The Effect of Anti-Inflammatory Dimethylmalonic Acid on the Neurobehavioral Phenotype of a Neonatal ASD Model Induced by Antiepileptic Valproic Acid
Abstract
1. Introduction
2. Materials and Methods
2.1. Quality Control of Animals During Transportation and Among Tests
2.2. Establishment of the VPA Mouse Model
2.3. DMM Administration Method
2.4. Experimental Design
2.5. Body Weight Measurement
2.6. Negative Geotaxis Reflex [27]
2.7. Cliff Avoidance Reflex [28]
2.8. Forelimb Suspension Reflex [29]
2.9. Surface Righting Reflex [30]
2.10. Open Field Test [31]
3. Results
3.1. Part One: Comparison of Two VPA Concentrations
3.1.1. Reduced Body Weight and Increased Mortality in Mice After VPA Modeling
3.1.2. Impaired Neurodevelopment in VPA-Treated Mice
3.1.3. Reduced Exploratory Ability and Spontaneous Activity in VPA Mice
3.2. Determine the Intervention Effects of Dimethyl Malonate (DMM) on Body Weight, Neurodevelopment, Exploratory Ability, and Spontaneous Activity in the Developmental VPA Autism Model, as Well as the Optimal Therapeutic Dosage
3.2.1. The DMM Treatment Group Ameliorated the VPA-Induced Reduction in Mouse Body Weight and Decreased Mouse Mortality
3.2.2. The DMM Treatment Group Ameliorated Partial Neurodevelopmental Impairments Induced by VPA in Mice
3.2.3. The DMM Treatment Group Ameliorated the VPA-Induced Reduction in Exploratory Ability and Spontaneous Activity in Mice, Improving Autism-like Symptoms in VPA-Exposed Mice
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Baj, J.; Flieger, W.; Flieger, M.; Forma, A.; Sitarz, R.; Skórzyńska-Dziduszko, K.; Grochowski, C.; Maciejewski, R.; Karakuła-Juchnowicz, H. Autism spectrum disorder: Trace elements imbalances and the pathogenesis and severity of autistic symptoms. Neurosci. Biobehav. Rev. 2021, 129, 117–132. [Google Scholar] [CrossRef]
- Wood, J.J.; Kendall, P.C.; Wood, K.S.; Kerns, C.M.; Seltzer, M.; Small, B.J.; Lewin, A.B.; Storch, E.A. Cognitive behavioral treatments for anxiety in children with autism spectrum disorder: A randomized clinical trial. JAMA Psychiatry 2020, 77, 474–483. [Google Scholar] [CrossRef] [PubMed]
- Randell, E.; Wright, M.; Milosevic, S.; Gillespie, D.; Brookes-Howell, L.; Busse-Morris, M.; Hastings, R.; Maboshe, W.; Williams-Thomas, R.; Mills, L.; et al. Sensory integration therapy for children with autism and sensory processing difficulties: The senita rct. Health Technol. Assess. 2022, 26, 1–140. [Google Scholar] [CrossRef]
- Sharda, M.; Tuerk, C.; Chowdhury, R.; Jamey, K.; Foster, N.; Custo-Blanch, M.; Tan, M.; Nadig, A.; Hyde, K. Musicimproves social communication and auditory-motor connectivity in children with autism. Transl. Psychiatry 2018, 8, 231. [Google Scholar] [CrossRef]
- JinB, X.; Li, N.; Zhao, Y.; Qian, X.G.; Liu, Z.H.; Yang, Y.; Lin, Z.T.; Zeng, Z.Y. Effect of acupoint catgut embedding therapy on joint attention and social communication in children with autism spectrum disorder: A randomized controlled trial. Zhongguo Zhen Jiu 2020, 40, 162–166. (In Chinese) [Google Scholar]
- Liu, P.; Xiao, G.; He, K.; Zhang, L.; Wu, X.; Li, D.; Zhu, C.; Tian, Y.; Hu, P.; Qiu, B.; et al. Increased accuracy of emotion recognition in individuals with autism-like traits after five days of magnetic stimulations. Neural Plast. 2020, 2020, 9857987. [Google Scholar] [CrossRef]
- Qiu, J.; Kong, X.; Li, J.; Yang, J.; Huang, Y.; Huang, M.; Sun, B.; Su, J.; Chen, H.; Wan, G.; et al. Transcranial direct current stimulation (tdcs) over the left dorsal lateral prefrontal cortex in children with autism spectrum disorder (asd). Neural Plast. 2021, 2021, 6627507. [Google Scholar] [CrossRef]
- Han, Y.M.; Chan, M.M.; Shea, C.K.; Lai, O.L.; Krishnamurthy, K.; Cheung, M.C.; Chan, A.S. Neurophysiological and behavioral effects of multisession prefrontal tdcs and concurrent cognitive remediation training in patients with autism spectrum disorder (asd): A double-blind, randomized controlled fnirs study. Brain Stimul. 2022, 15, 414–425. [Google Scholar] [CrossRef]
- Liu, G.H.; Ou, P.; Huang, L.S.; Xie, N.M.; Lin, J.L.; He, Y.S.; Hu, R.F. Effects of parent-child painting and creative crafting therapy on preschool children with autism spectrum disorder and their mothers: A prospective randomized controlled trial. Zhongguo Dang Dai Er Ke Za Zhi 2021, 23, 779–785. [Google Scholar]
- Zhao, M.; You, Y.; Chen, S.; Li, L.; Du, X.; Wang, Y. Effects of a web-based parent-child physical activity program on mental health in parents of children with asd. Int. J. Environ. Res. Public Health 2021, 18, 12913. [Google Scholar] [CrossRef]
- Masini, E.; Loi, E.; Vega-Benedetti, A.F.; Carta, M.; Doneddu, G.; Fadda, R.; Zavattari, P. An overview of the main genetic, epigenetic and environmental factors involved in autism spectrum disorder focusingon synaptic activity. Int. J. Mol. Sci. 2020, 21, 8290. [Google Scholar] [CrossRef]
- Varghese, M.; Keshav, N.; Jacot-Descombes, S.; Warda, T.; Wicinski, B.; Dickstein, D.L.; Harony-Nicolas, H.; De Rubeis, S.; Drapeau, E.; Buxbaum, J.D.; et al. Autism spectrum disorder: Neuropathology and animal models. Acta Neuropathol. 2017, 134, 537–566. [Google Scholar] [CrossRef]
- Hansen, J.M.; Lucas, S.M.; Ramos, C.D.; Green, E.J.; Nuttall, D.J.; Clark, D.S.; Marchant, E.D.; Hancock, C.R.; Piorczynski, T.B. Valproic acid promotes SOD2 acetylation: A potential mechanism of valproic acid-induced oxidative stress in developing systems. Free Radic. Res. 2021, 55, 1130–1144. [Google Scholar] [CrossRef]
- Mehra, S.; Ahsan, A.U.; Sharma, M.; Budhwar, M.; Chopra, M. Neuroprotective Efficacy of Fisetin Against VPA-Induced Autistic Neurobehavioral Alterations by Targeting Dysregulated Redox Homeostasis. J. Mol. Neurosci. 2023, 73, 403–422. [Google Scholar] [CrossRef]
- Yu, Q.; Wang, Y.; Dong, L.; He, Y.; Liu, R.; Yang, Q.; Cao, Y.; Wang, Y.; Jia, A.; Bi, Y.; et al. Regulations of Glycolytic Activities on Macrophages Functions in Tumor and Infectious Inflammation. Front. Cell Infect. Microbiol. 2020, 10, 287. [Google Scholar] [CrossRef]
- Taghavi, S.M.; Campbell, A.B.; Engelhardt, D.; Duchesne, J.M.; Shaheen, F.; Pociask, D.; Kolls, J.; Jackson-Weaver, O. Dimethyl malonate protects the lung in a murine model of acute respiratory distress syndrome. J. Trauma Acute Care Surg. 2024, 96, 386–393. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Pan, H.; Xie, X.; Zhang, J.; Wang, Y.; Yang, G. Inhibiting Succinate Dehydrogenase by Dimethyl Malonate Alleviates Brain Damage in a Rat Model of Cardiac Arrest. Neuroscience 2018, 393, 24–32. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Li, M.; Wang, F.; Mao, G.; Wu, J.; Han, R.; Sheng, R.; Qin, Z.; Ni, H. TIGAR reduces neuronal ferroptosis by inhibiting succinate dehydrogenase activity in cerebral ischemia. Free Radic. Biol. Med. 2024, 216, 89–105. [Google Scholar] [CrossRef]
- Blom, H.J.; Van Tintelen, G.; Van Vorstenbosch, C.J.; Baumans, V.; Beynen, A.C. Preferences of mice and rats for types of bedding material. Lab. Anim. 1996, 30, 234–244. [Google Scholar] [CrossRef] [PubMed]
- Castelhano-Carlos, M.J.; Baumans, V. The impact of light, noise, cage cleaning and in-house transport on welfare and stress of laboratory rats. Lab. Anim. 2009, 43, 311–327. [Google Scholar] [CrossRef]
- Pérez, J.; Perentes, E. Light-induced retinopathy in the albino rat in long-term studies. An immunohistochemical and quantitative approach. Exp. Toxicol. Pathol. 1994, 46, 229–235. [Google Scholar] [CrossRef] [PubMed]
- Wersinger, S.R.; Martin, L.B. Optimization of laboratory conditions for the study of social behavior. ILAR J. 2009, 50, 64–80. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.; Jiang, P.; Zhao, L.; Fei, X.; Tang, Y.; Luo, Y.; Gong, H.; Wang, X.; Li, X.; Li, S.; et al. Ligustilide inhibits Purkinje cell ferritinophagy via the ULK1/NCOA4 pathway to attenuate valproic acid-induced autistic features. Phytomedicine 2024, 126, 155443. [Google Scholar] [CrossRef] [PubMed]
- Schneider, T.; Roman, A.; Basta-Kaim, A.; Kubera, M.; Budziszewska, B.; Schneider, K.; Przewłocki, R. Gender-specific behavioral and immunological alterations in an animal model of autism induced by prenatal exposure to valproic acid. Psychoneuroendocrinology 2008, 33, 728–740. [Google Scholar] [CrossRef]
- Ornoy, A.; Weinstein-Fudim, L.; Tfilin, M.; Ergaz, Z.; Yanai, J.; Szyf, M.; Turgeman, G. S-adenosyl methionine prevents ASD like behaviors triggered by early postnatal valproic acid exposure in very young mice. Neurotoxicol. Teratol. 2019, 71, 64–74. [Google Scholar] [CrossRef]
- Crusio, W.E. What’s Wrong with My Mouse? Behavioral Phenotyping of Transgenic and Knockout Mice. Genes Brain Behav. 2008, 7, 831. [Google Scholar] [CrossRef]
- Furnari, M.A.; Saw, C.L.; Kong, A.N.; Wagner, G.C. Altered behavioral development in Nrf2 knockout mice following early postnatal exposure to valproic acid. Brain Res. Bull. 2014, 109, 132–423. [Google Scholar] [CrossRef]
- Griffin, A.; Spencer, S.K.; Bowles, T.; Solis, L.; Robinson, R.; Ramarao, S.; Wallace, K. Male HELLP pups experience sensorimotor delays and reduced body weight. Physiol. Behav. 2021, 241, 1135677. [Google Scholar] [CrossRef]
- Xu, X.; Wang, X.; Zhang, L.; Jin, Y.; Li, L. Nicotinamide adenine dinucleotide treatment confers resistance to neonatal ischemia and hypoxia: Effects on neurobehavioral phenotypes. Neural Regen. Res. 2024, 19, 2760–2772. [Google Scholar] [CrossRef]
- Quintrell, E.; Wyrwoll, C.; Rosenow, T.; Larcombe, A.; Kelty, E. The effects of acamprosate on maternal and neonatal outcomes in a mouse model of alcohol use disorders. Physiol. Behav. 2023, 259, 114037. [Google Scholar] [CrossRef]
- Seibenhener, M.L.; Wooten, M.C. Use of the Open Field Maze to measure locomotor and anxiety-like behavior in mice. J. Vis. Exp. 2015, 96, e52434. [Google Scholar]
- Triyasakorn, K.; Ubah, U.D.B.; Roan, B.; Conlin, M.; Aho, K.; Awale, P.S. The Antiepileptic Drug and Toxic Teratogen Valproic Acid Alters Microglia in an Environmental Mouse Model of Autism. Toxics 2022, 10, 379. [Google Scholar] [CrossRef]
- Wagner, G.C.; Reuhl, K.R.; Cheh, M.; McRae, P.; Halladay, A.K. A new neurobehavioral model of autism in mice: Pre- and postnatal exposure to sodium valproate. J. Autism Dev. Disord. 2006, 36, 779–793. [Google Scholar] [CrossRef] [PubMed]
- Maciag, D.; Simpson, K.L.; Coppinger, D.; Lu, Y.; Wang, Y.; Lin, R.C.S.; A Paul, I. Neonatal antidepressant exposure has lasting effects on behavior and serotonin circuitry. Neuropsychopharmacology 2006, 31, 47–57. [Google Scholar] [CrossRef] [PubMed]
- Yochum, C.L.; Dowling, P.; Reuhl, K.R.; Wagner, G.C.; Ming, X. VPA-induced apoptosis and behavioral deficits in neonatal mice. Brain Res. 2008, 1203, 126–132. [Google Scholar] [CrossRef] [PubMed]
- Kabakus, N.; Ay, I.; Aysun, S.; Söylemezoglu, F.; Ozcan, A.; Celasun, B. Protective effects of valproic acid against hypoxic-ischemic brain injury in neonatal rats. J. Child Neurol. 2005, 20, 582–587. [Google Scholar] [CrossRef]
- Sudakov, S.K.; Alekseeva, E.V.; Bogdanova, N.G.; Kolpakov, A.A.; Nazarova, G.A. Anxiolytic, Psychostimulant, and Analgesic Effects of Various Volumes of Ethanol Solution in Different Concentrations, but in the Same Dose. Bull. Exp. Biol. Med. 2016, 161, 1–3. [Google Scholar] [CrossRef]
- Zhang, Y.; Cui, Y.; Cheng, Y.; Zhu, W.; Zhang, M.; Li, S.; Liu, W.; Xin, W.; Huang, W.; Sun, H. Succinate accumulation contributes to oxidative stress and iron accumulation in pentylenetetrazol-induced epileptogenesis and kainic acid-induced seizure. Neurochem. Int. 2021, 149, 105123. [Google Scholar] [CrossRef]
Dosage | DMM Stock Solution | DMSO | Processing Steps |
---|---|---|---|
5 mg/kgDMM | 4.4 μL | 50 μL | 1. Add DMM stock to DMSO 2. Vortex mix thoroughly 3. Dilute with saline to 10 mL |
10 mg/kgDMM | 8.8 μL | 50 μL | |
20 mg/kgDMM | 17.6 μL | 50 μL | |
40 mg/kgDMM | 35.2 μL | 50 μL |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, X.; Xu, X.; Li, L.; Jin, Y.; Wang, Q.; Wang, X.; Jin, M.; Ni, H. The Effect of Anti-Inflammatory Dimethylmalonic Acid on the Neurobehavioral Phenotype of a Neonatal ASD Model Induced by Antiepileptic Valproic Acid. Biomedicines 2025, 13, 1765. https://doi.org/10.3390/biomedicines13071765
Zhou X, Xu X, Li L, Jin Y, Wang Q, Wang X, Jin M, Ni H. The Effect of Anti-Inflammatory Dimethylmalonic Acid on the Neurobehavioral Phenotype of a Neonatal ASD Model Induced by Antiepileptic Valproic Acid. Biomedicines. 2025; 13(7):1765. https://doi.org/10.3390/biomedicines13071765
Chicago/Turabian StyleZhou, Xiuwen, Xiaowen Xu, Lili Li, Yiming Jin, Qing Wang, Xinxin Wang, Meifang Jin, and Hong Ni. 2025. "The Effect of Anti-Inflammatory Dimethylmalonic Acid on the Neurobehavioral Phenotype of a Neonatal ASD Model Induced by Antiepileptic Valproic Acid" Biomedicines 13, no. 7: 1765. https://doi.org/10.3390/biomedicines13071765
APA StyleZhou, X., Xu, X., Li, L., Jin, Y., Wang, Q., Wang, X., Jin, M., & Ni, H. (2025). The Effect of Anti-Inflammatory Dimethylmalonic Acid on the Neurobehavioral Phenotype of a Neonatal ASD Model Induced by Antiepileptic Valproic Acid. Biomedicines, 13(7), 1765. https://doi.org/10.3390/biomedicines13071765