Directional Modulation of the Integrated Stress Response in Neurodegeneration: A Systematic Review of eIF2B Activators, PERK-Pathway Agents, and ISR Prolongers
Abstract
1. Introduction
2. Materials and Methods
2.1. Protocol and Registration
2.2. Eligibility Criteria
2.3. Information Sources and Search Strategies
2.4. Selection Process
2.5. Risk of Bias
3. Results
4. Discussion
4.1. Summary of Evidence
4.2. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Costa-Mattioli, M.; Walter, P. The integrated stress response: From mechanism to disease. Science 2020, 368, eaat5314. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Pakos-Zebrucka, K.; Koryga, I.; Mnich, K.; Ljujic, M.; Samali, A.; Gorman, A.M. The integrated stress response. EMBO Rep. 2016, 17, 1374–1395. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sidrauski, C.; Acosta-Alvear, D.; Khoutorsky, A.; Vedantham, P.; Hearn, B.R.; Li, H.; Gamache, K.; Gallagher, C.M.; Ang, K.K.; Wilson, C.; et al. Pharmacological brake-release of mRNA translation enhances cognitive memory. eLife 2013, 2, e00498. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sekine, Y.; Zyryanova, A.; Crespillo-Casado, A.; Fischer, P.M.; Harding, H.P.; Ron, D. Stress responses. Mutations in a translation initiation factor identify the target of a memory-enhancing compound. Science 2015, 348, 1027–1030. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kenner, L.R.; Anand, A.A.; Nguyen, H.C.; Myasnikov, A.G.; Klose, C.J.; McGeever, L.A.; Tsai, J.C.; Miller-Vedam, L.E.; Walter, P.; Frost, A. eIF2B-catalyzed nucleotide exchange and phosphoregulation by the integrated stress response. Science 2019, 364, 491–495. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kashiwagi, K.; Yokoyama, T.; Nishimoto, M.; Takahashi, M.; Sakamoto, A.; Yonemochi, M.; Shirouzu, M.; Ito, T. Structural basis for eIF2B inhibition in integrated stress response. Science 2019, 364, 495–499. [Google Scholar] [CrossRef] [PubMed]
- Wong, Y.L.; LeBon, L.; Basso, A.M.; Kohlhaas, K.L.; Nikkel, A.L.; Robb, H.M.; Donnelly-Roberts, D.L.; Prakash, J.; Swensen, A.M.; Rubinstein, N.D.; et al. eIF2B activator prevents neurological defects caused by a chronic integrated stress response. eLife 2019, 8, e42940. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Moreno, J.A.; Halliday, M.; Molloy, C.; Radford, H.; Verity, N.; Axten, J.M.; Ortori, C.A.; Willis, A.E.; Fischer, P.M.; Barrett, D.A.; et al. Oral treatment targeting the unfolded protein response prevents neurodegeneration and clinical disease in prion-infected mice. Sci. Transl. Med. 2013, 5, 206ra138. [Google Scholar] [CrossRef] [PubMed]
- Mercado, G.; Castillo, V.; Soto, P.; López, N.; Axten, J.M.; Sardi, S.P.; Hoozemans, J.J.M.; Hetz, C. Targeting PERK signaling with the small molecule GSK2606414 prevents neurodegeneration in a model of Parkinson’s disease. Neurobiol. Dis. 2018, 112, 136–148. [Google Scholar] [CrossRef] [PubMed]
- Grande, V.; Ornaghi, F.; Comerio, L.; Restelli, E.; Masone, A.; Corbelli, A.; Tolomeo, D.; Capone, V.; Axten, J.M.; Laping, N.J.; et al. PERK inhibition delays neurodegeneration and improves motor function in a mouse model of Marinesco-Sjögren syndrome. Hum. Mol. Genet. 2018, 27, 2477–2489. [Google Scholar] [CrossRef] [PubMed]
- Hughes, D.T.; Halliday, M.; Smith, H.L.; Verity, N.C.; Molloy, C.; Radford, H.; Butcher, A.J.; Mallucci, G.R. Targeting the kinase insert loop of PERK selectively modulates PERK signaling without systemic toxicity in mice. Sci. Signal. 2020, 13, eabb4749. [Google Scholar] [CrossRef] [PubMed]
- Chou, A.; Krukowski, K.; Jopson, T.; Zhu, P.J.; Costa-Mattioli, M.; Walter, P.; Rosi, S. Inhibition of the integrated stress response reverses cognitive deficits after traumatic brain injury. Proc. Natl. Acad. Sci. USA 2017, 114, E6420–E6426. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Frias, E.S.; Hoseini, M.S.; Krukowski, K.; Paladini, M.S.; Grue, K.; Ureta, G.; Rienecker, K.D.A.; Walter, P.; Stryker, M.P.; Rosi, S. Aberrant cortical spine dynamics after concussive injury are reversed by integrated stress response inhibition. Proc. Natl. Acad. Sci. USA 2022, 119, e2209427119. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Crespillo-Casado, A.; Chambers, J.E.; Fischer, P.M.; Marciniak, S.J.; Ron, D. PPP1R15A-mediated dephosphorylation of eIF2α is unaffected by Sephin1 or Guanabenz. eLife 2017, 6, e26109. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hwang, K.D.; Bak, M.S.; Kim, S.J.; Rhee, S.; Lee, Y.S. Restoring synaptic plasticity and memory in mouse models of Alzheimer’s disease by PKR inhibition. Mol. Brain 2017, 10, 57. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. Syst. Rev. 2021, 10, 89. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Radford, H.; Moreno, J.A.; Verity, N.; Halliday, M.; Mallucci, G.R. PERK inhibition prevents tau-mediated neurodegeneration in a mouse model of frontotemporal dementia. Acta Neuropathol. 2015, 130, 633–642. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Halliday, M.; Radford, H.; Sekine, Y.; Moreno, J.J.; Verity, N.; Le Quesne, J.P.C.; Ortori, C.A.; Barrett, D.A.; Fromont, C.; Fischer, P.M.; et al. Partial restoration of protein synthesis rates by the small molecule ISRIB prevents neurodegeneration without pancreatic toxicity. Cell Death Dis. 2015, 6, e1672. [Google Scholar] [CrossRef]
- Johnson, E.C.; Kang, J. A small molecule targeting protein translation does not rescue spatial learning and memory deficits in the hAPP-J20 mouse model of Alzheimer’s disease. PeerJ 2016, 4, e2565. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bruch, J.; Xu, H.; Rösler, T.W.; De Andrade, A.; Kuhn, P.H.; Lichtenthaler, S.F.; Arzberger, T.; Winklhofer, K.F.; Müller, U.; Höglinger, G.U. PERK activation mitigates tau pathology in vitro and in vivo. EMBO Mol. Med. 2017, 9, 371–384. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Krukowski, K.; Nolan, A.; Frias, E.S.; Boone, M.; Ureta, G.; Grue, K.; Paladini, M.S.; Elizarraras, E.; Delgado, L.; Bernales, S.; et al. Small molecule cognitive enhancer reverses age-related memory decline in mice. eLife 2020, 9, e62048. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sharma, V.; Ounallah-Saad, H.; Chakraborty, D.; Hleihil, M.; Sood, R.; Barrera, I.; Edry, E.; Kolatt Chandran, S.; de Leon, S.B.T.; Kaphzan, H.; et al. Local Inhibition of PERK Enhances Memory and Reverses Age-Related Deterioration of Cognitive and Neuronal Properties. J. Neurosci. 2018, 38, 648–658. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Koren, S.A.; Hamm, M.J.; Cloyd, R.; Fontaine, S.N.; Chishti, E.; Lanzillotta, C.; Rodriguez-Rivera, J.; Ingram, A.; Bell, M.; Galvis-Escobar, S.M.; et al. Broad Kinase Inhibition Mitigates Early Neuronal Dysfunction in Tauopathy. Int. J. Mol. Sci. 2021, 22, 1186. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ganz, J.; Shacham, T.; Kramer, M.; Shenkman, M.; Eiger, H.; Weinberg, N.; Iancovici, O.; Roy, S.; Simhaev, L.; Da’aDoosh, B.; et al. A novel specific PERK activator reduces toxicity and extends survival in Huntington’s disease models. Sci. Rep. 2020, 10, 6875. [Google Scholar] [CrossRef]
- Bai, Y.; Treins, C.; Volpi, V.G.; Scapin, C.; Ferri, C.; Mastrangelo, R.; Touvier, T.; Florio, F.; Bianchi, F.; Del Carro, U.; et al. Treatment with IFB-088 Improves Neuropathy in CMT1A and CMT1B Mice. Mol. Neurobiol. 2022, 59, 4159–4178. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Das, I.; Krzyzosiak, A.; Schneider, K.; Wrabetz, L.; D’Antonio, M.; Barry, N.; Sigurdardottir, A.; Bertolotti, A. Preventing proteostasis diseases by selective inhibition of a phosphatase regulatory subunit. Science 2015, 348, 239–242. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Chen, Y.; Podojil, J.R.; Kunjamma, R.B.; Jones, J.; Weiner, M.; Lin, W.; Miller, S.D.; Popko, B. Sephin1, which prolongs the integrated stress response, is a promising therapeutic for multiple sclerosis. Brain 2019, 142, 344–361. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hu, Z.; Yu, P.; Zhang, Y.; Yang, Y.; Zhu, M.; Qin, S.; Xu, J.-T.; Duan, D.; Wu, Y.; Wang, D.; et al. Inhibition of the ISR abrogates mGluR5-dependent long-term depression and spatial memory deficits in a rat model of Alzheimer’s disease. Transl. Psychiatry 2022, 12, 96. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, M.M.; Lourenco, M.V.; Longo, F.; Kasica, N.P.; Yang, W.; Ureta, G.; Ferreira, D.D.P.; Mendonça, P.H.J.; Bernales, S.; Ma, T.; et al. Correction of eIF2-dependent defects in brain protein synthesis, synaptic plasticity, and memory in mouse models of Alzheimer’s disease. Sci. Signal. 2021, 14, eabc5429. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wong, Y.L.; LeBon, L.; Edalji, R.; Lim, H.B.; Sun, C.; Sidrauski, C. The small molecule ISRIB rescues the stability and activity of Vanishing White Matter Disease eIF2B mutant complexes. eLife 2018, 7, e32733. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lin, W.; Lin, Y.; Li, J.; Fenstermaker, A.G.; Way, S.W.; Clayton, B.; Jamison, S.; Harding, H.P.; Ron, D.; Popko, B. Oligodendrocyte-specific activation of PERK signaling protects mice against experimental autoimmune encephalomyelitis. J. Neurosci. 2013, 33, 5980–5991. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lin, Y.; Huang, G.; Jamison, S.; Li, J.; Harding, H.P.; Ron, D.; Lin, W. PERK activation preserves the viability and function of remyelinating oligodendrocytes in immune-mediated demyelinating diseases. Am. J. Pathol. 2014, 184, 507–519. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Flury, A.; Aljayousi, L.; Park, H.J.; Khakpour, M.; Mechler, J.; Aziz, S.; McGrath, J.D.; Deme, P.; Sandberg, C.; González Ibáñez, F.; et al. A neurodegenerative cellular stress response linked to dark microglia and toxic lipid secretion. Neuron 2025, 113, 554–571.e14. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lopez-Grancha, M.; Bernardelli, P.; Moindrot, N.; Genet, E.; Vincent, C.; Roudieres, V.; Krick, A.; Sabuco, J.F.; Machnik, D.; Ibghi, D.; et al. A Novel Selective PKR Inhibitor Restores Cognitive Deficits and Neurodegeneration in Alzheimer Disease Experimental Models. J. Pharmacol. Exp. Ther. 2021, 378, 262–275. [Google Scholar] [CrossRef] [PubMed]
- Szaruga, M.; Janssen, D.A.; de Miguel, C.; Hodgson, G.; Fatalska, A.; Pitera, A.P.; Andreeva, A.; Bertolotti, A. Activation of the integrated stress response by inhibitors of its kinases. Nat. Commun. 2023, 14, 5535. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Abbink, T.E.M.; Wisse, L.E.; Jaku, E.; Thiecke, M.J.; Voltolini-González, D.; Fritsen, H.; Bobeldijk, S.; Ter Braak, T.J.; Polder, E.; Postma, N.L.; et al. Vanishing white matter: Deregulated integrated stress response as therapy target. Ann. Clin. Transl. Neurol. 2019, 6, 1407–1422. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Rojas-Rivera, D.; Delvaeye, T.; Roelandt, R.; Nerinckx, W.; Augustyns, K.; Vandenabeele, P.; Bertrand, M.J.M. When PERK inhibitors turn out to be new potent RIPK1 inhibitors: Critical issues on the specificity and use of GSK2606414 and GSK2656157. Cell Death Differ. 2017, 24, 1100–1110. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]


| # | Study (Year) | Disease/Model | Compound (ISR Direction) | Dose | Route and Schedule | Duration | n (per Group) | Ref. |
|---|---|---|---|---|---|---|---|---|
| 1 | Radford 2015 | Tauopathy (rTg4510) | GSK2606414 (PERK inhibitor) | 50 mg/kg BID | Oral gavage | 6–7 wks | 8–10 | [17] |
| 2 | Halliday 2015 | Prion disease | ISRIB (ISR inhibitor) | 0.25 mg/kg | i.p., daily | ≥4 wks | NR | [18] |
| 3 | Johnson 2016 | AD (hAPP-J20) | ISRIB (inhibitor) | 0.1; 0.25; 2.5 mg/kg | i.p. post-training | days | 15/group | [19] |
| 4 | Bruch 2017 | Tau (P301S) | PERK activator | 2 mg/kg/day | i.p., daily | 6 wks | NR | [20] |
| 5 | Krukowski 2020 | Aging (19-mo) | ISRIB (inhibitor) | 2.5 mg/kg | i.p., 3 doses | 2–3 days | 16–23 | [21] |
| 6 | Sharma 2018 | Hippocampal memory | GSK2606414 (PERK inhibitor) | Local infusion | CA1 infusion | days | NR | [22] |
| 7 | Koren 2021 | Tauopathy (rTg4510) | GSK2606414 (inhibitor) | 50–150 mg/kg | Oral | 30 d | 2–3 MRI cohorts | [23] |
| 8 | Ganz 2020 | HD (R6/2) | MK-28 (PERK activator) | 1 mg/kg | Osmotic pump | 28 d | NR | [24] |
| 9 | Bai 2022 | CMT1A/CMT1B | IFB-088/Sephin1 (ISR prolonger) | NR | Oral | weeks | NR | [25] |
| 10 | Das 2015 | Misfolding disorders | Sephin1 (prolonger) | 1 mg/kg | Oral/i.p. | weeks | NR | [26] |
| 11 | Chen 2019 | CNS demyelination | Sephin1 (prolonger) | NR | NR | NR | NR | [27] |
| 12 | Hu 2022 | AD (synaptic LTD) | ISRIB (inhibitor) | ex vivo/in vivo | Slice/rat paradigms | NR | NR | [28] |
| # | Study | Primary Outcome(s) | Direction and Magnitude (If Numeric) | Target-Engagement Biomarkers | Ref. |
|---|---|---|---|---|---|
| 1 | Radford 2015 | Neuronal survival, behavior in rTg4510 | ↓ neurodegeneration; improved function; numeric details NR | ↓ PERK signaling; disease mitigation | [17] |
| 2 | Halliday 2015 | Neurodegeneration and pancreatic toxicity readouts in prion | Prevented neurodegeneration without pancreatic toxicity | Partial restoration of protein synthesis; ↓ ATF4 | [18] |
| 3 | Johnson 2016 | MWM learning/memory in hAPP-J20 | No rescue at 0.1–2.5 mg/kg; detailed stats reported | No ISR elevation; target engagement uncertain | [19] |
| 4 | Bruch 2017 | Tau load and pathology (P301S) | PERK activation mitigated tau pathology; numeric NR | ↑ eIF2α-P sustained | [20] |
| 5 | Krukowski 2020 | RAWM and DMP cognition in aged mice | Improved spatial/working/episodic memory; ANOVA p < 0.05–0.01 | ↓ ATF4 and ↓ eIF2α in brain | [21] |
| 6 | Sharma 2018 | Memory with local PERK blockade | Enhanced memory with CA1 PERK inhibition | Local kinase target engagement | [22] |
| 7 | Koren 2021 | MEMRI-R1, brain atrophy, behavior | Ameliorated atrophy; functional improvements | Exposure 50–150 mg·kg−1 yields brain μM | [23] |
| 8 | Ganz 2020 | Survival/toxicity in HD (R6/2) | MK-28 reduced toxicity; survival signals; numeric NR | PERK activation paradigm | [24] |
| 9 | Bai 2022 | Motor/sensory neuropathy metrics | Improved neuropathy phenotypes | Prolonged ISR (GADD34-PP1) | [25] |
| 10 | Das 2015 | Misfolding disease phenotypes | Prevented proteostasis-linked disease features | Selective PP1 regulatory subunit inhibition | [26] |
| 11 | Chen 2019 | Oligodendrocyte/myelin preservation | Protection in demyelinating contexts | Prolonged ISR in CNS | [27] |
| 12 | Hu 2022 | mGluR5-dependent LTD/synaptic function | Abrogated pathological LTD deficits | Functional ISR inhibition | [28] |
| # | Study | Safety Signals | Brain Exposure/PK | Translational Notes | Ref. |
|---|---|---|---|---|---|
| 1 | Radford 2015 | Systemic PERK inhibition associated with pancreatic toxicity at higher exposures | Effective CNS exposure with 50 mg/kg BID; details NR | Strong disease mitigation but safety limits systemics | [17] |
| 2 | Halliday 2015 | No pancreatic toxicity with ISRIB | CNS target engagement evident | ISRIB safer vs. PERK inhibitors in prion model | [18] |
| 3 | Johnson 2016 | No specific toxicity noted | Dose 0.1–2.5 mg/kg; exposure adequate | Model lacked ISR activation; highlight biomarker gating | [19] |
| 4 | Bruch 2017 | No observable adverse events | NR | PERK activator viable in tau context | [20] |
| 5 | Krukowski 2020 | Well-tolerated 2.5 mg/kg ISRIB | CNS engagement (↓ ATF4/↓ eIF2α) | Aging cognition—translationally relevant | [21] |
| 6 | Sharma 2018 | Local infusion mitigates systemic toxicity | Local CA1 levels sufficient | Procedural targeting strategy | [22] |
| 7 | Koren 2021 | Multikinase liabilities at high systemic exposure | 50–150 mg/kg yields brain μM | Emphasizes off-target risk management | [23] |
| 8 | Ganz 2020 | Continuous 1 mg/kg MK-28 tolerated | NR | Activating PERK strategy in HD | [24] |
| 9 | Bai 2022 | Peripheral tolerability acceptable | NR | IFB-088 is clinically advancing | [25] |
| 10 | Das 2015 | Favorable preclinical tolerability | NR | Seeding the IFB-088 translational path | [26] |
| 11 | Chen 2019 | NR | NR | CNS demyelination support | [27] |
| 12 | Hu 2022 | NR | NR | Synaptic physiology bridge to behavior | [28] |
| Disease-Model Category | eIF2B Activation | PERK Inhibition | PERK Activation | ISR Prolongation |
|---|---|---|---|---|
| Tauopathy/Alzheimer’s disease | Benefit in 3/4; 1/4 null (null reported in hAPP-J20 model); target engagement variably reported (ATF4 and/or p-eIF2α) | Benefit in 3/3; biomarker down-tuning of PERK-ISR signaling reported; safety limits for systemic PERK inhibition at higher exposures | Benefit in 1/1 (tau model) with sustained ISR signaling reported | —(not represented in included tau/AD entries) |
| Prion disease | Benefit in 1/1 with reported CNS protein-synthesis restoration; pancreatic toxicity not reported for ISRIB in included prion entry | — | — | — |
| Huntington’s disease | — | — | Benefit in 1/1 with survival/toxicity signals reported | — |
| Hereditary neuropathies (e.g., CMT models) | — | — | — | Benefit in 2/2 with motor/sensory phenotype improvement reported |
| CNS demyelination/leukodystrophy-type demyelination | — | — | — | Benefit in 1/1 with myelin/oligodendrocyte protection reported |
| Aging / age-related cognitive decline | Benefit in 1/1 with cognition improvement and brain biomarker shifts (ATF4 and/or p-eIF2α) reported | — | — | — |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Stoian, I.I.; Nistor, D.; Levai, M.C.; Popa, D.I.; Popescu, R. Directional Modulation of the Integrated Stress Response in Neurodegeneration: A Systematic Review of eIF2B Activators, PERK-Pathway Agents, and ISR Prolongers. Biomedicines 2026, 14, 126. https://doi.org/10.3390/biomedicines14010126
Stoian II, Nistor D, Levai MC, Popa DI, Popescu R. Directional Modulation of the Integrated Stress Response in Neurodegeneration: A Systematic Review of eIF2B Activators, PERK-Pathway Agents, and ISR Prolongers. Biomedicines. 2026; 14(1):126. https://doi.org/10.3390/biomedicines14010126
Chicago/Turabian StyleStoian, Isabella Ionela, Daciana Nistor, Mihaela Codrina Levai, Daian Ionel Popa, and Roxana Popescu. 2026. "Directional Modulation of the Integrated Stress Response in Neurodegeneration: A Systematic Review of eIF2B Activators, PERK-Pathway Agents, and ISR Prolongers" Biomedicines 14, no. 1: 126. https://doi.org/10.3390/biomedicines14010126
APA StyleStoian, I. I., Nistor, D., Levai, M. C., Popa, D. I., & Popescu, R. (2026). Directional Modulation of the Integrated Stress Response in Neurodegeneration: A Systematic Review of eIF2B Activators, PERK-Pathway Agents, and ISR Prolongers. Biomedicines, 14(1), 126. https://doi.org/10.3390/biomedicines14010126

