Leukocyte Count Is Better than LDL-C as Predictor of Novel Carotid Atherosclerosis
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design and Participants
2.2. Clinical and Biological Evaluation
2.3. Assessment of CAS
2.4. Statistical Analysis
3. Results
3.1. Participant Characteristics
3.2. CAS and Healthy Controls Comparison Before and After PSM for Age and Gender
3.3. Cutoff Points of Meaningful Factors with CAS Using ROC Curves and Kaplan–Meier Analysis
3.4. Longitudinal Changes in Leukocyte Count
4. Discussion
4.1. The Significance of CAS
4.2. Association Between Leukocyte Counts, LDL-C, and CAS
4.3. Strengths and Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fuster, V.; García-Álvarez, A.; Devesa, A.; Mass, V.; Owen, R.; Quesada, A.; Fuster, J.J.; García-Lunar, I.; Pocock, S.; Sánchez-González, J.; et al. Influence of Subclinical Atherosclerosis Burden and Progression on Mortality. J. Am. Coll. Cardiol. 2024, 84, 1391–1403. [Google Scholar] [CrossRef]
- Fegers-Wustrow, I.; Gianos, E.; Halle, M.; Yang, E. Comparison of American and European Guidelines for Primary Prevention of Cardiovascular Disease: JACC Guideline Comparison. J. Am. Coll. Cardiol. 2022, 79, 1304–1313. [Google Scholar] [CrossRef]
- Martin, S.S.; Aday, A.W.; Almarzooq, Z.I.; Anderson, C.A.; Arora, P.; Avery, C.L.; Baker-Smith, C.M.; Barone Gibbs, B.; Beaton, A.Z.; Boehme, A.K.; et al. American Heart Association Council on Epidemiology and Prevention Statistics Committee and Stroke Statistics Subcommittee. 2024 Heart Disease and Stroke Statistics: A Report of US and Global Data From the American Heart Association. Circulation 2024, 149, e347–e913. [Google Scholar] [CrossRef] [PubMed]
- Yuan, S.; Li, L.; Pu, T.; Fan, X.; Wang, Z.; Xie, P.; Li, P. The relationship between NLR, LDL-C/HDL-C, NHR and coronary artery disease. PLoS ONE 2024, 19, e0290805. [Google Scholar] [CrossRef] [PubMed]
- Shai, I.; Spence, J.D.; Schwarzfuchs, D.; Henkin, Y.; Parraga, G.; Rudich, A.; Fenster, A.; Mallett, C.; Liel-Cohen, N.; Tirosh, A.; et al. Dietary intervention to reverse carotid atherosclerosis. Circulation 2010, 121, 1200–1208. [Google Scholar] [CrossRef] [PubMed]
- Crouse, J.R., III; Raichlen, J.S.; Riley, W.A.; Evans, G.W.; Palmer, M.K.; O’Leary, D.H.; Grobbee, D.E.; Bots, M.L.; METEOR Study Group. Effect of rosuvastatin on progression of carotid intima-media thickness in low-risk individuals with subclinical atherosclerosis: The METEOR Trial. JAMA 2007, 297, 1344–1353. [Google Scholar] [CrossRef]
- Tyrrell, P.N.; Beyene, J.; Feldman, B.M.; McCrindle, B.W.; Silverman, E.D.; Bradley, T.J. Rheumatic disease and carotid intima-media thickness: A systematic review and meta-analysis. Arterioscler. Thromb. Vasc. Biol. 2010, 30, 1014–1026. [Google Scholar] [CrossRef]
- Nicolaides, A.N.; Panayiotou, A.G.; Griffin, M.; Tyllis, T.; Bond, D.; Georgiou, N.; Kyriacou, E.; Avraamides, C.; Martin, R.M. Arterial Ultrasound Testing to Predict Atherosclerotic Cardiovascular Events. J. Am. Coll. Cardiol. 2022, 79, 1969–1982. [Google Scholar] [CrossRef]
- Kabłak-Ziembicka, A.; Przewłocki, T. Clinical Significance of Carotid Intima-Media Complex and Carotid Plaque Assessment by Ultrasound for the Prediction of Adverse Cardiovascular Events in Primary and Secondary Care Patients. J. Clin. Med. 2021, 10, 4628. [Google Scholar] [CrossRef]
- Yang, H.; The Professional Committee of Vascular Ultrasound of Stroke Prevention and Treatment Expert; Committee of the National Health Commission; the Professional Committee of Superficial Organ and Peripheral Vascular Ultrasound of the Chinese Medical Ultrasound Engineering; the Professional Committee of Craniocerebral and Cervical Vascular Ultrasound of the Chinese Medical Ultrasound Engineering. Expert consencus on some problems of cerebral and carotid vascular ultrasonography (part of carotid). Clin. J. Cerebrovasc. Dis. 2020, 17, 346–352J. [Google Scholar]
- Tang, A.S.P.; Chan, K.E.; Quek, J.; Xiao, J.; Tay, P.; Teng, M.; Lee, K.S.; Lin, S.Y.; Myint, M.Z.; Tan, B.; et al. Non-alcoholic fatty liver disease increases risk of carotid atherosclerosis and ischemic stroke: An updated meta-analysis with 135,602 individuals. Clin. Mol. Hepatol. 2022, 28, 483–496. [Google Scholar] [CrossRef]
- Rodriguez, T.; Lehker, A.; Mikhailidis, D.P.; Mukherjee, D. Carotid Artery Pathology in Inflammatory Diseases. Am. J. Med. Sci. 2022, 363, 209–217. [Google Scholar] [CrossRef] [PubMed]
- Song, P.; Fang, Z.; Wang, H.; Cai, Y.; Rahimi, K.; Zhu, Y.; Fowkes, F.G.R.; Fowkes, F.J.I.; Rudan, I. Global and regional prevalence, burden, and risk factors for carotid atherosclerosis: A systematic review, meta-analysis, and modelling study. Lancet Glob. Health 2020, 8, e721–e729. [Google Scholar] [CrossRef] [PubMed]
- Sebastian, S.A.; Co, E.L.; Tidd-Johnson, A.; Chowdhury, S.; Jain, E.; Davidson, M.; Johal, G. Usefulness of Carotid Ultrasound Screening in Primary Cardiovascular Prevention: A Systematic Review. Curr. Probl. Cardiol. 2024, 49 Pt C, 102147. [Google Scholar] [CrossRef] [PubMed]
- Boulos, N.M.; Gardin, J.M.; Malik, S.; Postley, J.; Wong, N.D. Carotid Plaque Characterization, Stenosis, and Intima-Media Thickness According to Age and Gender in a Large Registry Cohort. Am. J. Cardiol. 2016, 117, 1185–1191. [Google Scholar] [CrossRef]
- Liao, M.; Liu, L.; Bai, L.; Wang, R.; Liu, Y.; Zhang, L.; Han, J.; Li, Y.; Qi, B. Correlation between novel inflammatory markers and carotid atherosclerosis: A retrospective case-control study. PLoS ONE 2024, 19, e0303869. [Google Scholar] [CrossRef]
- Tsai, K.Z.; Huang, W.C.; Chang, Y.C.; Kwon, Y.; Sui, X.; Lavie, C.J.; Lin, G.-M. Localized periodontitis severity associated with carotid intima-media thickness in young adults: CHIEF atherosclerosis study. Sci. Rep. 2023, 13, 10523. [Google Scholar] [CrossRef]
- Liu, Y.; Kong, X.; Wang, W.; Fan, F.; Zhang, Y.; Zhao, M.; Wang, Y.; Wang, Y.; Wang, Y.; Qin, X.; et al. Association of peripheral differential leukocyte counts with dyslipidemia risk in Chinese patients with hypertension: Insight from the China Stroke Primary Prevention Trial. J. Lipid Res. 2017, 58, 256–266. [Google Scholar] [CrossRef]
- Hu, W.; Zhang, P.; Su, Q.; Li, D.; Hang, Y.; Ye, X.; Guan, P.; Dong, J.; Lu, Y. Peripheral leukocyte counts vary with lipid levels, age and sex in subjects from the healthy population. Atherosclerosis 2020, 308, 15–21. [Google Scholar] [CrossRef]
- Zhao, F.; Qi, Y.; Liu, J.; Wang, W.; Xie, W.; Sun, J.; Liu, J.; Hao, Y.; Wang, M.; Li, Y.; et al. Low Very low-Density Lipoprotein Cholesterol but High Very low-Density Lipoprotein Receptor mRNA Expression in Peripheral White Blood Cells: An Atherogenic Phenotype for Atherosclerosis in a Community-Based Population. EBioMedicine 2017, 25, 136–142. [Google Scholar] [CrossRef]
- Yakovlev, S.; Medved, L. Dual functions of the fibrin βN-domains in the VLDL receptor-dependent pathway of transendothelial migration of leukocytes. Thromb. Res. 2022, 214, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Yakovlev, S.; Strickland, D.K.; Medved, L. Current View on the Molecular Mechanisms Underlying Fibrin(ogen)-Dependent Inflammation. Thromb. Haemost. 2022, 122, 1858–1868. [Google Scholar] [CrossRef] [PubMed]
- Yakovlev, S.; Belkin, A.M.; Chen, L.; Cao, C.; Zhang, L.; Strickland, D.K.; Medved, L. Anti-VLDL receptor monoclonal antibodies inhibit fibrin-VLDL receptor interaction and reduce fibrin-dependent leukocyte transmigration. Thromb. Haemost. 2016, 116, 1122–1130. [Google Scholar] [CrossRef] [PubMed]
- Nasr, N.; Ruidavets, J.B.; Arnal, J.F.; Sie, P.; Larrue, V. Association of neutrophil count with microembolization in patients with symptomatic carotid artery stenosis. Atherosclerosis 2009, 207, 519–523. [Google Scholar] [CrossRef]
- Dou, H.; Wang, R.; Tavallaie, M.; Xiao, T.; Olszewska, M.; Papapetrou, E.P.; Tall, A.R.; Wang, N. Hematopoietic and eosinophil-specific LNK(SH2B3) deficiency promotes eosinophilia and arterial thrombosis. Blood 2024, 143, 1758–1772. [Google Scholar] [CrossRef]
- Johnsen, S.H.; Fosse, E.; Joakimsen, O.; Mathiesen, E.B.; Stensland-Bugge, E.; Njølstad, I.; Arnesen, E. Monocyte count is a predictor of novel plaque formation: A 7-year follow-up study of 2610 persons without carotid plaque at baseline the Tromsø Study. Stroke 2005, 36, 715–719. [Google Scholar] [CrossRef]
- Jakab, A.E.; Bukva, M.; Maróti, Z.; Kalmár, T.; Raskó, I.; Kereszty, É.M.; Papp, V.Z.; Bereczki, C. The ASAP study: Association of atherosclerosis with pathobiology in a caucasian cohort-a study of 3400 autopsy reports. Sci. Rep. 2024, 14, 25179. [Google Scholar] [CrossRef]
- Gasbarrino, K.; Zheng, H.; Daskalopoulou, S.S. Circulating Sex-Specific Markers of Plaque Instability in Women and Men With Severe Carotid Atherosclerosis. Stroke 2024, 55, 269–277. [Google Scholar] [CrossRef]
- Song, J.E.; Hwang, J.I.; Ko, H.J.; Park, J.Y.; Hong, H.E.; Kim, A.S. Exploring the Correlation between Systemic Inflammatory Markers and Carotid Atherosclerosis Indices in Middle-Aged Adults: A Cross-Sectional Study. J. Cardiovasc. Dev. Dis. 2024, 11, 73. [Google Scholar] [CrossRef]
- Winkels, H.; Ehinger, E.; Vassallo, M.; Buscher, K.; Dinh, H.Q.; Kobiyama, K.; Hamers, A.A.; Cochain, C.; Vafadarnejad, E.; Saliba, A.E.; et al. Atlas of the Immune Cell Repertoire in Mouse Atherosclerosis Defined by Single-Cell RNA-Sequencing and Mass Cytometry. Circ. Res. 2018, 122, 1675–1688. [Google Scholar] [CrossRef]
- Gravholt, C.H.; Mortensen, K.H.; Andersen, N.H.; Ibsen, L.; Ingerslev, J.; Hjerrild, B.E. Coagulation and fibrinolytic disturbances are related to carotid intima thickness and arterial blood pressure in Turner syndrome. Clin. Endocrinol. 2012, 76, 649–656. [Google Scholar] [CrossRef]
Control n = 1024 | CAS n = 117 | p-Value | |
---|---|---|---|
Age, years | 36.4 ± 7.9 | 52.6 ± 10.0 | <0.001 |
Female, (%) | 729 (71.2) | 73 (62.4) | <0.001 |
Alcohol status, % | 94 (9.2) | 19 (16.2) | <0.001 |
Smoking status (former or active), % | 49 (4.8) | 9 (7.7) | <0.001 |
Family history of cardiovascular disease, % | 97 (9.5) | 20 (17.1) | 0.064 |
Time interval, years | 1.06 (0.98, 1.29) | 1.09 (0.99, 1.84) | 0.076 |
Type2 diabetes | 1 | 1 | |
Hypertension | 0 | 1 | |
BMI, kg/m2 | 21.8 ± 2.5 | 22.8 ± 2.3 | <0.001 |
SBP, mmHg | 114.9 ± 13.2 | 123.6 ± 15.8 | <0.001 |
DBP, mmHg | 69.8 ± 9.5 | 73.9 ± 10.2 | <0.001 |
MAP, mmHg | 84.0 (77.7, 90.3) | 90.0 (82.2, 99.2) | <0.001 |
Fasting glucose, mg/dl | 86.0 ± 8.5 | 91.4 ± 0.72 | <0.001 |
Total cholesterol, mg/dl | 182.2 ± 32.8 | 197.6 ± 33.6 | <0.001 |
Triglycerides, mg/dl | 73.5 (57.5, 97.4) | 91.2 (73.5, 129.2) | <0.001 |
LDL cholesterol, mg/dl | 108.5 ± 29.3 | 124.7 ± 29.7 | <0.001 |
HDL cholesterol, mg/dl | 57.1 ± 13.1 | 54.0 ± 12.0 | <0.001 |
ALT, U/L | 14.7 (11.2, 19.4) | 18.2 (13.7, 22.9) | <0.001 |
AST, U/L | 18.4 (15.9, 21.6) | 20.1 (18.0, 24.4) | <0.001 |
GGT, U/L | 12.7 (9.3, 17.3) | 16.8 (12.5, 22.0) | <0.001 |
Uric acid, mg/dl | 5.03 ± 1.28 | 5.27 ± 1.11 | <0.001 |
Creatinine, mg/dl | 0.68 ± 0.13 | 0.70 ± 0.15 | <0.001 |
Hemoglobin, g/L | 138.3 ± 16.0 | 141.3 ± 15.1 | <0.001 |
Platelet count, 109/L | 248.6 ± 54.0 | 232.6 ± 57.1 | 0.002 |
Leukocyte count, 109/L | 5.55 ± 1.23 | 5.56 ± 1.22 | <0.001 |
Before PS Matching | After PS Matching | |||||||
---|---|---|---|---|---|---|---|---|
C-IMT | CAP | C-IMT+CAP | Time intervals, y | C-IMT | CAP | C-IMT+CAP | Time intervals, y | |
Baseline | 0 | 0 | 0 | 0 | 0 | 0 | ||
CAS diagnosis | 49(41.9%) | 46(39.3%) | 22(18.8%) | 1.09(0.99,1.84) | 38(42.7%) | 44(49.4%) | 7(7.9%) | 1.03(0.91,1.53) |
Follow-up | 44(37.6%) | 49(41.9%) | 24(20.5%) | 1.04(0.92,1.53) | 36(40.4%) | 39(43.8%) | 14(15.7%) | 1.04(0.93,1.53) |
Univariate | Multivariate | |||||
---|---|---|---|---|---|---|
OR | 95% CI | p-value | AOR | 95% CI | p-value | |
SBP | 1.014 | 1.002–1.026 | 0.022 | 1.011 | 0.999–1.024 | 0.084 |
LDL-c | 1.327 | 1.032–1.706 | 0.028 | 1.368 | 1.062–1.763 | 0.015 |
Leukocyte count | 1.186 | 1.029–1.367 | 0.019 | 1.172 | 1.006–1.366 | 0.042 |
Unit | aHR (95% CI) | Wald χ2 | p-Value | |
---|---|---|---|---|
Leukocyte Count | per 109/L | 1.21 (1.04–1.40) | 6.28 | 0.012 |
LDL-C | per 1 mmol/L | 1.37 (1.06–1.77) | 5.97 | 0.015 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Cao, H.; Ding, L.; Shi, X.; Naren, T.; Zhang, Q.; Wang, Z. Leukocyte Count Is Better than LDL-C as Predictor of Novel Carotid Atherosclerosis. Biomedicines 2025, 13, 1976. https://doi.org/10.3390/biomedicines13081976
Li Y, Cao H, Ding L, Shi X, Naren T, Zhang Q, Wang Z. Leukocyte Count Is Better than LDL-C as Predictor of Novel Carotid Atherosclerosis. Biomedicines. 2025; 13(8):1976. https://doi.org/10.3390/biomedicines13081976
Chicago/Turabian StyleLi, Yan, Han Cao, Lei Ding, Xiaotian Shi, Tuge Naren, Qingqing Zhang, and Zhong Wang. 2025. "Leukocyte Count Is Better than LDL-C as Predictor of Novel Carotid Atherosclerosis" Biomedicines 13, no. 8: 1976. https://doi.org/10.3390/biomedicines13081976
APA StyleLi, Y., Cao, H., Ding, L., Shi, X., Naren, T., Zhang, Q., & Wang, Z. (2025). Leukocyte Count Is Better than LDL-C as Predictor of Novel Carotid Atherosclerosis. Biomedicines, 13(8), 1976. https://doi.org/10.3390/biomedicines13081976