Repurposing Rafoxanide: From Parasite Killer to Cancer Fighter
Abstract
1. Introduction
2. Rafoxanide and Cancer Treatment
2.1. Skin Cancer
2.2. Gastric Adenocarcinoma
2.3. Colorectal Cancer
2.4. Non-Small Cell Lung Cancer
2.5. Multiple Myeloma
2.6. B-Cell Lymphoma
3. Clinical and Pharmacological Limitations
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Foreyt, W.J.; Todd, A.C. Effects of Six Fasciolicides Against Fascioloides Magna in White-Tailed Deer. J. Wildl. Dis. 1976, 12, 361–366. [Google Scholar] [CrossRef] [PubMed]
- Fairweather, I.; Boray, J.C. Fasciolicides: Efficacy, Actions, Resistance and Its Management. Vet. J. 1999, 158, 81–112. [Google Scholar] [CrossRef]
- Mitchell, P. Coupling of Phosphorylation to Electron and Hydrogen Transfer by a Chemi-Osmotic Type of Mechanism. Nature 1961, 191, 144–148. [Google Scholar] [CrossRef] [PubMed]
- Skuce, P.J.; Fairweather, I. The Effect of the Hydrogen Ionophore Closantel upon the Pharmacology and Ultrastructure of the Adult Liver flukeFasciola Hepatica. Parasitol. Res. 1990, 76, 241–250. [Google Scholar] [CrossRef]
- Lee, R.M. The Relationship between Biological Action and Structure for Some Fasciolicidal Salicylanilides. In Parasitology; Smith, Kline and French Laboratories Ltd.: Welwyn Garden City, UK, 1974; Volume 67. [Google Scholar]
- Srivastava, R.P.; Sharma, S. Synthesis of 2,5-Disubstituted Benzimidazoles, 1,3,4-Thiadiazoles and 3,5-Diiodosalicylanilides as Structural Congeners of Rafoxanide and Closantel. Die Pharm. 1990, 45, 34–37. [Google Scholar]
- Mrozik, H.; Jones, H.; Friedman, J.; Schwartzkopf, G.; Schardt, R.A.; Patchett, A.A.; Hoff, D.R.; Yakstis, J.J.; Riek, R.F.; Ostlind, D.A.; et al. A New Agent for the Treatment of Liver Fluke Infection (Fascioliasis). Experientia 1969, 25, 883. [Google Scholar] [CrossRef]
- Lo, P.A.; Williams, J.B. Solubilization of Rafoxanide. US4128632A, 5 December 1978. [Google Scholar]
- Wu, Z.; Zhang, X.; Chen, G.; Xu, T.; He, Q.; Wen, M. A Preparing Method of Rafoxanide. CN105461582A, 4 June 2016. [Google Scholar]
- Kesternich, V.; Pérez-Fehrmann, M.; Quezada, V.; Castroagudín, M.; Nelson, R.; Martínez, R. A Simple and Efficient Synthesis of N-[3-Chloro-4-(4-Chlorophenoxy)-Phenyl]-2-Hydroxy-3,5-Diiodobenzamide, Rafoxanide. Chem. Pap. 2023, 77, 5091–5095. [Google Scholar] [CrossRef]
- El-Banna, H.A.; Goudah, A.; El-Zorba, H.; Abd-El-Rahman, S. Comparative Pharmacokinetics of Ivermectin Alone and a Novel Formulation of Ivermectin and Rafoxanide in Calves and Sheep. Parasitol. Res. 2008, 102, 1337–1342. [Google Scholar] [CrossRef]
- Swan, G.E.; Oliver, D.W.; Van Rensburg, J.; Steyn, H.S.; Mülders, M.S. Stability and Partitioning of Closantel and Rafoxanide in Ruminal Fluid of Sheep. Onderstepoort J. Vet. Res. 2000, 67, 97–103. [Google Scholar]
- Swan, G.E.; Botha, C.J.; Taylor, J.H.; Mülders, M.S.; Minnaar, P.P.; Kloeck, A. Differences in the Oral Bioavailability of Three Rafoxanide Formulations in Sheep. J. S. Afr. Vet. Assoc. 1995, 66, 197–201. [Google Scholar]
- Swan, G.E.; Koeleman, H.A.; Steyn, H.S.; Mülders, M.S.G. Relative Bioavailability of Rafoxanide Following Intraruminal and Intra-Abomasal Administration in Sheep. J. S. Afr. Vet. Assoc. 1999, 70, 71–74. [Google Scholar] [CrossRef] [PubMed]
- Swan, G.E. The Pharmacology of Halogenated Salicylanilides and Their Anthelmintic Use in Animals. J. S. Afr. Vet. Assoc. 1999, 70, 61–70. [Google Scholar] [CrossRef] [PubMed]
- Pugliese, A.; Tobyn, M.; Hawarden, L.E.; Abraham, A.; Blanc, F. New Development in Understanding Drug-Polymer Interactions in Pharmaceutical Amorphous Solid Dispersions from Solid-State Nuclear Magnetic Resonance. Mol. Pharm. 2022, 19, 3685–3699. [Google Scholar] [CrossRef]
- Swan, G.E.; Mülders, M.S. Pharmacokinetics of Rafoxanide in Suckling and Weaned Lambs Following Oral Administration. J. S. Afr. Vet. Assoc. 1993, 64, 67–70. [Google Scholar]
- Pushpakom, S.; Iorio, F.; Eyers, P.A.; Escott, K.J.; Hopper, S.; Wells, A.; Doig, A.; Guilliams, T.; Latimer, J.; McNamee, C.; et al. Drug Repurposing: Progress, Challenges and Recommendations. Nat. Rev. Drug Discov. 2019, 18, 41–58. [Google Scholar] [CrossRef]
- Dong, J.; Su, T.; Wu, J.; Xiang, Y.; Song, M.; He, C.; Shao, L.; Yang, Y.; Chen, S. Drug Functional Remapping: A New Promise for Tumor Immunotherapy. Front. Oncol. 2025, 15, 1519355. [Google Scholar] [CrossRef]
- Czechowicz, P.; Więch-Walów, A.; Sławski, J.; Collawn, J.F.; Bartoszewski, R. Old Drugs, New Challenges: Reassigning Drugs for Cancer Therapies. Cell. Mol. Biol. Lett. 2025, 30, 27. [Google Scholar] [CrossRef] [PubMed]
- Sam, E.; Athri, P. Web-Based Drug Repurposing Tools: A Survey. Brief. Bioinform. 2019, 20, 299–316. [Google Scholar] [CrossRef]
- DiMasi, J.A.; Feldman, L.; Seckler, A.; Wilson, A. Trends in Risks Associated with New Drug Development: Success Rates for Investigational Drugs. Clin. Pharmacol. Ther. 2010, 87, 272–277. [Google Scholar] [CrossRef]
- Bendary, M.M.; Abd El-Hamid, M.I.; Abousaty, A.I.; Elmanakhly, A.R.; Alshareef, W.A.; Mosbah, R.A.; Alhomrani, M.; Ghoneim, M.M.; Elkelish, A.; Hashim, N.; et al. Therapeutic Switching of Rafoxanide: A New Approach To Fighting Drug-Resistant Bacteria and Fungi. Microbiol. Spectr. 2023, 11, e02679-22. [Google Scholar] [CrossRef]
- Ramírez-Hernández, M.; Norambuena, J.; Hu, H.; Thomas, B.; Tang, C.; Boyd, J.M.; Asefa, T. Repurposing Anthelmintics: Rafoxanide-and Copper-Functionalized SBA-15 Carriers against Methicillin-Resistant Staphylococcus Aureus. ACS Appl. Mater. Interfaces 2023, 15, 17459–17469. [Google Scholar] [CrossRef] [PubMed]
- Miró-Canturri, A.; Ayerbe-Algaba, R.; Villodres, Á.R.; Pachón, J.; Smani, Y. Repositioning Rafoxanide to Treat Gram-Negative Bacilli Infections. J. Antimicrob. Chemother. 2020, 75, 1895–1905. [Google Scholar] [CrossRef] [PubMed]
- Marrugal-Lorenzo, J.A.; Serna-Gallego, A.; Berastegui-Cabrera, J.; Pachón, J.; Sánchez-Céspedes, J. Repositioning Salicylanilide Anthelmintic Drugs to Treat Adenovirus Infections. Sci. Rep. 2019, 9, 17. [Google Scholar] [CrossRef]
- Gooyit, M.; Janda, K.D. Reprofiled Anthelmintics Abate Hypervirulent Stationary-Phase Clostridium Difficile. Sci. Rep. 2016, 6, 33642. [Google Scholar] [CrossRef]
- Shi, X.; Li, H.; Shi, A.; Yao, H.; Ke, K.; Dong, C.; Zhu, Y.; Qin, Y.; Ding, Y.; He, Y.; et al. Discovery of Rafoxanide as a Dual CDK4/6 Inhibitor for the Treatment of Skin Cancer. Oncol. Rep. 2018, 40, 1592–1600. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.-Z.; Hu, Y.-L.; Feng, Y.; Guo, Y.-B.; Liu, Y.-F.; Yang, J.-L.; Mao, Q.-S.; Xue, W.-J. Rafoxanide Promotes Apoptosis and Autophagy of Gastric Cancer Cells by Suppressing PI3K/Akt/mTOR Pathway. Exp. Cell Res. 2019, 385, 111691. [Google Scholar] [CrossRef]
- Laudisi, F.; Di Grazia, A.; De Simone, V.; Cherubini, F.; Colantoni, A.; Ortenzi, A.; Franzè, E.; Dinallo, V.; Di Fusco, D.; Monteleone, I.; et al. Induction of Endoplasmic Reticulum Stress and Inhibition of Colon Carcinogenesis by the Anti-Helmintic Drug Rafoxanide. Cancer Lett. 2019, 462, 1–11. [Google Scholar] [CrossRef]
- Di Grazia, A.; Laudisi, F.; Di Fusco, D.; Franzè, E.; Ortenzi, A.; Monteleone, I.; Monteleone, G.; Stolfi, C. Rafoxanide Induces Immunogenic Death of Colorectal Cancer Cells. Cancers 2020, 12, 1314. [Google Scholar] [CrossRef]
- Laudisi, F.; Pacifico, T.; Maresca, C.; Luiz-Ferreira, A.; Antonelli, S.; Ortenzi, A.; Colantoni, A.; Di Grazia, A.; Franzè, E.; Colella, M.; et al. Rafoxanide Sensitizes Colorectal Cancer Cells to TRAIL-Mediated Apoptosis. Biomed. Pharmacother. 2022, 155, 113794. [Google Scholar] [CrossRef]
- Pacifico, T.; Stolfi, C.; Tomassini, L.; Luiz-Ferreira, A.; Franzè, E.; Ortenzi, A.; Colantoni, A.; Sica, G.S.; Sambucci, M.; Monteleone, I.; et al. Rafoxanide Negatively Modulates STAT3 and NF-κB Activity and Inflammation-associated Colon Tumorigenesis. Cancer Sci. 2024, 115, 3596–3611. [Google Scholar] [CrossRef]
- Hu, A.; Liu, J.; Wang, Y.; Zhang, M.; Guo, Y.; Qin, Y.; Liu, T.; Men, Y.; Chen, Q.; Liu, T. Discovery of Rafoxanide as a Novel Agent for the Treatment of Non-Small Cell Lung Cancer. Sci. Rep. 2023, 13, 693. [Google Scholar] [CrossRef] [PubMed]
- Xiao, W.; Xu, Z.; Chang, S.; Li, B.; Yu, D.; Wu, H.; Xie, Y.; Wang, Y.; Xie, B.; Sun, X.; et al. Rafoxanide, an Organohalogen Drug, Triggers Apoptosis and Cell Cycle Arrest in Multiple Myeloma by Enhancing DNA Damage Responses and Suppressing the P38 MAPK Pathway. Cancer Lett. 2019, 444, 45–59. [Google Scholar] [CrossRef]
- He, W.; Xu, Z.; Song, D.; Zhang, H.; Li, B.; Gao, L.; Zhang, Y.; Feng, Q.; Yu, D.; Hu, L.; et al. Antitumor Effects of Rafoxanide in Diffuse Large B Cell Lymphoma via the PTEN/PI3K/Akt and JNK/c-Jun Pathways. Life Sci. 2020, 243, 117249. [Google Scholar] [CrossRef]
- Connor, C.; Carr, Q.L.; Sweazy, A.; McMasters, K.; Hao, H. Clinical Approaches for the Management of Skin Cancer: A Review of Current Progress in Diagnosis, Treatment, and Prognosis for Patients with Melanoma. Cancers 2025, 17, 707. [Google Scholar] [CrossRef] [PubMed]
- Peroumal, D.; Abimannan, T.; Tagirasa, R.; Parida, J.R.; Singh, S.K.; Padhan, P.; Devadas, S. Inherent Low Erk and P38 Activity Reduce Fas Ligand Expression and Degranulation in T Helper 17 Cells Leading to Activation Induced Cell Death Resistance. Oncotarget 2016, 7, 54339–54359. [Google Scholar] [CrossRef]
- Walker, G.J.; Flores, J.F.; Glendening, J.M.; Lin, A.; Markl, I.D.C.; Fountain, J.W. Virtually 100% of Melanoma Cell Lines Harbor Alterations at the DNA Level withinCDKN2A, CDKN2B, or One of Their Downstream Targets. Genes Chromosom. Cancer 1998, 22, 157–163. [Google Scholar] [CrossRef]
- Curtin, J.A.; Fridlyand, J.; Kageshita, T.; Patel, H.N.; Busam, K.J.; Kutzner, H.; Cho, K.-H.; Aiba, S.; Bröcker, E.-B.; LeBoit, P.E.; et al. Distinct Sets of Genetic Alterations in Melanoma. N. Engl. J. Med. 2005, 353, 2135–2147. [Google Scholar] [CrossRef]
- Polk, A.; Kolmos, I.L.; Kümler, I.; Nielsen, D.L. Specific CDK4/6 Inhibition in Breast Cancer: A Systematic Review of Current Clinical Evidence. ESMO Open 2016, 1, e000093. [Google Scholar] [CrossRef]
- De Groot, A.F.; Kuijpers, C.J.; Kroep, J.R. CDK4/6 Inhibition in Early and Metastatic Breast Cancer: A Review. Cancer Treat. Rev. 2017, 60, 130–138. [Google Scholar] [CrossRef]
- Schwarz, R.E. Current Status of Management of Malignant Disease: Current Management of Gastric Cancer. J. Gastrointest. Surg. 2015, 19, 782–788. [Google Scholar] [CrossRef]
- Rui, A.; Xu, Q.; Yang, X. Effect of Multidisciplinary Cooperative Continuous Nursing on the Depression, Anxiety and Quality of Life in Gastric Cancer Patients. Am. J. Transl. Res. 2021, 13, 3316–3322. [Google Scholar]
- Ge, J.; Chen, Z.; Wu, S.; Chen, J.; Li, X.; Li, J.; Yin, J.; Chen, Z. Expression Levels of Insulin-Like Growth Factor-1 and Multidrug Resistance-Associated Protein-1 Indicate Poor Prognosis in Patients with Gastric Cancer. Digestion 2009, 80, 148–158. [Google Scholar] [CrossRef]
- Keum, N.; Giovannucci, E. Global Burden of Colorectal Cancer: Emerging Trends, Risk Factors and Prevention Strategies. Nat. Rev. Gastroenterol. Hepatol. 2019, 16, 713–732. [Google Scholar] [CrossRef] [PubMed]
- Xie, Y.-H.; Chen, Y.-X.; Fang, J.-Y. Comprehensive Review of Targeted Therapy for Colorectal Cancer. Sig. Transduct. Target. Ther. 2020, 5, 22. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Chen, D.; Shen, M. Tumor Microenvironment Shapes Colorectal Cancer Progression, Metastasis, and Treatment Responses. Front. Med. 2022, 9, 869010. [Google Scholar] [CrossRef] [PubMed]
- Galluzzi, L.; Buqué, A.; Kepp, O.; Zitvogel, L.; Kroemer, G. Immunogenic Cell Death in Cancer and Infectious Disease. Nat. Rev. Immunol. 2017, 17, 97–111. [Google Scholar] [CrossRef]
- Wiley, S.R.; Schooley, K.; Smolak, P.J.; Din, W.S.; Huang, C.-P.; Nicholl, J.K.; Sutherland, G.R.; Smith, T.D.; Rauch, C.; Smith, C.A.; et al. Identification and Characterization of a New Member of the TNF Family That Induces Apoptosis. Immunity 1995, 3, 673–682. [Google Scholar] [CrossRef]
- LeBlanc, H.N.; Ashkenazi, A. Apo2L/TRAIL and Its Death and Decoy Receptors. Cell Death Differ. 2003, 10, 66–75. [Google Scholar] [CrossRef]
- Emery, J.G.; McDonnell, P.; Burke, M.B.; Deen, K.C.; Lyn, S.; Silverman, C.; Dul, E.; Appelbaum, E.R.; Eichman, C.; DiPrinzio, R.; et al. Osteoprotegerin Is a Receptor for the Cytotoxic Ligand TRAIL. J. Biol. Chem. 1998, 273, 14363–14367. [Google Scholar] [CrossRef]
- Ashkenazi, A. Targeting Death and Decoy Receptors of the Tumour-Necrosis Factor Superfamily. Nat. Rev. Cancer 2002, 2, 420–430. [Google Scholar] [CrossRef]
- Jong, K.X.J.; Mohamed, E.H.M.; Ibrahim, Z.A. Escaping Cell Death via TRAIL Decoy Receptors: A Systematic Review of Their Roles and Expressions in Colorectal Cancer. Apoptosis 2022, 27, 787–799. [Google Scholar] [CrossRef]
- Jin, Z.; McDonald, E.R.; Dicker, D.T.; El-Deiry, W.S. Deficient Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand (TRAIL) Death Receptor Transport to the Cell Surface in Human Colon Cancer Cells Selected for Resistance to TRAIL-Induced Apoptosis. J. Biol. Chem. 2004, 279, 35829–35839. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Fang, B. Mechanisms of Resistance to TRAIL-Induced Apoptosis in Cancer. Cancer Gene Ther. 2005, 12, 228–237. [Google Scholar] [CrossRef]
- Grivennikov, S.I.; Karin, M. Dangerous Liaisons: STAT3 and NF-κB Collaboration and Crosstalk in Cancer. Cytokine Growth Factor Rev. 2010, 21, 11–19. [Google Scholar] [CrossRef] [PubMed]
- Jemal, A.; Bray, F.; Center, M.M.; Ferlay, J.; Ward, E.; Forman, D. Global Cancer Statistics. CA Cancer J. Clin. 2011, 61, 69–90. [Google Scholar] [CrossRef]
- Remon, J.; Soria, J.-C.; Peters, S. Early and Locally Advanced Non-Small-Cell Lung Cancer: An Update of the ESMO Clinical Practice Guidelines Focusing on Diagnosis, Staging, Systemic and Local Therapy. Ann. Oncol. 2021, 32, 1637–1642. [Google Scholar] [CrossRef] [PubMed]
- Kyle, R.A.; Rajkumar, S.V. Multiple Myeloma. Blood 2008, 111, 2962–2972. [Google Scholar] [CrossRef]
- Kumar, S.K.; Rajkumar, S.V.; Dispenzieri, A.; Lacy, M.Q.; Hayman, S.R.; Buadi, F.K.; Zeldenrust, S.R.; Dingli, D.; Russell, S.J.; Lust, J.A.; et al. Improved Survival in Multiple Myeloma and the Impact of Novel Therapies. Blood 2008, 111, 2516–2520. [Google Scholar] [CrossRef]
- Kortüm, K.M.; Mai, E.K.; Hanafiah, N.H.; Shi, C.-X.; Zhu, Y.-X.; Bruins, L.; Barrio, S.; Jedlowski, P.; Merz, M.; Xu, J.; et al. Targeted Sequencing of Refractory Myeloma Reveals a High Incidence of Mutations in CRBN and Ras Pathway Genes. Blood 2016, 128, 1226–1233. [Google Scholar] [CrossRef]
- Li, Y.; Guo, B.; Xu, Z.; Li, B.; Cai, T.; Zhang, X.; Yu, Y.; Wang, H.; Shi, J.; Zhu, W. Repositioning Organohalogen Drugs: A Case Study for Identification of Potent B-Raf V600E Inhibitors via Docking and Bioassay. Sci. Rep. 2016, 6, 31074. [Google Scholar] [CrossRef]
- Lentzsch, S.; Chatterjee, M.; Gries, M.; Bommert, K.; Gollasch, H.; Dörken, B.; Bargou, R.C. PI3-K/AKT/FKHR and MAPK Signaling Cascades Are Redundantly Stimulated by a Variety of Cytokines and Contribute Independently to Proliferation and Survival of Multiple Myeloma Cells. Leukemia 2004, 18, 1883–1890. [Google Scholar] [CrossRef]
- Ohguchi, H.; Harada, T.; Sagawa, M.; Kikuchi, S.; Tai, Y.-T.; Richardson, P.G.; Hideshima, T.; Anderson, K.C. KDM6B Modulates MAPK Pathway Mediating Multiple Myeloma Cell Growth and Survival. Leukemia 2017, 31, 2661–2669. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.; Xu, Y.; Shen, H.; Jin, J.; Tong, H.; Xie, W. Advances in Biology, Diagnosis and Treatment of DLBCL. Ann. Hematol. 2024, 103, 3315–3334. [Google Scholar] [CrossRef]
- Flowers, C.R.; Sinha, R.; Vose, J.M. Improving Outcomes for Patients with Diffuse Large B-Cell Lymphoma. CA Cancer J. Clin. 2010, 60, 393–408. [Google Scholar] [CrossRef] [PubMed]
- Yurdakök, M. Rafanoxide therapy in a child with fascioliasis. Mikrobiyol. Bul. 1985, 19, 38–40. [Google Scholar]
- Wang, J.; Ren, X.; Piao, H.; Zhao, S.; Osada, T.; Premont, R.T.; Mook, R.A.; Morse, M.A.; Lyerly, H.K.; Chen, W. Niclosamide-Induced Wnt Signaling Inhibition in Colorectal Cancer Is Mediated by Autophagy. Biochem. J. 2019, 476, 535–546. [Google Scholar] [CrossRef] [PubMed]
- Alasadi, A.; Chen, M.; Swapna, G.V.T.; Tao, H.; Guo, J.; Collantes, J.; Fadhil, N.; Montelione, G.T.; Jin, S. Effect of Mitochondrial Uncouplers Niclosamide Ethanolamine (NEN) and Oxyclozanide on Hepatic Metastasis of Colon Cancer. Cell Death Dis. 2018, 9, 215. [Google Scholar] [CrossRef]
- Li, R.; Hu, Z.; Sun, S.-Y.; Chen, Z.G.; Owonikoko, T.K.; Sica, G.L.; Ramalingam, S.S.; Curran, W.J.; Khuri, F.R.; Deng, X. Niclosamide Overcomes Acquired Resistance to Erlotinib through Suppression of STAT3 in Non-Small Cell Lung Cancer. Mol. Cancer Ther. 2013, 12, 2200–2212. [Google Scholar] [CrossRef]
- Wu, M.M.; Zhang, Z.; Tong, C.W.S.; Yan, V.W.; Cho, W.C.S.; To, K.K.W. Repurposing of Niclosamide as a STAT3 Inhibitor to Enhance the Anticancer Effect of Chemotherapeutic Drugs in Treating Colorectal Cancer. Life Sci. 2020, 262, 118522. [Google Scholar] [CrossRef]
- Luo, F.; Luo, M.; Rong, Q.-X.; Zhang, H.; Chen, Z.; Wang, F.; Zhao, H.-Y.; Fu, L.-W. Niclosamide, an Antihelmintic Drug, Enhances Efficacy of PD-1/PD-L1 Immune Checkpoint Blockade in Non-Small Cell Lung Cancer. J. Immunother. Cancer 2019, 7, 245. [Google Scholar] [CrossRef]
- Guo, Y.; Zhu, H.; Xiao, Y.; Guo, H.; Lin, M.; Yuan, Z.; Yang, X.; Huang, Y.; Zhang, Q.; Bai, Y. The Anthelmintic Drug Niclosamide Induces GSK-β-Mediated β-Catenin Degradation to Potentiate Gemcitabine Activity, Reduce Immune Evasion Ability and Suppress Pancreatic Cancer Progression. Cell Death Dis. 2022, 13, 112. [Google Scholar] [CrossRef] [PubMed]
- Schweizer, M.T.; Haugk, K.; McKiernan, J.S.; Gulati, R.; Cheng, H.H.; Maes, J.L.; Dumpit, R.F.; Nelson, P.S.; Montgomery, B.; McCune, J.S.; et al. A Phase I Study of Niclosamide in Combination with Enzalutamide in Men with Castration-Resistant Prostate Cancer. PLoS ONE 2018, 13, e0198389. [Google Scholar] [CrossRef] [PubMed]
- Parikh, M.; Liu, C.; Wu, C.-Y.; Evans, C.P.; Dall’Era, M.; Robles, D.; Lara, P.N.; Agarwal, N.; Gao, A.C.; Pan, C.-X. Phase Ib Trial of Reformulated Niclosamide with Abiraterone/Prednisone in Men with Castration-Resistant Prostate Cancer. Sci. Rep. 2021, 11, 6377. [Google Scholar] [CrossRef] [PubMed]
Cancer Type | In Vitro Mechanism of Action | Key Molecular Targets/Pathways | In Vivo Effects | Reference |
---|---|---|---|---|
Skin cancer | G1 phase cell cycle arrest | CDK4/6–p-CDK4/6 ↓ cyclin D ↓ Rb/p-Rb ↓ | Xenograft nude mice with A375 skin cancer cells:
| [28] |
Gastric adenocarcinoma | Cell cycle arrest at the G0/G1 phase | Cyclin D1 ↓ Cyclin E ↓ | Xenograft mouse model (SGC-7901 cells):
| [29] |
Mitochondrial intrinsic apoptotic pathway (loss of MMP) | Cleaved caspase-3 ↑ Cleaved caspase-9 ↑ Release of cytochrome C PARP fragmentation | |||
Autophagy ↓ | LC3-II ↑ Autophagic vacuoles | |||
Cell survival rate ↓ | PI3K ↓ p-Akt ↓ p-mTOR ↓ | |||
Colorectal cancer | Cell cycle arrest at the G0/G1 phase Endoplasmic reticulum stress (ERS) ↑ | p-ERK ↓ Proliferation ↓ CDK4/6 ↓ Cyclin D1 ↓ p-eIF2α (S51) ↑ p-PERK (T981) ↑ CHOP ↑ Ki-67 positive cells ↓ | Human CRC explants:
| [30] |
Immunogenic cell death (ICD) | p-eIF2α (S51) ↑ ecto-calreticulin ↑ LC3-II ↑ Extracellular ATP ↑ HMGB1 ↑ Proliferation ↓ | Vaccination (syngeneic rafoxanide-treated CT26 cells):
| [31] | |
TRAIL-induced apoptosis | Apoptosis ↑ Caspase-8 ↑ DR5 ↑ Proteosome degradation c-FLIP ↓ BCL-XL ↓ XIAP ↓ Survivin ↓ | Human CRC explants:
| [32] | |
Antineoplastic effect | p-STAT3 Y705 ↓ p-NF-κB S536 ↓ CDK6/Cyclin D1 ↓ | AOM/DSS mouse model:
| [33] | |
Non-small cell lung cancer | proliferation ↓ invasion/migration ↓ apoptosis ↑ cell cycle arrest at the G0/G1 phase endoplasmic reticulum stress (ERS) ↑ unfolded protein response (UPR) ↑ Autophagy ↑ | Bcl2 ↓ Bax ↑ Cleaved-PARP ↑ Cyclin D1 ↓ Cyclin E ↓ p-Rb ↓ GRP78 ↑ p-eIF2α (S51) ↑ ATF6 (P90) ↓ ATF6 (P50) ↑ Xbp1s LC3 I/II ↑ CHOP ↑ | xenograft mouse models (A549 cells):
| [34] |
Multiple Myeloma | apoptosis (both intrinsic and extrinsic pathways) ↑ cell cycle arrest at the G0/G1 phase:
| proliferation ↓ caspase-9 ↓ cleaved caspase-3, -8, -9 ↑ Bcl-XL ↓ Bcl-2 ↓ Bax ↑ MMP ↓ cyclin D1, CDK4, CDK6, and cdc25A ↓ p-CHK2 ↑ γ-H2AX ↑ p-p38 MAPK and p-STAT1 ↓ B-Raf V600E ↓ | xenograft mouse models (H929 cells):
| [35] |
B-cell Lymphoma | proliferation ↓ apoptosis ↑ mitochondrial stress response cell cycle arrest at the G0/G1 phase oxidative stress ↑ | Caspase-3, -8, -9 ↑ Bcl-2 ↓ Bax ↑ MMP ↓ cyclin D1, CDK4, CDK6, and cdc25A ↓ γ-H2AX ↑ PTEN/p-AKT and p-JNK/p-c-Jun ↑ DNA repair capacity ↓ | xenograft mouse model (DLBCL cells):
| [36] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pacifico, T.; Tomassini, L.; Biancone, L.; Monteleone, G.; Stolfi, C.; Laudisi, F. Repurposing Rafoxanide: From Parasite Killer to Cancer Fighter. Biomedicines 2025, 13, 1686. https://doi.org/10.3390/biomedicines13071686
Pacifico T, Tomassini L, Biancone L, Monteleone G, Stolfi C, Laudisi F. Repurposing Rafoxanide: From Parasite Killer to Cancer Fighter. Biomedicines. 2025; 13(7):1686. https://doi.org/10.3390/biomedicines13071686
Chicago/Turabian StylePacifico, Teresa, Lorenzo Tomassini, Livia Biancone, Giovanni Monteleone, Carmine Stolfi, and Federica Laudisi. 2025. "Repurposing Rafoxanide: From Parasite Killer to Cancer Fighter" Biomedicines 13, no. 7: 1686. https://doi.org/10.3390/biomedicines13071686
APA StylePacifico, T., Tomassini, L., Biancone, L., Monteleone, G., Stolfi, C., & Laudisi, F. (2025). Repurposing Rafoxanide: From Parasite Killer to Cancer Fighter. Biomedicines, 13(7), 1686. https://doi.org/10.3390/biomedicines13071686