GRK5 as a Novel Therapeutic Target for Immune Evasion in Testicular Cancer: Insights from Multi-Omics Analysis and Immunotherapeutic Validation
Abstract
1. Introduction
2. Materials and Methods
2.1. Data Acquisition and Preprocessing
2.2. PFI-Related IRGs Consensus Clustering and Validation
2.3. Immune Infiltration Evaluation of Immune-Related TC Subtypes
2.4. WGCNA
2.5. Identification of Diagnostic Biomarkers for Subtypes
2.6. Development and Assessment of the Diagnostic Model
2.7. cBioPortal Analysis
2.8. Gene Differential Expression Analysis and Survival Analysis
2.9. Correlation Between Antigen-Presenting Cells (APCs) and Potential Therapeutic Targets Expression
2.10. Cell Culture and Reagents
2.11. Transient Transfection
- GRK5 siRNA-1 (sense), 5′-GGACCAUAGACAGAGAUUATT-3′, (antisense),5′-UAAUCUCUGUCUAUGGUCCTT-3′;
- GRK5 siRNA-2 (sense), 5′-CCCUCAAUGAGAAGCAGAUTT-3′, (antisense),5′-AUCUGCUUCUCAUUGAGGGTT-3′;
- GRK5 siRNA-3 (sense), 5′-GAACGUGUUUGGACCUAAUTT-3′, (antisense),5′-AUUAGGUCCAAACACGUUCTT-3′;
- GRK5 siRNA-4 (sense), 5′-CAUCCUGUUAGAUGAUUAUTT-3′, (antisense),5′-AUAAUCAUCUAACAGGAUGTT-3′;
- WNT11 siRNA-1 (sense), 5′-GCCUCUCUGGAAAUGAAGUTT-3′, (antisense),5′-ACUUCAUUUCCAGAGAGGCTT-3′;
- WNT11 siRNA-2 (sense), 5′-CAGGAUCCCAAGCCAAUAATT-3′, (antisense),5′-UUAUUGGCUUGGGAUCCUGTT-3′;
- WNT11 siRNA-3 (sense), 5′-CAACAAGACAUCCAACGGATT-3′, (antisense),5′-UCCGUUGGAUGUCUUGUUGTT-3′;
- WNT11 siRNA-4 (sense), 5′-GAACUCGUCUAUCUGCAGATT-3′, (antisense),5′-UCUGCAGAUAGACGAGUUCTT-3′;
- FAM181B siRNA-1 (sense), 5′-GCGAUCUACUCAGCUUCAUTT-3′, (antisense),5′-AUGAAGCUGAGUAGAUCGCTT-3′;
- FAM181B siRNA-2 (sense), 5′-GUGGGAAACCUACUGUACCTT-3′, (antisense),5′-GGUACAGUAGGUUUCCCACTT-3′;
- FAM181B siRNA-3 (sense), 5′-CAGGUGUCCUACGAUUACATT-3′, (antisense),5′-UGUAAUCGUAGGACACCUGTT-3′;
- FAM181B siRNA-4 (sense) ,5′-GUUUCGAGGACGAUGAGACTT-3′, (antisense),5′-GUCUCAUCGUCCUCGAAACTT-3′;
- FSCN1 siRNA-1 (sense), 5′-CCUCAGGUCAACAUCUACATT-3′, (antisense),5′-UGUAGAUGUUGACCUGAGGTT-3′;
- FSCN1 siRNA-2 (sense), 5′-GCUGCUACUUUGACAUCGATT-3′, (antisense),5′-UCGAUGUCAAAGUAGCAGCTT-3′;
- FSCN1 siRNA-3 (sense), 5′-GUGGACUUCUUCUUCGAGUTT-3′, (antisense),5′-ACUCGAAGAAGAAGUCCACTT-3′;
- FSCN1 siRNA-4 (sense), 5′-GCCUACAACAUCAAAGACUTT-3′, (antisense),5′-AGUCUUUGAUGUUGUAGGCTT-3′;
- ECHS1 siRNA-1 (sense), 5′-CCUUCGCCUCGGGUGCUAATT-3′, (antisense),5′-UUAGCACCCGAGGCGAAGGTT-3′.
- ECHS1 siRNA-2 (sense), 5′-GACUGUUACUCCAGCAAGUTT-3′, (antisense),5′-ACUUGCUGGAGUAACAGUCTT-3′.
- ECHS1 siRNA-3 (sense), 5′-CCUCAAUGCACUUUGCGAUTT-3′, (antisense),5′-AUCGCAAAGUGCAUUGAGGTT-3′.
- ECHS1 siRNA-4 (sense), 5′-GGUCUUGUCAGCAAGAUUUTT-3′, (antisense),5′-AAAUCUUGCUGACAAGACCTT-3′.
2.12. Transfection and Generation of Stable Cell Lines
2.13. Western Blot Analysis
2.14. Cell Proliferation Assay
2.15. Wound-Healing Assay
2.16. Transwell Assay
2.17. Apoptosis Assay
2.18. In Vitro T-Cell Killing Assay
2.19. Statistical Analyses
3. Results
3.1. Identification of Immune-Related TC Subtypes
3.2. Association Between Immune Infiltration Characteristics Between the Two Immune Subtypes
3.3. Identification of Critical Immune-Related Gene Modules
3.4. Identification of Potential Diagnostic Biomarkers
3.5. Development and Assessment of a Diagnostic Model
3.6. Identification of Potential Therapeutic Targets
3.7. Identification of the Prognosis-Related TC Therapeutic Targets
3.8. Correlation Between Prognosis-Related TC Therapeutic Targets and APCs
3.9. GRK5 Silencing Significantly Inhibits Malignancy
3.10. Inhibition of GRK5 Significantly Activates Anti-Tumor Immunity
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
TC | testicular cancer |
TCGA | The Cancer Genome Atlas |
WGCNA | gene co-expression network analysis |
SVM | support vector machine |
LASSO | the least absolute shrinkage and selection operator regression |
MsigDB | Molecular Signatures Database |
t-SNE | t-Distributed Stochastic Neighbor Embedding |
PCA | principal component analysis |
IRGs | immune-related genes |
APCs | antigen-presenting cells |
TGTS1 | testicular germ tumor subtype 1 |
TGTS2 | testicular germ tumor subtype 2 |
ssGSEA | single-sample Gene Set Enrichment Analysis |
IPS | immunophenoscore |
TIDE | tumor-immune dysfunction and exclusion |
GO | Gene Ontology |
KEGG | Kyoto Encyclopedia of Genes and Genomes |
GSEA | Gene set enrichment analysis |
PPI | Protein-protein interaction |
TOM | topological overlap matrix |
ROC | receiver operating characteristic |
DCA | decision curve analysis |
CDF | cumulative distribution function |
AUC | area under the curve |
References
- Pan, C.; Liu, H.; Robins, E.; Song, W.; Liu, D.; Li, Z.; Zheng, L. Next-generation immuno-oncology agents: Current momentum shifts in cancer immunotherapy. J. Hematol. Oncol. 2020, 13, 29. [Google Scholar] [CrossRef] [PubMed]
- Guo, W.; Wang, H.; Li, C. Signal pathways of melanoma and targeted therapy. Signal Transduct. Target. Ther. 2021, 6, 424. [Google Scholar] [CrossRef] [PubMed]
- Weiss, S.A.; Wolchok, J.D.; Sznol, M. Immunotherapy of Melanoma: Facts and Hopes. Clin. Cancer Res. 2019, 25, 5191–5201. [Google Scholar] [CrossRef]
- June, C.H.; O’Connor, R.S.; Kawalekar, O.U.; Ghassemi, S.; Milone, M.C. CAR T cell immunotherapy for human cancer. Science 2018, 359, 1361–1365. [Google Scholar] [CrossRef] [PubMed]
- Pardi, N.; Hogan, M.J.; Porter, F.W.; Weissman, D. mRNA vaccines—A new era in vaccinology. Nat. Rev. Drug Discov. 2018, 17, 261–279. [Google Scholar] [CrossRef]
- Patrikidou, A.; Cazzaniga, W.; Berney, D.; Boormans, J.; de Angst, I.; Di Nardo, D.; Fankhauser, C.; Fischer, S.; Gravina, C.; Gremmels, H.; et al. European Association of Urology Guidelines on Testicular Cancer: 2023 Update. Eur. Urol. 2023, 84, 289–301. [Google Scholar] [CrossRef]
- Batool, A.; Karimi, N.; Wu, X.N.; Chen, S.R.; Liu, Y.X. Testicular germ cell tumor: A comprehensive review. Cell. Mol. Life Sci. 2019, 76, 1713–1727. [Google Scholar] [CrossRef]
- Ghazarian, A.A.; Kelly, S.P.; Altekruse, S.F.; Rosenberg, P.S.; McGlynn, K.A. Future of testicular germ cell tumor incidence in the United States: Forecast through 2026. Cancer 2017, 123, 2320–2328. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, Z. The history and advances in cancer immunotherapy: Understanding the characteristics of tumor-infiltrating immune cells and their therapeutic implications. Cell. Mol. Immunol. 2020, 17, 807–821. [Google Scholar] [CrossRef]
- Fankhauser, C.D.; Curioni-Fontecedro, A.; Allmann, V.; Beyer, J.; Tischler, V.; Sulser, T.; Moch, H.; Bode, P.K. Frequent PD-L1 expression in testicular germ cell tumors. Br. J. Cancer 2015, 113, 411–413. [Google Scholar] [CrossRef]
- Cierna, Z.; Mego, M.; Miskovska, V.; Machalekova, K.; Chovanec, M.; Svetlovska, D.; Hainova, K.; Rejlekova, K.; Macak, D.; Spanik, S.; et al. Prognostic value of programmed-death-1 receptor (PD-1) and its ligand 1 (PD-L1) in testicular germ cell tumors. Ann. Oncol. Off. J. Eur. Soc. Med. Oncol. 2016, 27, 300–305. [Google Scholar] [CrossRef] [PubMed]
- Loh, K.P.; Fung, C. Novel Therapies in Platinum-refractory Metastatic Germ Cell Tumor: A Case Report with a Focus on a PD-1 Inhibitor. Rare Tumors 2017, 9, 6867. [Google Scholar] [CrossRef] [PubMed]
- Lobo, J.; Rodrigues, Â.; Guimarães, R.; Cantante, M.; Lopes, P.; Maurício, J.; Oliveira, J.; Jerónimo, C.; Henrique, R. Detailed Characterization of Immune Cell Infiltrate and Expression of Immune Checkpoint Molecules PD-L1/CTLA-4 and MMR Proteins in Testicular Germ Cell Tumors Disclose Novel Disease Biomarkers. Cancers 2019, 11, 1535. [Google Scholar] [CrossRef]
- Zhang, C.; Chen, J.; Song, Q.; Sun, X.; Xue, M.; Yang, Z.; Shang, J. Comprehensive analysis of CTLA-4 in the tumor immune microenvironment of 33 cancer types. Int. Immunopharmacol. 2020, 85, 106633. [Google Scholar] [CrossRef]
- Wang, M.; Du, Q.; Jin, J.; Wei, Y.; Lu, Y.; Li, Q. LAG3 and its emerging role in cancer immunotherapy. Clin. Transl. Med. 2021, 11, e365. [Google Scholar] [CrossRef]
- Liu, J.; Lichtenberg, T.; Hoadley, K.A.; Poisson, L.M.; Lazar, A.J.; Cherniack, A.D.; Kovatich, A.J.; Benz, C.C.; Levine, D.A.; Lee, A.V.; et al. An Integrated TCGA Pan-Cancer Clinical Data Resource to Drive High-Quality Survival Outcome Analytics. Cell 2018, 173, 400–416.e411. [Google Scholar] [CrossRef] [PubMed]
- Wilkerson, M.D.; Hayes, D.N. ConsensusClusterPlus: A class discovery tool with confidence assessments and item tracking. Bioinformatics 2010, 26, 1572–1573. [Google Scholar] [CrossRef]
- Senbabaoglu, Y.; Michailidis, G.; Li, J.Z. Critical limitations of consensus clustering in class discovery. Sci. Rep. 2014, 4, 6207. [Google Scholar] [CrossRef]
- Yoshihara, K.; Shahmoradgoli, M.; Martinez, E.; Vegesna, R.; Kim, H.; Torres-Garcia, W.; Trevino, V.; Shen, H.; Laird, P.W.; Levine, D.A.; et al. Inferring tumour purity and stromal and immune cell admixture from expression data. Nat. Commun. 2013, 4, 2612. [Google Scholar] [CrossRef]
- Bindea, G.; Mlecnik, B.; Tosolini, M.; Kirilovsky, A.; Waldner, M.; Obenauf, A.C.; Angell, H.; Fredriksen, T.; Lafontaine, L.; Berger, A.; et al. Spatiotemporal dynamics of intratumoral immune cells reveal the immune landscape in human cancer. Immunity 2013, 39, 782–795. [Google Scholar] [CrossRef]
- Jiang, P.; Gu, S.; Pan, D.; Fu, J.; Sahu, A.; Hu, X.; Li, Z.; Traugh, N.; Bu, X.; Li, B.; et al. Signatures of T cell dysfunction and exclusion predict cancer immunotherapy response. Nat. Med. 2018, 24, 1550–1558. [Google Scholar] [CrossRef] [PubMed]
- Langfelder, P.; Horvath, S. WGCNA: An R package for weighted correlation network analysis. BMC Bioinform. 2008, 9, 559. [Google Scholar] [CrossRef]
- Yu, G.; Wang, L.G.; Han, Y.; He, Q.Y. clusterProfiler: An R package for comparing biological themes among gene clusters. OMICS 2012, 16, 284–287. [Google Scholar] [CrossRef]
- Engebretsen, S.; Bohlin, J. Statistical predictions with glmnet. Clin. Epigenet. 2019, 11, 123. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.; Cai, N.; Pacheco, P.P.; Narrandes, S.; Wang, Y.; Xu, W. Applications of Support Vector Machine (SVM) Learning in Cancer Genomics. Cancer Genom. Proteom. 2018, 15, 41–51. [Google Scholar] [CrossRef]
- Hanzelmann, S.; Castelo, R.; Guinney, J. GSVA: Gene set variation analysis for microarray and RNA-seq data. BMC Bioinform. 2013, 14, 7. [Google Scholar] [CrossRef] [PubMed]
- Dai, E.; Zhu, Z.; Wahed, S.; Qu, Z.; Storkus, W.J.; Guo, Z.S. Epigenetic modulation of antitumor immunity for improved cancer immunotherapy. Mol. Cancer 2021, 20, 171. [Google Scholar] [CrossRef]
- Wang, M.; Wang, S.; Desai, J.; Trapani, J.A.; Neeson, P.J. Therapeutic strategies to remodel immunologically cold tumors. Clin. Transl. Immunol. 2020, 9, e1226. [Google Scholar] [CrossRef]
- Newman, J.H.; Chesson, C.B.; Herzog, N.L.; Bommareddy, P.K.; Aspromonte, S.M.; Pepe, R.; Estupinian, R.; Aboelatta, M.M.; Buddhadev, S.; Tarabichi, S.; et al. Intratumoral injection of the seasonal flu shot converts immunologically cold tumors to hot and serves as an immunotherapy for cancer. Proc. Natl. Acad. Sci. USA 2020, 117, 1119–1128. [Google Scholar] [CrossRef]
- Zhao, Q.; Jiang, Y.; Xiang, S.; Kaboli, P.J.; Shen, J.; Zhao, Y.; Wu, X.; Du, F.; Li, M.; Cho, C.H.; et al. Engineered TCR-T Cell Immunotherapy in Anticancer Precision Medicine: Pros and Cons. Front. Immunol. 2021, 12, 658753. [Google Scholar] [CrossRef]
- Ghosh, A.K.; Chen, Y.; Gadi, R.K.; Sonawane, A.; Gamage, S.P.; Tesmer, J.G. Design, synthesis, and X-ray structural studies of a series of highly potent, selective, and drug-like G protein-coupled receptor kinase 5 inhibitors. Eur. J. Med. Chem. 2025, 282, 117024. [Google Scholar] [CrossRef] [PubMed]
- Skoulidis, F.; Li, B.T.; Dy, G.K.; Price, T.J.; Falchook, G.S.; Wolf, J.; Italiano, A.; Schuler, M.; Borghaei, H.; Barlesi, F.; et al. Sotorasib for Lung Cancers with KRAS p.G12C Mutation. N. Engl. J. Med. 2021, 384, 2371–2381. [Google Scholar] [CrossRef] [PubMed]
- Chakraborty, P.K.; Zhang, Y.; Coomes, A.S.; Kim, W.J.; Stupay, R.; Lynch, L.D.; Atkinson, T.; Kim, J.I.; Nie, Z.; Daaka, Y. G protein-coupled receptor kinase GRK5 phosphorylates moesin and regulates metastasis in prostate cancer. Cancer Res. 2014, 74, 3489–3500. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.I.; Chakraborty, P.; Wang, Z.; Daaka, Y. G-protein coupled receptor kinase 5 regulates prostate tumor growth. J. Urol. 2012, 187, 322–329. [Google Scholar] [CrossRef]
- Xiu, Y.; Cao, S.; Jiang, R.; Zhou, Y. lncRNA LINC01315 promotes malignancy of triple-negative breast cancer and predicts poor outcomes by modulating microRNA-876-5p/GRK5. Bioengineered 2022, 13, 10001–10009. [Google Scholar] [CrossRef]
- Wu, B.; Xing, T.; Li, H.; He, W.; Li, B. Association between gene polymorphism of GRK5 and breast cancer risk in Chinese population. J. BUON Off. J. Balk. Union Oncol. 2021, 26, 741–746. [Google Scholar]
- Xie, L.; Wu, S.; He, R.; Li, S.; Lai, X.; Wang, Z. Identification of epigenetic dysregulation gene markers and immune landscape in kidney renal clear cell carcinoma by comprehensive genomic analysis. Front. Immunol. 2022, 13, 901662. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, C.; Zhong, Q.; Yu, N.; Zhang, X.; Yang, K.; Liu, H.; Cai, M.; Zheng, Y. GRK5 as a Novel Therapeutic Target for Immune Evasion in Testicular Cancer: Insights from Multi-Omics Analysis and Immunotherapeutic Validation. Biomedicines 2025, 13, 1775. https://doi.org/10.3390/biomedicines13071775
Xu C, Zhong Q, Yu N, Zhang X, Yang K, Liu H, Cai M, Zheng Y. GRK5 as a Novel Therapeutic Target for Immune Evasion in Testicular Cancer: Insights from Multi-Omics Analysis and Immunotherapeutic Validation. Biomedicines. 2025; 13(7):1775. https://doi.org/10.3390/biomedicines13071775
Chicago/Turabian StyleXu, Congcong, Qifeng Zhong, Nengfeng Yu, Xuqiang Zhang, Kefan Yang, Hao Liu, Ming Cai, and Yichun Zheng. 2025. "GRK5 as a Novel Therapeutic Target for Immune Evasion in Testicular Cancer: Insights from Multi-Omics Analysis and Immunotherapeutic Validation" Biomedicines 13, no. 7: 1775. https://doi.org/10.3390/biomedicines13071775
APA StyleXu, C., Zhong, Q., Yu, N., Zhang, X., Yang, K., Liu, H., Cai, M., & Zheng, Y. (2025). GRK5 as a Novel Therapeutic Target for Immune Evasion in Testicular Cancer: Insights from Multi-Omics Analysis and Immunotherapeutic Validation. Biomedicines, 13(7), 1775. https://doi.org/10.3390/biomedicines13071775