Unveiling Functional Impairment in Fabry Disease: The Role of Peripheral vs. Cardiac Mechanisms
Abstract
1. Introduction
2. Materials and Methods
2.1. Patient Selection and Study Protocol
- Two-dimensional imaging was used to assess left ventricular (LV) morphology and function, including measurements of interventricular septal and posterior wall thickness, maximal wall thickness, LV end-diastolic diameter, and global GLS where feasible.
- Doppler evaluation included the pulsed-wave Doppler assessment of mitral inflow (E and A waves) and tissue Doppler imaging (TDI) of the mitral annulus to calculate the E/e′ ratio, an estimate of the LV filling pressure. Continuous-wave Doppler was used to estimate the tricuspid regurgitant velocity and derive the pulmonary artery systolic pressure (PASP).
- M-mode echocardiography was utilized to measure tricuspid annular plane systolic excursion (TAPSE) as an index of right ventricular systolic function.
2.2. Statistical Analysis
3. Results
3.1. Echocardiographic Parameters
3.2. Cardiopulmonary Exercise Testing (CPET) Results
4. Discussion
5. Limitations
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Arbelo, E.; Protonotarios, A.; Gimeno, J.R.; Arbustini, E.; Barriales-Villa, R.; Basso, C.; Bezzina, C.R.; Biagini, E.; Blom, N.A.; de Boer, R.A.; et al. 2023 ESC Guidelines for the management of cardiomyopathies. Eur. Heart J. 2023, 44, 3503–3626. [Google Scholar] [CrossRef] [PubMed]
- Schiffmann, R.; Hughes, D.A.; Linthorst, G.E.; Ortiz, A.; Svarstad, E.; Warnock, D.G.; West, M.L.; Wanner, C.; Conference Participants. Screening, diagnosis, and management of patients with Fabry disease: Conclusions from a “Kidney Disease: Improving Global Outcomes” (KDIGO) Controversies Conference. Kidney Int. 2017, 91, 284–293. [Google Scholar] [CrossRef] [PubMed]
- Ortiz, A.; Germain, D.P.; Desnick, R.J.; Politei, J.; Mauer, M.; Burlina, A.; Eng, C.; Hopkin, R.J.; Laney, D.; Linhart, A.; et al. Fabry disease revisited: Management and treatment recommendations for adult patients. Mol. Genet. Metab. 2018, 123, 416–427. [Google Scholar] [CrossRef] [PubMed]
- Vijapurapu, R.; Baig, S.; Nordin, S.; Augusto, J.B.; Price, A.M.; Wheeldon, N.; Lewis, N.; Kozor, R.; Kotecha, D.; Hodson, J.; et al. Longitudinal Assessment of Cardiac Involvement in Fabry Disease Using Cardiovascular Magnetic Resonance Imaging. JACC Cardiovasc. Imaging 2020, 13, 1850–1852. [Google Scholar] [CrossRef]
- Pieroni, M.; Moon, J.C.; Arbustini, E.; Barriales-Villa, R.; Camporeale, A.; Vujkovac, A.C.; Elliott, P.M.; Hagege, A.; Kuusisto, J.; Linhart, A.; et al. Cardiac Involvement in Fabry Disease: JACC Review Topic of the Week. J. Am. Coll. Cardiol. 2021, 77, 922–936. [Google Scholar] [CrossRef]
- Magrì, D.; Limongelli, G.; Re, F.; Agostoni, P.; Zachara, E.; Correale, M.; Mastromarino, V.; Santolamazza, C.; Casenghi, M.; Pacileo, G.; et al. Cardiopulmonary exercise test and sudden cardiac death risk in hypertrophic cardiomyopathy. Heart 2016, 102, 602–609. [Google Scholar] [CrossRef]
- Coats, C.J.; Rantell, K.; Bartnik, A.; Patel, A.; Mist, B.; McKenna, W.J.; Elliott, P.M. Cardiopulmonary Exercise Testing and Prognosis in Hypertrophic Cardiomyopathy. Circ. Heart Fail. 2015, 8, 1022–1031. [Google Scholar] [CrossRef]
- Nordin, S.; Kozor, R.; Medina-Menacho, K.; Abdel-Gadir, A.; Baig, S.; Sado, D.M.; Lobascio, I.; Murphy, E.; Lachmann, R.H.; Mehta, A.; et al. Proposed Stages of Myocardial Phenotype Development in Fabry Disease. JACC Cardiovasc. Imaging 2019, 12 Pt 2, 1673–1683. [Google Scholar] [CrossRef]
- Lobo, T.; Morgan, J.; Bjorksten, A.; Nicholls, K.; Grigg, L.; Centra, E.; Becker, G. Cardiovascular testing in Fabry disease: Exercise capacity reduction, chronotropic incompetence and improved anaerobic threshold after enzyme replacement. Intern. Med. J. 2008, 38, 407–414. [Google Scholar] [CrossRef]
- Powell, A.W.; Jefferies, J.L.; Hopkin, R.J.; Mays, W.A.; Goa, Z.; Chin, C. Cardiopulmonary fitness assessment on maximal and submaximal exercise testing in patients with Fabry disease. Am. J. Med. Genet. A 2018, 176, 1852–1857. [Google Scholar] [CrossRef]
- Réant, P.; Testet, E.; Reynaud, A.; Bourque, C.; Michaud, M.; Rooryck, C.; Goizet, C.; Lacombe, D.; de-Précigout, V.; Peyrou, J.; et al. Characterization of Fabry Disease cardiac involvement according to longitudinal strain, cardiometabolic exercise test, and T1 mapping. Int. J. Cardiovasc. Imaging 2020, 36, 1333–1342. [Google Scholar] [CrossRef] [PubMed]
- Bierer, G.; Balfe, D.; Wilcox, W.R.; Mosenifar, Z. Improvement in serial cardiopulmonary exercise testing following enzyme replacement therapy in Fabry disease. J. Inherit. Metab. Dis. 2006, 29, 572–579. [Google Scholar] [CrossRef]
- Odler, B.; Cseh, Á.; Constantin, T.; Fekete, G.; Losonczy, G.; Tamási, L.; Benke, K.; Szilveszter, B.; Müller, V. Long time enzyme replacement therapy stabilizes obstructive lung disease and alters peripheral immune cell subsets in Fabry patients. Clin. Respir. J. 2017, 11, 942–950. [Google Scholar] [CrossRef] [PubMed]
- Roy, A.; Thompson, S.E.; Hodson, J.; van Vliet, J.; Condon, N.; Alvior, A.M.; O’Shea, C.; Vijapurapu, R.; Nightingale, T.E.; Clift, P.F.; et al. Changes in peak oxygen consumption in Fabry disease and associations with cardiomyopathy severity. Heart 2025, 111, 230–238. [Google Scholar] [CrossRef]
- De Marco, O.; Gambardella, J.; Bianco, A.; Fiordelisi, A.; Cerasuolo, F.A.; Buonaiuto, A.; Avvisato, R.; Capuano, I.; Amicone, M.; Di Risi, T.; et al. Cardiopulmonary determinants of reduced exercise tolerance in Fabry disease. Front. Cardiovasc. Med. 2024, 11, 1396996. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Imbriaco, M.; Pellegrino, T.; Piscopo, V.; Petretta, M.; Ponsiglione, A.; Nappi, C.; Puglia, M.; Dell’Aversana, S.; Riccio, E.; Spinelli, L.; et al. Cardiac sympathetic neuronal damage precedes myocardial fibrosis in patients with Anderson-Fabry disease. Eur. J. Nucl. Med. Mol. Imaging 2017, 44, 2266–2273. [Google Scholar] [CrossRef]
- Loret, G.; Miatton, M.; Vingerhoets, G.; Poppe, B.; Hemelsoet, D. A long-term neuropsychological evaluation in Fabry disease. Acta Neurol. Belg. 2021, 121, 191–197. [Google Scholar] [CrossRef]
- Bolsover, F.E.; Murphy, E.; Cipolotti, L.; Werring, D.J.; Lachmann, R.H. Cognitive dysfunction and depression in Fabry disease: A systematic review. J. Inherit. Metab. Dis. 2014, 37, 177–187. [Google Scholar] [CrossRef]
- Gambardella, J.; Fiordelisi, A.; Cerasuolo, F.A.; Buonaiuto, A.; Avvisato, R.; Viti, A.; Sommella, E.; Merciai, F.; Salviati, E.; Campiglia, P.; et al. Experimental evidence and clinical implications of Warburg effect in the skeletal muscle of Fabry disease. iScience 2023, 26, 106074. [Google Scholar] [CrossRef]
- Sims, K.; Politei, J.; Banikazemi, M.; Lee, P. Stroke in Fabry disease frequently occurs before diagnosis and in the absence of other clinical events: Natural history data from the Fabry Registry. Stroke 2009, 40, 788–794. [Google Scholar] [CrossRef]
- Baciga, F.; Marchi, G.; Caccia, F.; Momentè, C.; Esposito, P.; Aucella, F.; Vitturi, N.; Pederzoli, L.; Shakkour, M.; Granata, A.; et al. How Do Physical Activity and Exercise Affect Fabry Disease? Exploring a New Opportunity. Kidney Blood Press. Res. 2024, 49, 699–717. [Google Scholar] [CrossRef] [PubMed]
- Cameli, M.; Pieroni, M.; Pastore, M.C.; Brucato, A.; Castelletti, S.; Crotti, L.; Dweck, M.; Frustaci, A.; Gimelli, A.; Klingel, K.; et al. The role of cardiovascular multimodality imaging in the evaluation of Anderson-Fabry disease: From early diagnosis to therapy monitoring. Eur. Heart J. Cardiovasc. Imaging 2025, 26, 814–829. [Google Scholar] [CrossRef] [PubMed]
- Canada, J.M.; Trankle, C.R. Cardiopulmonary exercise testing in Fabry disease: Is it an early marker of cardiomyopathy? Heart 2025, 111, 193–194. [Google Scholar] [CrossRef] [PubMed]
- Weidemann, F.; Niemann, M.; Breunig, F.; Herrmann, S.; Beer, M.; Störk, S.; Voelker, W.; Ertl, G.; Wanner, C.; Strotmann, J. Long-term effects of enzyme replacement therapy on fabry cardiomyopathy: Evidence for a better outcome with early treatment. Circulation 2009, 119, 524–529. [Google Scholar] [CrossRef]
Echocardiographic Parameters | N = 31 |
---|---|
LVEF, % | 62.25 ± 8.61 |
LVEDD, mm | 48.00 ± 1.82 |
LVMi (g/m2) | 129.6 ± 47.2 |
IVS, mm | 12.00 ± 3.65 |
PWT, mm | 12.25± 3.86 |
Max thickness, mm | 16.5± 4.4 |
GLS, % | 11.3± 10.49 |
E/e mean | 7.12 ± 2.43 |
LAVi, mL/cmq | 28.24 ± 11.83 |
TAPSE, mm | 19.53 ± 5.60 |
sPAP, mmHg | 25.77 ± 10.25 |
CPET Parameters | N = 31 |
---|---|
pVO2, mL/kg/min | 18.56 ± 6.11 |
pVO2, % | 71.38 ± 18.92 |
SBP rest, mmHg | 122 ±13 |
DBP rest, mmHg | 74 ± 9 |
SBP peak, mmHg | 151 ± 11 |
DBP peak, mmHg | 71 ± 8 |
RER | 1.10 ± 0.086 |
AT, % | 40.75 ± 14.37 |
VE/VCO2 slope | 30.61 ± 9.09 |
VE/VCO2 AT | 28.40 ± 2.77 |
PETCO2 rest, mmHg | 36.97 ± 16.19 |
PET CO2 peak, mmHg | 40.95 ± 16.20 |
BR, % | 51.48 ± 11.52 |
VO2/HR, mL/beat | 10.61 ± 3.62 |
VO2/watt | 9.86 ± 1.29 |
APMHR | 77% ± 11 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Halasz, G.; Lanzillo, C.; Mistrulli, R.; Canali, E.; Fedele, E.; Ciacci, P.; Onorato, F.; Giacalone, G.; Nardecchia, G.; Gabrielli, D.; et al. Unveiling Functional Impairment in Fabry Disease: The Role of Peripheral vs. Cardiac Mechanisms. Biomedicines 2025, 13, 1713. https://doi.org/10.3390/biomedicines13071713
Halasz G, Lanzillo C, Mistrulli R, Canali E, Fedele E, Ciacci P, Onorato F, Giacalone G, Nardecchia G, Gabrielli D, et al. Unveiling Functional Impairment in Fabry Disease: The Role of Peripheral vs. Cardiac Mechanisms. Biomedicines. 2025; 13(7):1713. https://doi.org/10.3390/biomedicines13071713
Chicago/Turabian StyleHalasz, Geza, Chiara Lanzillo, Raffaella Mistrulli, Emanuele Canali, Elisa Fedele, Paolo Ciacci, Federica Onorato, Guido Giacalone, Giovanni Nardecchia, Domenico Gabrielli, and et al. 2025. "Unveiling Functional Impairment in Fabry Disease: The Role of Peripheral vs. Cardiac Mechanisms" Biomedicines 13, no. 7: 1713. https://doi.org/10.3390/biomedicines13071713
APA StyleHalasz, G., Lanzillo, C., Mistrulli, R., Canali, E., Fedele, E., Ciacci, P., Onorato, F., Giacalone, G., Nardecchia, G., Gabrielli, D., & Re, F. (2025). Unveiling Functional Impairment in Fabry Disease: The Role of Peripheral vs. Cardiac Mechanisms. Biomedicines, 13(7), 1713. https://doi.org/10.3390/biomedicines13071713