025. [Google Scholar] [CrossRef]
- Alexandre-Silva, V.; Cominetti, M.R. Unraveling the Dual Role of ADAM10: Bridging the Gap between Cancer and Alzheimer’s Disease. Mech. Ageing Dev. 2024, 219, 111928. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Ramos, E.; Hidalgo, A.; Rodarte, D.; Sharma, B.; Torres, M.M.; Devara, D.; Gadad, S.S. Integrated Multi-Omics Analyses of Synaptosomes Revealed Synapse-Associated Novel Targets in Alzheimer’s Disease. Mol. Psychiatry 2025, 30, 5121–5136. [Google Scholar] [CrossRef]
- Feng, H.; Hu, P.; Chen, Y.; Sun, H.; Cai, J.; He, X.; Cao, Q.; Yin, M.; Zhang, Y.; Li, Q.; et al. Decreased miR-451a in Cerebrospinal Fluid, a Marker for Both Cognitive Impairment and Depressive Symptoms in Alzheimer’s Disease. Theranostics 2023, 13, 3021–3040. [Google Scholar] [CrossRef]
- Hong, D.S.; Kang, Y.-K.; Borad, M.; Sachdev, J.; Ejadi, S.; Lim, H.Y.; Brenner, A.J.; Park, K.; Lee, J.-L.; Kim, T.-Y.; et al. Phase 1 Study of MRX34, a Liposomal miR-34a Mimic, in Patients with Advanced Solid Tumours. Br. J. Cancer 2020, 122, 1630–1637. [Google Scholar] [CrossRef]
- Walgrave, H.; Zhou, L.; De Strooper, B.; Salta, E. The Promise of microRNA-Based Therapies in Alzheimer’s Disease: Challenges and Perspectives. Mol. Neurodegener. 2021, 16, 76. [Google Scholar] [CrossRef]
- Mai, H.; Fan, W.; Wang, Y.; Cai, Y.; Li, X.; Chen, F.; Chen, X.; Yang, J.; Tang, P.; Chen, H.; et al. Intranasal Administration of miR-146a Agomir Rescued the Pathological Process and Cognitive Impairment in an AD Mouse Model. Mol. Ther. Nucleic Acids 2019, 18, 681–695. [Google Scholar] [CrossRef] [PubMed]
- Petracci, I.; Bellini, S.; Goljanek-Whysall, K.; Quinlan, L.R.; Fiszer, A.; Cakmak, A.; Njume, C.M.; Borroni, B.; Ghidoni, R. Exploring the Role of microRNAs as Blood Biomarkers in Alzheimer’s Disease and Frontotemporal Dementia. Int. J. Mol. Sci. 2025, 26, 3399. [Google Scholar] [CrossRef] [PubMed]
- Kunwar, A.; Ablordeppey, K.K.; Mireskandari, A.; Sheinerman, K.; Kiefer, M.; Umansky, S.; Kumar, G. Analytical Validation of a Novel MicroRNA Panel for Risk Stratification of Cognitive Impairment. Diagnostics 2023, 13, 2170. [Google Scholar] [CrossRef] [PubMed]
- Muzio, G.; O’Bray, L.; Borgwardt, K. Biological Network Analysis with Deep Learning. Brief. Bioinform. 2021, 22, 1515–1530. [Google Scholar] [CrossRef]
- Ha, J. Graph Convolutional Network with Neural Collaborative Filtering for Predicting miRNA-Disease Association. Biomedicines 2025, 13, 136. [Google Scholar] [CrossRef]
- Altucci, L.; Badimon, L.; Balligand, J.-L.; Baumbach, J.; Catapano, A.L.; Cheng, F.; DeMeo, D.; Gupta, R.; Hacker, M.; Liu, Y.-Y.; et al. Artificial Intelligence and Network Medicine: Path to Precision Medicine. NEJM AI 2025, 2, AIra2401229. [Google Scholar] [CrossRef]
- Broyde, J.; Simpson, D.R.; Murray, D.; Paull, E.O.; Chu, B.W.; Tagore, S.; Jones, S.J.; Griffin, A.T.; Giorgi, F.M.; Lachmann, A.; et al. Oncoprotein-Specific Molecular Interaction Maps (SigMaps) for Cancer Network Analyses. Nat. Biotechnol. 2021, 39, 215–224. [Google Scholar] [CrossRef]
- Green, A.F.; Ontiveros, N.; Jandalala, I.; Panni, S.; Wood, V.; Antonazzo, G.; Attrill, H.; Bateman, A.; Sweeney, B. GOFlowLLM—Curating miRNA Literature with Large Language Models and Flowcharts. Bioinformatics 2026, btaf683. [Google Scholar] [CrossRef]




| Database | Filters | Number of Nodes (N) | Number of Edges (E) |
|---|---|---|---|
| STRING | TaxID: 9606 Type: “Experimental Evidence Only”, “Physical Interactions” Additional Interactors: 10 Confidence Score: ≥0.9 | 49 | 56 |
| BioGRID | TaxID: 9606 Type: Interactors w/Physical (LTP) Evidence Cutoff: ≥2 publications (PMIDs) per PPI | 117 | 133 |
| IntAct | TaxID: 9606 Type: “direct interaction” and “physical association” MI Score: ≥0.60 | 70 | 74 |
| Final Interactome (duplications deleted) | 156 | 179 |
| Dataset | Number of Genes | Overlap (k) | Background (N) | Odds Ratio | Fisher’s Exact p |
|---|---|---|---|---|---|
| PPI network | 156 | 26 | 19,435 | 14.29 | 2.2 × 10−16 |
| Open Targets | 292 |
| Gene Name | microRNAs |
|---|---|
| ADAM10 | hsa-miR-122-5p; hsa-miR-451a |
| AKT1 | hsa-miR-99a-5p; hsa-miR-542-3p |
| APOE (1) | hsa-miR-1908-5p; hsa-miR-199a-5p; hsa-miR-650 |
| BACE1 | hsa-miR-107; hsa-miR-29c-3p hsa-miR-16-5p |
| BCL2 | miR-125a-5p; miR-140-3p; miR-143-3p; miR-15-5p; miR-16-5p; miR-17-5p miR-181-5p; miR-192-5p; miR-195-5p; miR-204-5p; miR-21-5p; miR-34a-5p miR-429; miR-449a; miR-497-5p; miR-503-5p |
| CASP3 | hsa-miR-138-5p |
| CDH1 | hsa-miR-544a; hsa-miR-9-5p |
| CTNNB1 | hsa-miR-142-3p; hsa-miR-181a-5p hsa-miR-200a-3p; hsa-miR-214-3p135 |
| EP300 | hsa-miR-150-5p |
| GSK3B | hsa-miR-26a-5p; hsa-miR-27a-3p; hsa-miR-99b-3p |
| HDAC6 | hsa-miR-22-3p |
| MAPK14 | hsa-miR-200a-3p |
| MAPK3 | hsa-miR-483-5p |
| NOTCH1 | miR-139-5p; miR-144-3p; miR-30c-5p; miR-34a-5p miR-34b3p; hsa-miR-34c-5p; hsa-miR-449a |
| PIK3R1 | hsa-mir-542-3p |
| PIN1 | hsa-miR-140-5p |
| PPP1CA | hsa-miR-125b-5p |
| SGK1 | hsa-miR-133b |
| SIRT1 | miR-132-3p; miR-133b; miR-138-5p; miR-155-3p; miR-181a-5p; miR-199a-5p; miR-204-5p; miR-217; miR-22-3p; miR-34a-5p; miR-449a; miR-9-5p |
| SNCA | hsa-miR-7-5p |
| SRC | hsa-miR-34a-5p |
| TGFB1 | hsa-miR-211-5p |
| TGFB2 | hsa-miR-7-5p |
| TRAF6 | hsa-miR-146a-5p; hsa-miR-146b-5p |
| TUBB3 | hsa-miR-200c-3p |
| VDAC1 | hsa-miR-320a |
| Node Name | Node ID | Degree | Betweenness 1 | Closeness 2 |
|---|---|---|---|---|
| Pik3R1 | P27986 | 19 | 46,261 | 0.21 |
| Bace1 | P56817 | 2 | 1368 | 0.18 |
| Traf6 | Q9Y4K3 | 26 | 168,009 | 0.23 |
| Gsk3b | P49841 | 19 | 140,322 | 0.22 |
| Akt1 | P31749 | 16 | 107,894 | 0.22 |
| Cdk2 | P24941 | 26 | 84,279 | 0.21 |
| Adam10 | O14672 | 7 | 30,727 | 0.18 |
| Mapk3 | Q16644 | 3 | 4208 | 0.16 |
| Apoe | P02649 | 6 | 100,013 | 0.17 |
| Node Name | Node ID | Components | LCC | Avg Path | Δ Components | Δ LCC | ΔPath Length |
|---|---|---|---|---|---|---|---|
| No depletion | - | 689 | 7217 | 5.7726 | - | - | - |
| Pik3r1 | P27986 | 690 | 7215 | 5.7733 | +1 | −2 | +0.0007 |
| Bace1 | P56817 | 689 | 7216 | 5.7727 | 0 | −1 | +0.0001 |
| Traf6 | Q9Y4K3 | 691 | 7214 | 5.7774 | +2 | −3 | +0.0048 |
| Gsk3b | P49841 | 691 | 7214 | 5.7760 | +2 | −3 | +0.0034 |
| Akt1 | P31749 | 693 | 7212 | 5.7754 | +4 | −5 | +0.0028 |
| Cdk2 | P24941 | 692 | 7213 | 5.7737 | +3 | −4 | +0.0011 |
| Adam10 | O14672 | 692 | 7213 | 5.7722 | +3 | −4 | −0.0004 |
| Mapk3 | Q16644 | 689 | 7216 | 5.7725 | 0 | −1 | −0.0001 |
| Apoe | P02649 | 690 | 7215 | 5.7747 | +1 | −2 | +0.0021 |
| Node Name | Node ID | Degree | Betweenness | Closeness |
|---|---|---|---|---|
| PIK3R1 | P27986 | 1 | 0 | 1 |
| Bace1 | P56817 | 2 | 1.1 × 10−3 | 0.22 |
| Traf6 | Q9Y4K3 | 1 | 0 | 0.23 |
| Gsk3b | P49841 | 4 | 6.2 × 10−3 | 0.22 |
| Adam10 | O14672 | 6 | 1.4 × 10−2 | 0.22 |
| Apoe | P02649 | 3 | 5.5 × 10−3 | 0.17 |
| Node Name | Node ID | Components | LCC | Avg Path | Δ Components | Δ LCC | ΔPath Length |
|---|---|---|---|---|---|---|---|
| No depletion | - | 100 | 528 | 4.7067 | - | - | - |
| PIK3R1 | P27986 | 100 | 528 | 4.7067 | 0 | 0 | +0.0000 |
| Bace1 | P56817 | 100 | 527 | 4.7079 | 0 | −1 | +0.0012 |
| Traf6 | Q9Y4K3 | 100 | 527 | 4.7044 | 0 | −1 | −0.0023 |
| Gsk3b | P49841 | 101 | 526 | 4.7079 | 1 | −2 | +0.0012 |
| Adam10 | O14672 | 104 | 519 | 4.6751 | 4 | −9 | −0.0316 |
| Apoe | P02649 | 101 | 524 | 4.669 | 1 | −4 | −0.0374 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Reyna, A.; Panni, S. Network Analysis to Identify MicroRNAs Involved in Alzheimer’s Disease and to Improve Drug Prioritization. Biomedicines 2026, 14, 147. https://doi.org/10.3390/biomedicines14010147
Reyna A, Panni S. Network Analysis to Identify MicroRNAs Involved in Alzheimer’s Disease and to Improve Drug Prioritization. Biomedicines. 2026; 14(1):147. https://doi.org/10.3390/biomedicines14010147
Chicago/Turabian StyleReyna, Aldo, and Simona Panni. 2026. "Network Analysis to Identify MicroRNAs Involved in Alzheimer’s Disease and to Improve Drug Prioritization" Biomedicines 14, no. 1: 147. https://doi.org/10.3390/biomedicines14010147
APA StyleReyna, A., & Panni, S. (2026). Network Analysis to Identify MicroRNAs Involved in Alzheimer’s Disease and to Improve Drug Prioritization. Biomedicines, 14(1), 147. https://doi.org/10.3390/biomedicines14010147

