Precision Medicine in Hematologic Malignancies: Evolving Concepts and Clinical Applications
Abstract
1. Introduction
2. Technological Foundations of Precision Hematology
2.1. Genomic Profiling Tools
2.1.1. Next-Generation Sequencing (NGS)
2.1.2. Whole-Exome Sequencing (WES)
2.1.3. RNA Sequencing (RNA-Seq)
2.1.4. Comparative Overview of Genomic Profiling Approaches
2.2. Epigenomics and Proteomics
2.2.1. Epigenomics
2.2.2. Proteomics
2.3. Liquid Biopsy and Minimal Residual Disease Monitoring
2.3.1. Circulating Tumor DNA (ctDNA)
2.3.2. Minimal Residual Disease (MRD) Monitoring
3. Disease-Specific Advances in Precision Medicine
3.1. Acute Myeloid Leukemia
3.2. Acute Lymphoblastic Leukemia
3.3. Chronic Myeloid Leukemia
3.4. Chronic Lymphocytic Leukemia
3.5. Lymphomas
3.6. Multiple Myeloma
3.7. Comparative Overview of Precision Medicine Targets in Hematologic Malignancies
4. Emerging Concepts and Innovations
4.1. Single-Cell Sequencing
4.2. Spatial Transcriptomics
4.3. Drug Repurposing
5. Clinical Implementation and Challenges
5.1. High Cost of Genomic Testing
5.2. Access Disparities
5.3. Lack of Standardization
5.4. Integration into Clinical Workflows
6. Future Directions
6.1. Pan-Cancer Trials Based on Molecular Targets
6.2. Personalized Immunotherapy
6.3. Precision Prevention
6.4. AI-Powered Treatment Algorithms
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wasterlid, T.; Cavelier, L.; Haferlach, C.; Konopleva, M.; Frohling, S.; Ostling, P.; Bullinger, L.; Fioretos, T.; Smedby, K.E. Application of precision medicine in clinical routine in haematology—Challenges and opportunities. J. Intern. Med. 2022, 292, 243–261. [Google Scholar] [CrossRef] [PubMed]
- Rosenquist, R.; Bernard, E.; Erkers, T.; Scott, D.W.; Itzykson, R.; Rousselot, P.; Soulier, J.; Hutchings, M.; Ostling, P.; Cavelier, L.; et al. Novel precision medicine approaches and treatment strategies in hematological malignancies. J. Intern. Med. 2023, 294, 413–436. [Google Scholar] [CrossRef]
- Yang, J.; Liu, X.; Zhong, Q.Z.; Yang, Y.; Wu, T.; Chen, S.Y.; Chen, B.; Song, Y.W.; Fang, H.; Wang, S.L.; et al. Disparities in mortality risk after diagnosis of hematological malignancies in 185 countries: A global data analysis. Cancer Lett. 2024, 595, 216793. [Google Scholar] [CrossRef] [PubMed]
- Jamalinia, M.; Weiskirchen, R. Advances in personalized medicine: Translating genomic insights into targeted therapies for cancer treatment. Ann. Transl. Med. 2025, 13, 18. [Google Scholar] [CrossRef] [PubMed]
- Gagan, J.; Van Allen, E.M. Next-generation sequencing to guide cancer therapy. Genome Med. 2015, 7, 80. [Google Scholar] [CrossRef]
- Duncavage, E.J.; Bagg, A.; Hasserjian, R.P.; DiNardo, C.D.; Godley, L.A.; Iacobucci, I.; Jaiswal, S.; Malcovati, L.; Vannucchi, A.M.; Patel, K.P.; et al. Genomic profiling for clinical decision making in myeloid neoplasms and acute leukemia. Blood 2022, 140, 2228–2247. [Google Scholar] [CrossRef]
- Nikanjam, M.; Kato, S.; Kurzrock, R. Liquid biopsy: Current technology and clinical applications. J. Hematol. Oncol. 2022, 15, 131. [Google Scholar] [CrossRef]
- Feehley, T.; O’Donnell, C.W.; Mendlein, J.; Karande, M.; McCauley, T. Drugging the epigenome in the age of precision medicine. Clin. Epigenetics 2023, 15, 6. [Google Scholar] [CrossRef]
- Yeat, N.C.; Lin, C.; Sager, M.; Lin, J. Cancer proteomics: Developments in technology, clinical use and commercialization. Expert Rev. Proteom. 2015, 12, 391–405. [Google Scholar] [CrossRef]
- Cho, Y.U. The role of next-generation sequencing in hematologic malignancies. Blood Res. 2024, 59, 11. [Google Scholar] [CrossRef]
- Vashisht, V.; Vashisht, A.; Mondal, A.K.; Woodall, J.; Kolhe, R. From Genomic Exploration to Personalized Treatment: Next-Generation Sequencing in Oncology. Curr. Issues Mol. Biol. 2024, 46, 12527–12549. [Google Scholar] [CrossRef]
- Contreras Yametti, G.P.; Ostrow, T.H.; Jasinski, S.; Raetz, E.A.; Carroll, W.L.; Evensen, N.A. Minimal Residual Disease in Acute Lymphoblastic Leukemia: Current Practice and Future Directions. Cancers 2021, 13, 1847. [Google Scholar] [CrossRef] [PubMed]
- Talotta, D.; Almasri, M.; Cosentino, C.; Gaidano, G.; Moia, R. Liquid biopsy in hematological malignancies: Current and future applications. Front. Oncol. 2023, 13, 1164517. [Google Scholar] [CrossRef] [PubMed]
- Abel, H.J.; Duncavage, E.J. Detection of structural DNA variation from next generation sequencing data: A review of informatic approaches. Cancer Genet. 2013, 206, 432–440. [Google Scholar] [CrossRef] [PubMed]
- Satam, H.; Joshi, K.; Mangrolia, U.; Waghoo, S.; Zaidi, G.; Rawool, S.; Thakare, R.P.; Banday, S.; Mishra, A.K.; Das, G.; et al. Next-Generation Sequencing Technology: Current Trends and Advancements. Biology 2023, 12, 997. [Google Scholar] [CrossRef]
- Behjati, S.; Tarpey, P.S. What is next generation sequencing? Arch. Dis. Child.-Educ. Pract. Ed. 2013, 98, 236–238. [Google Scholar] [CrossRef]
- Roukos, D.; Batsis, C.; Baltogiannis, G. Assessing tumor heterogeneity and emergence mutations using next-generation sequencing for overcoming cancer drugs resistance. Expert Rev. Anticancer. Ther. 2012, 12, 1245–1248. [Google Scholar] [CrossRef]
- Ladetto, M.; Brüggemann, M.; Monitillo, L.; Ferrero, S.; Pepin, F.; Drandi, D.; Barbero, D.; Palumbo, A.; Passera, R.; Boccadoro, M.; et al. Next-generation sequencing and real-time quantitative PCR for minimal residual disease detection in B-cell disorders. Leukemia 2014, 28, 1299–1307. [Google Scholar] [CrossRef]
- Van Nimwegen, K.J.M.; van Soest, R.A.; Veltman, J.A.; Nelen, M.R.; van der Wilt, G.J.; Vissers, L.E.L.M.; Grutters, J.P.C. Is the $1000 Genome as Near as We Think? A Cost Analysis of Next-Generation Sequencing. Clin. Chem. 2016, 62, 1458–1464. [Google Scholar] [CrossRef]
- Kulkarni, P.; Frommolt, P. Challenges in the Setup of Large-scale Next-Generation Sequencing Analysis Workflows. Comput. Struct. Biotechnol. J. 2017, 15, 471–477. [Google Scholar] [CrossRef]
- Baykal, P.I.; Labaj, P.P.; Markowetz, F.; Schriml, L.M.; Stekhoven, D.J.; Mangul, S.; Beerenwinkel, N. Genomic reproducibility in the bioinformatics era. Genome Biol. 2024, 25, 213. [Google Scholar] [CrossRef] [PubMed]
- Blackburn, H.L.; Schroeder, B.; Turner, C.; Shriver, C.D.; Ellsworth, D.L.; Ellsworth, R.E. Management of Incidental Findings in the Era of Next-generation Sequencing. Curr. Genom. 2015, 16, 159–174. [Google Scholar] [CrossRef] [PubMed]
- Rabbani, B.; Tekin, M.; Mahdieh, N. The promise of whole-exome sequencing in medical genetics. J. Hum. Genet. 2014, 59, 5–15. [Google Scholar] [CrossRef]
- Brozou, T.; Taeubner, J.; Velleuer, E.; Dugas, M.; Wieczorek, D.; Borkhardt, A.; Kuhlen, M. Genetic predisposition in children with cancer—Affected families’ acceptance of Trio-WES. Eur. J. Pediatr. 2018, 177, 53–60. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.; Petrovski, S.; Xie, P.; Ruzzo, E.K.; Lu, Y.F.; McSweeney, K.M.; Ben-Zeev, B.; Nissenkorn, A.; Anikster, Y.; Oz-Levi, D.; et al. Whole-exome sequencing in undiagnosed genetic diseases: Interpreting 119 trios. Genet. Med. 2015, 17, 774–781. [Google Scholar] [CrossRef]
- Powell, B.C.; Jiang, L.; Muzny, D.M.; Trevino, L.R.; Dreyer, Z.E.; Strong, L.C.; Wheeler, D.A.; Gibbs, R.A.; Plon, S.E. Identification of TP53 as an acute lymphocytic leukemia susceptibility gene through exome sequencing. Pediatr. Blood Cancer 2013, 60, E1–E3. [Google Scholar] [CrossRef]
- Pasquet, M.; Bellanne-Chantelot, C.; Tavitian, S.; Prade, N.; Beaupain, B.; Larochelle, O.; Petit, A.; Rohrlich, P.; Ferrand, C.; Van Den Neste, E.; et al. High frequency of GATA2 mutations in patients with mild chronic neutropenia evolving to MonoMac syndrome, myelodysplasia, and acute myeloid leukemia. Blood 2013, 121, 822–829. [Google Scholar] [CrossRef]
- Dickinson, R.E.; Griffin, H.; Bigley, V.; Reynard, L.N.; Hussain, R.; Haniffa, M.; Lakey, J.H.; Rahman, T.; Wang, X.N.; McGovern, N.; et al. Exome sequencing identifies GATA-2 mutation as the cause of dendritic cell, monocyte, B and NK lymphoid deficiency. Blood 2011, 118, 2656–2658. [Google Scholar] [CrossRef] [PubMed]
- Kong, S.W.; Lee, I.H.; Liu, X.; Hirschhorn, J.N.; Mandl, K.D. Measuring coverage and accuracy of whole-exome sequencing in clinical context. Genet. Med. 2018, 20, 1617–1626. [Google Scholar] [CrossRef]
- Lange, M.; Begolli, R.; Giakountis, A. Non-Coding Variants in Cancer: Mechanistic Insights and Clinical Potential for Personalized Medicine. Noncoding RNA 2021, 7, 47. [Google Scholar] [CrossRef]
- Hayette, S.; Grange, B.; Vallee, M.; Bardel, C.; Huet, S.; Mosnier, I.; Chabane, K.; Simonet, T.; Balsat, M.; Heiblig, M.; et al. Performances of Targeted RNA Sequencing for the Analysis of Fusion Transcripts, Gene Mutation, and Expression in Hematological Malignancies. Hemasphere 2021, 5, e522. [Google Scholar] [CrossRef] [PubMed]
- Lilljebjorn, H.; Orsmark-Pietras, C.; Mitelman, F.; Hagstrom-Andersson, A.; Fioretos, T. Transcriptomics paving the way for improved diagnostics and precision medicine of acute leukemia. Semin. Cancer Biol. 2022, 84, 40–49. [Google Scholar] [CrossRef] [PubMed]
- Lu, W.; Zhou, Q.; Chen, Y. Impact of RNA degradation on next-generation sequencing transcriptome data. Genomics 2022, 114, 110429. [Google Scholar] [CrossRef]
- Blecua, P.; Martinez-Verbo, L.; Esteller, M. The DNA methylation landscape of hematological malignancies: An update. Mol. Oncol. 2020, 14, 1616–1639. [Google Scholar] [CrossRef]
- Figueroa, M.E.; Abdel-Wahab, O.; Lu, C.; Ward, P.S.; Patel, J.; Shih, A.; Li, Y.; Bhagwat, N.; Vasanthakumar, A.; Fernandez, H.F.; et al. Leukemic IDH1 and IDH2 mutations result in a hypermethylation phenotype, disrupt TET2 function, and impair hematopoietic differentiation. Cancer Cell 2010, 18, 553–567. [Google Scholar] [CrossRef]
- Raimondi, V.; Ciotti, G.; Gottardi, M.; Ciccarese, F. 2-Hydroxyglutarate in Acute Myeloid Leukemia: A Journey from Pathogenesis to Therapies. Biomedicines 2022, 10, 1359. [Google Scholar] [CrossRef]
- Leti, F.; Llaci, L.; Malenica, I.; DiStefano, J.K. Methods for CpG Methylation Array Profiling Via Bisulfite Conversion. Methods Mol. Biol. 2018, 1706, 233–254. [Google Scholar]
- Dexheimer, G.M.; Alves, J.; Reckziegel, L.; Lazzaretti, G.; Abujamra, A.L. DNA Methylation Events as Markers for Diagnosis and Management of Acute Myeloid Leukemia and Myelodysplastic Syndrome. Dis. Markers 2017, 2017, 5472893. [Google Scholar] [CrossRef] [PubMed]
- Aslam, B.; Basit, M.; Nisar, M.A.; Khurshid, M.; Rasool, M.H. Proteomics: Technologies and Their Applications. J. Chromatogr. Sci. 2017, 55, 182–196. [Google Scholar] [CrossRef]
- Gu, T.L.; Nardone, J.; Wang, Y.; Loriaux, M.; Villen, J.; Beausoleil, S.; Tucker, M.; Kornhauser, J.; Ren, J.; MacNeill, J.; et al. Survey of activated FLT3 signaling in leukemia. PLoS ONE 2011, 6, e19169. [Google Scholar] [CrossRef]
- Manzoni, C.; Kia, D.A.; Vandrovcova, J.; Hardy, J.; Wood, N.W.; Lewis, P.A.; Ferrari, R. Genome, transcriptome and proteome: The rise of omics data and their integration in biomedical sciences. Brief. Bioinform. 2018, 19, 286–302. [Google Scholar] [CrossRef] [PubMed]
- El Achi, H.; Dupont, E.; Paul, S.; Khoury, J.D. CD123 as a Biomarker in Hematolymphoid Malignancies: Principles of Detection and Targeted Therapies. Cancers 2020, 12, 3087. [Google Scholar] [CrossRef]
- Gerritsen, J.S.; White, F.M. Phosphoproteomics: A valuable tool for uncovering molecular signaling in cancer cells. Expert Rev. Proteom. 2021, 18, 661–674. [Google Scholar] [CrossRef]
- Kilgour, E.; Rothwell, D.G.; Brady, G.; Dive, C. Liquid Biopsy-Based Biomarkers of Treatment Response and Resistance. Cancer Cell 2020, 37, 485–495. [Google Scholar] [CrossRef] [PubMed]
- Pascual, J.; Attard, G.; Bidard, F.C.; Curigliano, G.; De Mattos-Arruda, L.; Diehn, M.; Italiano, A.; Lindberg, J.; Merker, J.D.; Montagut, C.; et al. ESMO recommendations on the use of circulating tumour DNA assays for patients with cancer: A report from the ESMO Precision Medicine Working Group. Ann. Oncol. 2022, 33, 750–768. [Google Scholar] [CrossRef] [PubMed]
- Munshi, N.C.; Avet-Loiseau, H.; Anderson, K.C.; Neri, P.; Paiva, B.; Samur, M.; Dimopoulos, M.; Kulakova, M.; Lam, A.; Hashim, M.; et al. A large meta-analysis establishes the role of MRD negativity in long-term survival outcomes in patients with multiple myeloma. Blood Adv. 2020, 4, 5988–5999. [Google Scholar] [CrossRef]
- Short, N.J.; Dillon, R. Measurable residual disease monitoring in AML: Prospects for therapeutic decision-making and new drug development. Am. J. Hematol. 2025, 100 (Suppl. S2), 5–15. [Google Scholar] [CrossRef]
- Brown, P.A.; Shah, B.; Advani, A.; Aoun, P.; Boyer, M.W.; Burke, P.W.; DeAngelo, D.J.; Dinner, S.; Fathi, A.T.; Gauthier, J.; et al. Acute Lymphoblastic Leukemia, Version 2.2021, NCCN Clinical Practice Guidelines in Oncology. J. Natl. Compr. Cancer Netw. 2021, 19, 1079–1109. [Google Scholar] [CrossRef]
- Heuser, M.; Freeman, S.D.; Ossenkoppele, G.J.; Buccisano, F.; Hourigan, C.S.; Ngai, L.L.; Tettero, J.M.; Bachas, C.; Baer, C.; Béné, M.-C.; et al. 2021 Update on MRD in acute myeloid leukemia: A consensus document from the European LeukemiaNet MRD Working Party. Blood 2021, 138, 2753–2767. [Google Scholar] [CrossRef]
- Megías-Vericat, J.E.; David, M.-C.; Antonio, S.-A.; Montesinos, P. Precision medicine in acute myeloid leukemia: Where are we now and what does the future hold? Expert Rev. Hematol. 2020, 13, 1057–1065. [Google Scholar] [CrossRef]
- Kiyoi, H.; Kawashima, N.; Ishikawa, Y. FLT3 mutations in acute myeloid leukemia: Therapeutic paradigm beyond inhibitor development. Cancer Sci. 2020, 111, 312–322. [Google Scholar] [CrossRef] [PubMed]
- Stone, R.M.; Mandrekar, S.J.; Sanford, B.L.; Laumann, K.; Geyer, S.; Bloomfield, C.D.; Thiede, C.; Prior, T.W.; Döhner, K.; Marcucci, G.; et al. Midostaurin plus Chemotherapy for Acute Myeloid Leukemia with a FLT3 Mutation. N. Engl. J. Med. 2017, 377, 454–464. [Google Scholar] [CrossRef]
- Perl, A.E.; Martinelli, G.; Cortes, J.E.; Neubauer, A.; Berman, E.; Paolini, S.; Montesinos, P.; Baer, M.R.; Larson, R.A.; Ustun, C.; et al. Gilteritinib or Chemotherapy for Relapsed or Refractory FLT3-Mutated AML. N. Engl. J. Med. 2019, 381, 1728–1740. [Google Scholar] [CrossRef]
- Erba, H.P.; Montesinos, P.; Kim, H.J.; Patkowska, E.; Vrhovac, R.; Žák, P.; Wang, P.N.; Mitov, T.; Hanyok, J.; Kamel, Y.M.; et al. Quizartinib plus chemotherapy in newly diagnosed patients with FLT3-internal-tandem-duplication-positive acute myeloid leukaemia (QuANTUM-First): A randomised, double-blind, placebo-controlled, phase 3 trial. Lancet 2023, 401, 1571–1583. [Google Scholar] [CrossRef]
- Zhao, J.C.; Agarwal, S.; Ahmad, H.; Amin, K.; Bewersdorf, J.P.; Zeidan, A.M. A review of FLT3 inhibitors in acute myeloid leukemia. Blood Rev. 2022, 52, 100905. [Google Scholar] [CrossRef] [PubMed]
- Dang, L.; Yen, K.; Attar, E.C. IDH mutations in cancer and progress toward development of targeted therapeutics. Ann. Oncol. 2016, 27, 599–608. [Google Scholar] [CrossRef]
- DiNardo, C.D.; Stein, E.M.; de Botton, S.; Roboz, G.J.; Altman, J.K.; Mims, A.S.; Swords, R.; Collins, R.H.; Mannis, G.N.; Pollyea, D.A.; et al. Durable Remissions with Ivosidenib in IDH1-Mutated Relapsed or Refractory AML. N. Engl. J. Med. 2018, 378, 2386–2398. [Google Scholar] [CrossRef] [PubMed]
- Stein, E.M.; DiNardo, C.D.; Pollyea, D.A.; Fathi, A.T.; Roboz, G.J.; Altman, J.K.; Stone, R.M.; DeAngelo, D.J.; Levine, R.L.; Flinn, I.W.; et al. Enasidenib in mutant IDH2 relapsed or refractory acute myeloid leukemia. Blood 2017, 130, 722–731. [Google Scholar] [CrossRef]
- Chen, X.; Xing, H.; Xie, X.; Kou, L.; Li, J.; Li, Y. Efficacy and safety of FDA-approved IDH inhibitors in the treatment of IDH mutated acute myeloid leukemia: A systematic review and meta-analysis. Clin. Epigenet. 2023, 15, 113. [Google Scholar] [CrossRef]
- Ranieri, R.; Pianigiani, G.; Sciabolacci, S.; Perriello, V.M.; Marra, A.; Cardinali, V.; Pierangeli, S.; Milano, F.; Gionfriddo, I.; Brunetti, L.; et al. Current status and future perspectives in targeted therapy of NPM1-mutated AML. Leukemia 2022, 36, 2351–2367. [Google Scholar] [CrossRef]
- Al Dali, S.; Al-Mashdali, A.F.; Kalfah, A.; Mohamed, S.F. Menin inhibitors in KMT2A-rearranged and NPM1-mutated acute leukemia: A scoping review of safety and efficacy. Crit. Rev. Oncol. Hematol. 2025, 213, 104783. [Google Scholar] [CrossRef] [PubMed]
- Molica, M.; Mazzone, C.; Niscola, P.; de Fabritiis, P. TP53 Mutations in Acute Myeloid Leukemia: Still a Daunting Challenge? Front. Oncol. 2020, 10, 610820. [Google Scholar] [CrossRef]
- Kantarjian, H.M.; Thomas, X.G.; Dmoszynska, A.; Wierzbowska, A.; Mazur, G.; Mayer, J.; Gau, J.P.; Chou, W.C.; Buckstein, R.; Cermak, J.; et al. Multicenter, randomized, open-label, phase III trial of decitabine versus patient choice, with physician advice, of either supportive care or low-dose cytarabine for the treatment of older patients with newly diagnosed acute myeloid leukemia. J. Clin. Oncol. 2012, 30, 2670–2677. [Google Scholar] [CrossRef] [PubMed]
- Sallman, D.A.; DeZern, A.E.; Garcia-Manero, G.; Steensma, D.P.; Roboz, G.J.; Sekeres, M.A.; Cluzeau, T.; Sweet, K.L.; McLemore, A.; McGraw, K.L.; et al. Eprenetapopt (APR-246) and Azacitidine in TP53-Mutant Myelodysplastic Syndromes. J. Clin. Oncol. 2021, 39, 1584–1594. [Google Scholar] [CrossRef]
- Pui, C.H. Precision medicine in acute lymphoblastic leukemia. Front. Med. 2020, 14, 689–700. [Google Scholar] [CrossRef]
- National Comprehensive Cancer Network. Clinical Practice Guidelines in Oncology: Acute Lymphoblastic Leukemia (Version 1.2025). Available online: https://www.nccn.org/professionals/physician_gls/pdf/all.pdf (accessed on 15 May 2025).
- Chalandon, Y.; Thomas, X.; Hayette, S.; Cayuela, J.M.; Abbal, C.; Huguet, F.; Raffoux, E.; Leguay, T.; Rousselot, P.; Lepretre, S.; et al. Randomized study of reduced-intensity chemotherapy combined with imatinib in adults with Ph-positive acute lymphoblastic leukemia. Blood 2015, 125, 3711–3719. [Google Scholar] [CrossRef] [PubMed]
- Ravandi, F.; O’Brien, S.; Thomas, D.; Faderl, S.; Jones, D.; Garris, R.; Dara, S.; Jorgensen, J.; Kebriaei, P.; Champlin, R.; et al. First report of phase 2 study of dasatinib with hyper-CVAD for the frontline treatment of patients with Philadelphia chromosome-positive (Ph+) acute lymphoblastic leukemia. Blood 2010, 116, 2070–2077. [Google Scholar] [CrossRef]
- Luskin, M.R.; Murakami, M.A.; Keating, J.; Flamand, Y.; Winer, E.S.; Garcia, J.S.; Stahl, M.; Stone, R.M.; Wadleigh, M.; Jaeckle, S.L.; et al. Asciminib plus dasatinib and prednisone for Philadelphia chromosome-positive acute leukemia. Blood 2025, 145, 577–589. [Google Scholar] [CrossRef] [PubMed]
- Madonna, R.; Pieragostino, D.; Cufaro, M.C.; Doria, V.; Del Boccio, P.; Deidda, M.; Pierdomenico, S.D.; Dessalvi, C.C.; De Caterina, R.; Mercuro, G. Ponatinib Induces Vascular Toxicity Through the Notch-1 Signaling Pathway. J. Clin. Med. 2020, 9, 820. [Google Scholar] [CrossRef]
- Castagnetti, F.; Pane, F.; Rosti, G.; Saglio, G.; Breccia, M. Dosing Strategies for Improving the Risk-Benefit Profile of Ponatinib in Patients with Chronic Myeloid Leukemia in Chronic Phase. Front. Oncol. 2021, 11, 642005. [Google Scholar] [CrossRef]
- Alghandour, R.; Sakr, D.H.; Shaaban, Y. Philadelphia-like acute lymphoblastic leukemia: The journey from molecular background to the role of bone marrow transplant—Review article. Ann. Hematol. 2023, 102, 1287–1300. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Lu, S.; Zhang, X.; Yang, Z.; Sun, A.; Wu, D.; Zhou, H.; Miao, M. The combination of a tyrosine kinase inhibitor and blinatumomab in patients with Philadelphia chromosome–positive acute lymphoblastic leukemia or Philadelphia chromosome-like acute lymphoblastic leukemia. Cancer Med. 2024, 13, e70161. [Google Scholar] [CrossRef]
- Zhang, T.; Zhu, K.; Zihong, C.; Lin, R.; Liu, Q.; Zhou, H. Frontline Combination of 3 rd Generation TKI Olverembatinib and Blinatumomab for Ph+/Ph-like ALL Patients. Blood 2023, 142, 1504. [Google Scholar] [CrossRef]
- Kantarjian, H.; Stein, A.; Gökbuget, N.; Fielding, A.K.; Schuh, A.C.; Ribera, J.M.; Wei, A.; Dombret, H.; Foà, R.; Bassan, R.; et al. Blinatumomab versus Chemotherapy for Advanced Acute Lymphoblastic Leukemia. N. Engl. J. Med. 2017, 376, 836–847. [Google Scholar] [CrossRef] [PubMed]
- Kantarjian, H.M.; DeAngelo, D.J.; Stelljes, M.; Martinelli, G.; Liedtke, M.; Stock, W.; Gökbuget, N.; O’Brien, S.; Wang, K.; Wang, T.; et al. Inotuzumab Ozogamicin versus Standard Therapy for Acute Lymphoblastic Leukemia. N. Engl. J. Med. 2016, 375, 740–753. [Google Scholar] [CrossRef]
- Laetsch, T.W.; Maude, S.L.; Rives, S.; Hiramatsu, H.; Bittencourt, H.; Bader, P.; Baruchel, A.; Boyer, M.; De Moerloose, B.; Qayed, M.; et al. Three-Year Update of Tisagenlecleucel in Pediatric and Young Adult Patients With Relapsed/Refractory Acute Lymphoblastic Leukemia in the ELIANA Trial. J. Clin. Oncol. 2023, 41, 1664–1669. [Google Scholar] [CrossRef]
- Saleh, K.; Pasquier, F.; Bigenwald, C.; De Botton, S.; Ribrag, V.; Castilla-Llorente, C. CAR T-Cells for the Treatment of B-Cell Acute Lymphoblastic Leukemia. J. Clin. Med. 2023, 12, 6883. [Google Scholar] [CrossRef]
- Sheth, V.S.; Gauthier, J. Taming the beast: CRS and ICANS after CAR T-cell therapy for ALL. Bone Marrow Transplant. 2021, 56, 552–566. [Google Scholar] [CrossRef]
- Almaeen, A.H.; Abouelkheir, M. CAR T-Cells in Acute Lymphoblastic Leukemia: Current Status and Future Prospects. Biomedicines 2023, 11, 2693. [Google Scholar] [CrossRef]
- Gu, T.; Zhu, M.; Huang, H.; Hu, Y. Relapse after CAR-T cell therapy in B-cell malignancies: Challenges and future approaches. J. Zhejiang Univ. Sci. B 2022, 23, 793–811. [Google Scholar] [CrossRef]
- Cordo, V.; van der Zwet, J.C.G.; Canté-Barrett, K.; Pieters, R.; Meijerink, J.P.P. T-cell Acute Lymphoblastic Leukemia: A Roadmap to Targeted Therapies. Blood Cancer Discov. 2021, 2, 19–31. [Google Scholar] [CrossRef] [PubMed]
- Zheng, R.; Li, M.; Wang, S.; Liu, Y. Advances of target therapy on NOTCH1 signaling pathway in T-cell acute lymphoblastic leukemia. Exp. Hematol. Oncol. 2020, 9, 31. [Google Scholar] [CrossRef] [PubMed]
- Bride, K.L.; Hu, H.; Tikhonova, A.; Fuller, T.J.; Vincent, T.L.; Shraim, R.; Li, M.M.; Carroll, W.L.; Raetz, E.A.; Aifantis, I.; et al. Rational drug combinations with CDK4/6 inhibitors in acute lymphoblastic leukemia. Haematologica 2022, 107, 1746–1757. [Google Scholar] [CrossRef] [PubMed]
- Kannan, S.; Li, Y.; Baran, N.; Yang, X.; Ghotbaldini, S.; Zhang Tatarata, Q.; Yoshimura, S.; Li, Z.; Hsiao, Y.; Balachander, S.; et al. Antileukemia efficacy of the dual BCL2/BCL-XL inhibitor AZD0466 in acute lymphoblastic leukemia preclinical models. Blood Adv. 2025, 9, 473–487. [Google Scholar] [CrossRef]
- Quintas-Cardama, A.; Cortes, J. Molecular biology of bcr-abl1-positive chronic myeloid leukemia. Blood 2009, 113, 1619–1630. [Google Scholar] [CrossRef]
- Ciftciler, R.; Haznedaroglu, I.C. Tailored tyrosine kinase inhibitor (TKI) treatment of chronic myeloid leukemia (CML) based on current evidence. Eur. Rev. Med. Pharmacol. Sci. 2021, 25, 7787–7798. [Google Scholar]
- Sun, J.; Hu, R.; Han, M.; Tan, Y.; Xie, M.; Gao, S.; Hu, J.F. Mechanisms underlying therapeutic resistance of tyrosine kinase inhibitors in chronic myeloid leukemia. Int. J. Biol. Sci. 2024, 20, 175–181. [Google Scholar] [CrossRef]
- Cortes, J.E.; Hughes, T.P.; Mauro, M.J.; Hochhaus, A.; Rea, D.; Goh, Y.T.; Janssen, J.; Steegmann, J.L.; Heinrich, M.C.; Talpaz, M.; et al. Asciminib, a First-in-Class STAMP Inhibitor, Provides Durable Molecular Response in Patients (pts) with Chronic Myeloid Leukemia (CML) Harboring the T315I Mutation: Primary Efficacy and Safety Results from a Phase 1 Trial. Blood 2020, 136, 47–50. [Google Scholar] [CrossRef]
- Padala, S.; Cortes, J. Asciminib in chronic myeloid leukemia: A STAMP for expedited delivery? Haematologica 2023, 108, 2913–2918. [Google Scholar] [CrossRef]
- Atallah, E.; Mauro, M.J.; Hochhaus, A.; Boquimpani, C.; Minami, Y.; Maheshwari, V.K.; Saini, L.; Corbin, R.; Rea, D. Matching-adjusted indirect comparison of asciminib versus other treatments in chronic-phase chronic myeloid leukemia after failure of two prior tyrosine kinase inhibitors. J. Cancer Res. Clin. Oncol. 2023, 149, 6247–6262. [Google Scholar] [CrossRef]
- Osman, A.E.G.; Deininger, M.W. Chronic Myeloid Leukemia: Modern therapies, current challenges and future directions. Blood Rev. 2021, 49, 100825. [Google Scholar] [CrossRef] [PubMed]
- Moia, R.; Patriarca, A.; Schipani, M.; Ferri, V.; Favini, C.; Sagiraju, S.; Al Essa, W.; Gaidano, G. Precision Medicine Management of Chronic Lymphocytic Leukemia. Cancers 2020, 12, 642. [Google Scholar] [CrossRef]
- Cherng, H.J.; Jain, N. First-Line Therapy for Chronic Lymphocytic Leukemia: Bruton Tyrosine Kinase or BCL2 or Both? Hematol./Oncol. Clin. N. Am. 2021, 35, 725–738. [Google Scholar] [CrossRef]
- Al-Sawaf, O.; Robrecht, S.; Zhang, C.; Olivieri, S.; Chang, Y.M.; Fink, A.M.; Tausch, E.; Schneider, C.; Ritgen, M.; Kreuzer, K.-A.; et al. Venetoclax-obinutuzumab for previously untreated chronic lymphocytic leukemia: 6-year results of the randomized phase 3 CLL14 study. Blood 2024, 144, 1924–1935. [Google Scholar] [CrossRef] [PubMed]
- Brown, J.R.; Eichhorst, B.; Hillmen, P.; Jurczak, W.; Kaźmierczak, M.; Lamanna, N.; O’Brien, S.M.; Tam, C.S.; Qiu, L.; Zhou, K.; et al. Zanubrutinib or Ibrutinib in Relapsed or Refractory Chronic Lymphocytic Leukemia. N. Engl. J. Med. 2023, 388, 319–332. [Google Scholar] [CrossRef] [PubMed]
- Rosati, E.; Baldoni, S.; De Falco, F.; Del Papa, B.; Dorillo, E.; Rompietti, C.; Albi, E.; Falzetti, F.; Di Ianni, M.; Sportoletti, P. NOTCH1 Aberrations in Chronic Lymphocytic Leukemia. Front. Oncol. 2018, 8, 229. [Google Scholar] [CrossRef]
- Diop, F.; Moia, R.; Favini, C.; Spaccarotella, E.; De Paoli, L.; Bruscaggin, A.; Spina, V.; Terzi-di-Bergamo, L.; Arruga, F.; Tarantelli, C.; et al. Biological and clinical implications of BIRC3 mutations in chronic lymphocytic leukemia. Haematologica 2020, 105, 448–456. [Google Scholar] [CrossRef]
- Wan, Y.; Wu, C.J. SF3B1 mutations in chronic lymphocytic leukemia. Blood 2013, 121, 4627–4634. [Google Scholar] [CrossRef]
- Mato, A.R.; Woyach, J.A.; Brown, J.R.; Ghia, P.; Patel, K.; Eyre, T.A.; Munir, T.; Lech-Maranda, E.; Lamanna, N.; Tam, C.S.; et al. Pirtobrutinib after a Covalent BTK Inhibitor in Chronic Lymphocytic Leukemia. N. Engl. J. Med. 2023, 389, 33–44. [Google Scholar] [CrossRef]
- Hays, P. Beyond BCL2 (B cell lymphoma) and BTK (Bruton tyrosine kinase) inhibitors: Novel agents and resistance mechanisms for chronic lymphocytic leukemia. Discov. Oncol. 2025, 16, 1100. [Google Scholar] [CrossRef]
- Stamatopoulos, K.; Pavlova, S.; Al-Sawaf, O.; Chatzikonstantinou, T.; Karamanidou, C.; Gaidano, G.; Cymbalista, F.; Kater, A.P.; Rawstron, A.; Scarfò, L.; et al. Realizing precision medicine in chronic lymphocytic leukemia: Remaining challenges and potential opportunities. Hemasphere 2024, 8, e113. [Google Scholar] [CrossRef] [PubMed]
- Ji, L.; Hua, F.; Wu, Y.; Qiao, T.; Gu, J.; Zhang, X.; Liu, P.; Li, F.; Cheng, Y. Clinical practice of precision medicine in lymphoma. Clin. Transl. Discov. 2022, 2, e21. [Google Scholar] [CrossRef]
- Roschewski, M.; Phelan, J.D.; Wilson, W.H. Molecular Classification and Treatment of Diffuse Large B-Cell Lymphoma and Primary Mediastinal B-Cell Lymphoma. Cancer J. 2020, 26, 195–205. [Google Scholar] [CrossRef]
- Wilson, W.H.; Young, R.M.; Schmitz, R.; Yang, Y.; Pittaluga, S.; Wright, G.; Lih, C.J.; Williams, P.M.; Shaffer, A.L.; Gerecitano, J.; et al. Targeting B cell receptor signaling with ibrutinib in diffuse large B cell lymphoma. Nat. Med. 2015, 21, 922–926. [Google Scholar] [CrossRef] [PubMed]
- Huang, W.; Medeiros, L.J.; Lin, P.; Wang, W.; Tang, G.; Khoury, J.; Konoplev, S.; Yin, C.C.; Xu, J.; Oki, Y.; et al. MYC/BCL2/BCL6 triple hit lymphoma: A study of 40 patients with a comparison to MYC/BCL2 and MYC/BCL6 double hit lymphomas. Mod. Pathol. 2018, 31, 1470–1478. [Google Scholar] [CrossRef]
- Milrod, C.J.; Pelcovits, A.; Ollila, T.A. Immune checkpoint inhibitors in advanced and relapsed/refractory Hodgkin lymphoma: Current applications and future prospects. Front. Oncol. 2024, 14, 1397053. [Google Scholar] [CrossRef]
- Roemer, M.G.; Advani, R.H.; Ligon, A.H.; Natkunam, Y.; Redd, R.A.; Homer, H.; Connelly, C.F.; Sun, H.H.; Daadi, S.E.; Freeman, G.J.; et al. PD-L1 and PD-L2 Genetic Alterations Define Classical Hodgkin Lymphoma and Predict Outcome. J. Clin. Oncol. 2016, 34, 2690–2697. [Google Scholar] [CrossRef]
- Alderuccio, J.P.; Sharman, J.P. ABCs of ADCs in management of relapsed/refractory diffuse large B-cell lymphoma. Blood Rev. 2022, 56, 100967. [Google Scholar] [CrossRef]
- Cheson, B.D.; Nowakowski, G.; Salles, G. Diffuse large B-cell lymphoma: New targets and novel therapies. Blood Cancer J. 2021, 11, 68. [Google Scholar] [CrossRef]
- Rajkumar, S.V. Multiple myeloma: 2022 update on diagnosis, risk stratification, and management. Am. J. Hematol. 2022, 97, 1086–1107. [Google Scholar] [CrossRef]
- Holstein, S.A.; Grant, S.J.; Wildes, T.M. Chimeric Antigen Receptor T-Cell and Bispecific Antibody Therapy in Multiple Myeloma: Moving into the Future. J. Clin. Oncol. 2023, 41, 4416–4429. [Google Scholar] [CrossRef]
- Quezada-Ramírez, S.I.; Del Carmen Tarín-Arzaga, L.; Gómez-De León, A.; Gómez-Almaguer, D. Novel drug combinations for newly diagnosed multiple myeloma: How can we improve on current regimens? Expert Rev. Hematol. 2025, 18, 359–372. [Google Scholar] [CrossRef]
- Waldschmidt, J.M.; Rasche, L. BCMA bispecifics: Breaking the chains of resistance. Blood 2024, 144, 2566–2568. [Google Scholar] [CrossRef] [PubMed]
- Harousseau, J.-L.; Mohty, M. Sequencing anti-BCMA therapies in myeloma. Blood 2023, 141, 211–212. [Google Scholar] [CrossRef]
- Talbot, A.; Hulin, C.; Perrot, A.; Macro, M.; Belhadj Merzoug, K.; Mohty, M.; Bobin, A.; Karlin, L.; Manier, S.; Vincent, L.; et al. Retreatment with Anti-CD38-Based Combinations in Multiple Myeloma in Real-Life: Results from the Emmy Cohort Study. Clin. Lymphoma Myeloma Leuk. 2025, in press. [Google Scholar] [CrossRef]
- Kwon, R.; Yeung, C.C.S. Advances in next-generation sequencing and emerging technologies for hematologic malignancies. Haematologica 2024, 109, 379–387. [Google Scholar] [CrossRef] [PubMed]
- Erfanian, N.; Heydari, A.A.; Feriz, A.M.; Ianez, P.; Derakhshani, A.; Ghasemigol, M.; Farahpour, M.; Razavi, S.M.; Nasseri, S.; Safarpour, H.; et al. Deep learning applications in single-cell genomics and transcriptomics data analysis. Biomed. Pharmacother. 2023, 165, 115077. [Google Scholar] [CrossRef] [PubMed]
- Campillo-Marcos, I.; Alvarez-Errico, D.; Alandes, R.A.; Mereu, E.; Esteller, M. Single-cell technologies and analyses in hematopoiesis and hematological malignancies. Exp. Hematol. 2021, 98, 1–13. [Google Scholar] [CrossRef]
- Gupta, S.D.; Sachs, Z. Novel single-cell technologies in acute myeloid leukemia research. Transl. Res. 2017, 189, 123–135. [Google Scholar] [CrossRef]
- Gaydosik, A.M.; Stonesifer, C.J.; Khaleel, A.E.; Geskin, L.J.; Fuschiotti, P. Single-Cell RNA Sequencing Unveils the Clonal and Transcriptional Landscape of Cutaneous T-Cell Lymphomas. Clin. Cancer Res. 2022, 28, 2610–2622. [Google Scholar] [CrossRef]
- Caprioli, C.; Nazari, I.; Milovanovic, S.; Pelicci, P.G. Single-Cell Technologies to Decipher the Immune Microenvironment in Myeloid Neoplasms: Perspectives and Opportunities. Front. Oncol. 2021, 11, 796477. [Google Scholar] [CrossRef] [PubMed]
- Adil, A.; Kumar, V.; Jan, A.T.; Asger, M. Single-Cell Transcriptomics: Current Methods and Challenges in Data Acquisition and Analysis. Front. Neurosci. 2021, 15, 591122. [Google Scholar] [CrossRef]
- Park, H.E.; Jo, S.H.; Lee, R.H.; Macks, C.P.; Ku, T.; Park, J.; Lee, C.W.; Hur, J.K.; Sohn, C.H. Spatial Transcriptomics: Technical Aspects of Recent Developments and Their Applications in Neuroscience and Cancer Research. Adv. Sci. 2023, 10, e2206939. [Google Scholar] [CrossRef] [PubMed]
- Pickard, K.; Stephenson, E.; Mitchell, A.; Jardine, L.; Bacon, C.M. Location, location, location: Mapping the lymphoma tumor microenvironment using spatial transcriptomics. Front. Oncol. 2023, 13, 1258245. [Google Scholar] [CrossRef]
- Lin, X.; Wang, H.; Jin, J. Integrating Spatial Transcriptome, Single-Cell Sequencing and Histopathology Reveals Bone Marrow Spatial Heterogenous in AML Patients. Blood 2024, 144 (Suppl. S1), 2215. [Google Scholar] [CrossRef]
- Dai, L.; Fan, G.; Xie, T.; Li, L.; Tang, L.; Chen, H.; Shi, Y.; Han, X. Single-cell and spatial transcriptomics reveal a high glycolysis B cell and tumor-associated macrophages cluster correlated with poor prognosis and exhausted immune microenvironment in diffuse large B-cell lymphoma. Biomark. Res. 2024, 12, 58. [Google Scholar] [CrossRef]
- Abdulrahman, Z.; Slieker, R.C.; McGuire, D.; Welters, M.J.P.; van Poelgeest, M.I.E.; van der Burg, S.H. Single-cell spatial transcriptomics unravels cell states and ecosystems associated with clinical response to immunotherapy. J. Immunother. Cancer 2025, 13, e011308. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.-C.; Feng, H.-R.; Zhu, J.; Hong, W.-F. Application of spatial and single-cell omics in tumor immunotherapy biomarkers. LabMed Discov. 2025, 2, 100076. [Google Scholar] [CrossRef]
- Bressan, D.; Battistoni, G.; Hannon, G.J. The dawn of spatial omics. Science 2023, 381, eabq4964. [Google Scholar] [CrossRef]
- Xun, Z.; Ding, X.; Zhang, Y.; Zhang, B.; Lai, S.; Zou, D.; Zheng, J.; Chen, G.; Su, B.; Han, L.; et al. Reconstruction of the tumor spatial microenvironment along the malignant-boundary-nonmalignant axis. Nat. Commun. 2023, 14, 933. [Google Scholar] [CrossRef]
- Rudrapal, M.; Khairnar, S.J.; Jadhav, A.G. Drug Repurposing (DR): An Emerging Approach in Drug Discovery. In Drug Repurposing: Hypothesis, Molecular Aspects and Therapeutic Applications; Badria, F.A., Ed.; IntechOpen: Rijeka, Croatia, 2020. [Google Scholar]
- Kale, V.P.; Habib, H.; Chitren, R.; Patel, M.; Pramanik, K.C.; Jonnalagadda, S.C.; Challagundla, K.; Pandey, M.K. Old drugs, new uses: Drug repurposing in hematological malignancies. Semin. Cancer Biol. 2021, 68, 242–248. [Google Scholar] [CrossRef]
- Malla, R.; Viswanathan, S.; Makena, S.; Kapoor, S.; Verma, D.; Raju, A.A.; Dunna, M.; Muniraj, N. Revitalizing Cancer Treatment: Exploring the Role of Drug Repurposing. Cancers 2024, 16, 1463. [Google Scholar] [CrossRef] [PubMed]
- Pantziarka, P.; Meheus, L. Omics-driven drug repurposing as a source of innovative therapies in rare cancers. Expert Opin. Orphan Drugs 2018, 6, 513–517. [Google Scholar] [CrossRef]
- Licht, J.D.; Shortt, J.; Johnstone, R. From anecdote to targeted therapy: The curious case of thalidomide in multiple myeloma. Cancer Cell 2014, 25, 9–11. [Google Scholar] [CrossRef] [PubMed]
- Winter, S.S. The emergence of antihistamines as unexpected allies in our fight against acute myeloid leukaemia. eBioMedicine 2019, 48, 7–8. [Google Scholar] [CrossRef] [PubMed]
- Sharmeen, S.; Skrtic, M.; Sukhai, M.A.; Hurren, R.; Gronda, M.; Wang, X.; Fonseca, S.B.; Sun, H.; Wood, T.E.; Ward, R.; et al. The antiparasitic agent ivermectin induces chloride-dependent membrane hyperpolarization and cell death in leukemia cells. Blood 2010, 116, 3593–3603. [Google Scholar] [CrossRef]
- Horgan, D.; Van den Bulcke, M.; Malapelle, U.; Troncone, G.; Normanno, N.; Capoluongo, E.D.; Prelaj, A.; Rizzari, C.; Trapani, D.; Singh, J.; et al. Tackling the implementation gap for the uptake of NGS and advanced molecular diagnostics into healthcare systems. Heliyon 2024, 10, e23914. [Google Scholar] [CrossRef]
- Shih, Y.T.; Pan, I.W.; Teich, N. Global Challenges in Access to and Implementation of Precision Oncology: The Health Care Manager and Health Economist Perspective. In American Society of Clinical Oncology Educational Book; ASCO: Alexandria, VA, USA, 2022; Volume 42, pp. 429–437. [Google Scholar]
- Trosman, J.R.; Weldon, C.B.; Douglas, M.P.; Kurian, A.W.; Kelley, R.K.; Deverka, P.A.; Phillips, K.A. Payer Coverage for Hereditary Cancer Panels: Barriers, Opportunities, and Implications for the Precision Medicine Initiative. J. Natl. Compr. Cancer Netw. 2017, 15, 219–228. [Google Scholar] [CrossRef]
- Abdullah, A.; Liu, Z.; Molinari, M. From Diagnosis to Survivorship: The Role of Social Determinants in Cancer Care. Cancers 2025, 17, 1067. [Google Scholar] [CrossRef]
- Jennings, L.J.; Arcila, M.E.; Corless, C.; Kamel-Reid, S.; Lubin, I.M.; Pfeifer, J.; Temple-Smolkin, R.L.; Voelkerding, K.V.; Nikiforova, M.N. Guidelines for Validation of Next-Generation Sequencing-Based Oncology Panels: A Joint Consensus Recommendation of the Association for Molecular Pathology and College of American Pathologists. J. Mol. Diagn. 2017, 19, 341–365. [Google Scholar] [CrossRef]
- Roy, S.; Coldren, C.; Karunamurthy, A.; Kip, N.S.; Klee, E.W.; Lincoln, S.E.; Leon, A.; Pullambhatla, M.; Temple-Smolkin, R.L.; Voelkerding, K.V.; et al. Standards and Guidelines for Validating Next-Generation Sequencing Bioinformatics Pipelines: A Joint Recommendation of the Association for Molecular Pathology and the College of American Pathologists. J. Mol. Diagn. 2018, 20, 4–27. [Google Scholar] [CrossRef] [PubMed]
- Horak, P.; Griffith, M.; Danos, A.M.; Pitel, B.A.; Madhavan, S.; Liu, X.; Chow, C.; Williams, H.; Carmody, L.; Barrow-Laing, L.; et al. Standards for the classification of pathogenicity of somatic variants in cancer (oncogenicity): Joint recommendations of Clinical Genome Resource (ClinGen), Cancer Genomics Consortium (CGC), and Variant Interpretation for Cancer Consortium (VICC). Genet. Med. 2022, 24, 986–998. [Google Scholar] [CrossRef]
- Zeng, J.; Shufean, M.A. Molecular-based precision oncology clinical decision making augmented by artificial intelligence. Emerg. Top. Life Sci. 2021, 5, 757–764. [Google Scholar] [CrossRef] [PubMed]
- Lutz, S.; D’Angelo, A.; Hammerl, S.; Schmutz, M.; Claus, R.; Fischer, N.M.; Kramer, F.; Hammoud, Z. Unveiling the Digital Evolution of Molecular Tumor Boards. Target. Oncol. 2025, 20, 27–43. [Google Scholar] [CrossRef]
- Lau-Min, K.S.; McKenna, D.; Asher, S.B.; Bardakjian, T.; Wollack, C.; Bleznuck, J.; Biros, D.; Anantharajah, A.; Clark, D.F.; Condit, C.; et al. Impact of integrating genomic data into the electronic health record on genetics care delivery. Genet. Med. 2022, 24, 2338–2350. [Google Scholar] [CrossRef] [PubMed]
- Horgan, D.; Tanner, M.; Aggarwal, C.; Thomas, D.; Grover, S.; Basel-Salmon, L.; Dienstmann, R.; Tan, T.J.Y.; Park, W.Y.; Abu Rasheed, H.M.; et al. Precision Oncology: A Global Perspective on Implementation and Policy Development. JCO Glob. Oncol. 2025, 11, e2400416. [Google Scholar] [CrossRef]
- Duan, X.-P.; Qin, B.-D.; Jiao, X.-D.; Liu, K.; Wang, Z.; Zang, Y.-S. New clinical trial design in precision medicine: Discovery, development and direction. Signal Transduct. Target. Ther. 2024, 9, 57. [Google Scholar] [CrossRef]
- Tao, J.J.; Schram, A.M.; Hyman, D.M. Basket Studies: Redefining Clinical Trials in the Era of Genome-Driven Oncology. Annu. Rev. Med. 2018, 69, 319–331. [Google Scholar] [CrossRef]
- Tang, L.; Huang, Z.; Mei, H.; Hu, Y. Immunotherapy in hematologic malignancies: Achievements, challenges and future prospects. Signal Transduct. Target. Ther. 2023, 8, 306. [Google Scholar] [CrossRef]
- Marcou, Q.; Mora, T.; Walczak, A.M. High-throughput immune repertoire analysis with IGoR. Nat. Commun. 2018, 9, 561. [Google Scholar] [CrossRef]
- Xie, N.; Shen, G.; Gao, W.; Huang, Z.; Huang, C.; Fu, L. Neoantigens: Promising targets for cancer therapy. Signal Transduct. Target. Ther. 2023, 8, 9. [Google Scholar] [CrossRef]
- Erfanian, N.; Derakhshani, A.; Nasseri, S.; Fereidouni, M.; Baradaran, B.; Tabrizi, N.J.; Brunetti, O.; Bernardini, R.; Silvestris, N.; Safarpour, H. Immunotherapy of cancer in single-cell RNA sequencing era: A precision medicine perspective. Biomed. Pharmacother. 2022, 146, 112558. [Google Scholar] [CrossRef]
- Jain, K.K. Personalized Immuno-Oncology. Med. Princ. Pract. 2021, 30, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Serrano, D.; Bonanni, B.; Brown, K. Therapeutic cancer prevention: Achievements and ongoing challenges—A focus on breast and colorectal cancer. Mol. Oncol. 2019, 13, 579–590. [Google Scholar] [CrossRef] [PubMed]
- Milanese, J.-S.; Wang, E. Germline Genetics in Cancer: The New Frontier. In Systems Medicine; Wolkenhauer, O., Ed.; Academic Press: Oxford, UK, 2021; pp. 379–385. [Google Scholar]
- Canzian, F.; Piredda, C.; Macauda, A.; Zawirska, D.; Andersen, N.F.; Nagler, A.; Zaucha, J.M.; Mazur, G.; Dumontet, C.; Wątek, M.; et al. A polygenic risk score for multiple myeloma risk prediction. Eur. J. Hum. Genet. 2022, 30, 474–479. [Google Scholar] [CrossRef]
- Savage, S.A.; Walsh, M.F. Myelodysplastic Syndrome, Acute Myeloid Leukemia, and Cancer Surveillance in Fanconi Anemia. Hematol./Oncol. Clin. N. Am. 2018, 32, 657–668. [Google Scholar] [CrossRef] [PubMed]
- Dacoregio, M.I.; Abrahão Reis, P.C.; Gonçalves Celso, D.S.; Romero, L.E.; Altmayer, S.; Vilbert, M.; Moraes, F.Y.; Gomy, I. Baseline surveillance in Li Fraumeni syndrome using whole-body MRI: A systematic review and updated meta-analysis. Eur. Radiol. 2025, 35, 643–651. [Google Scholar] [CrossRef]
- Vinci, L.; Strahm, B.; Speckmann, C.; Erlacher, M. The different faces of GATA2 deficiency: Implications for therapy and surveillance. Front. Oncol. 2024, 14, 1423856. [Google Scholar] [CrossRef]
- Zhuang, Q.; Jin, S.; Wang, W.; Wang, Y.; Tong, H.; Liu, Z.; Sun, J. Clonal hematopoiesis of indeterminate potential: The root cause of, and fertile ground for, hematological malignancies. Trends Mol. Med. 2025, 31, 252–264. [Google Scholar] [CrossRef]
- Nagel, Z.D.; Engelward, B.P.; Brenner, D.J.; Begley, T.J.; Sobol, R.W.; Bielas, J.H.; Stambrook, P.J.; Wei, Q.; Hu, J.J.; Terry, M.B.; et al. Towards precision prevention: Technologies for identifying healthy individuals with high risk of disease. Mutat. Res. 2017, 800–802, 14–28. [Google Scholar] [CrossRef]
- Quazi, S. Artificial intelligence and machine learning in precision and genomic medicine. Med. Oncol. 2022, 39, 120. [Google Scholar] [CrossRef] [PubMed]
- Walter, W.; Pohlkamp, C.; Meggendorfer, M.; Nadarajah, N.; Kern, W.; Haferlach, C.; Haferlach, T. Artificial intelligence in hematological diagnostics: Game changer or gadget? Blood Rev. 2023, 58, 101019. [Google Scholar] [CrossRef] [PubMed]
NGS | WES | RNA-Seq | |
---|---|---|---|
Coverage | Whole genome or targeted (coding + non-coding) | Protein-coding regions (~1% of genome) | Transcriptome (expression, fusions) |
Main applications | Mutation profiling, MRD, therapy guidance | Somatic/germline mutations detection | Fusion detection, expression profiling, pathway/splicing analysis |
Depth and sensitivity | High, detects low-frequency variants | Moderate, may miss rare variants | Expression-dependent, RNA-quality-sensitive |
Strengths | Broad variant detection, clinically actionable | Efficient for coding variants, useful in rare cases | Functional insights, detects fusions missed by DNA sequencing |
Limitations | Cost, complex data, bioinformatics challenges, standardization gaps | Misses non-coding/structural variants; lower depth | RNA degradation risk; limited clinical adoption (but growing) |
Malignancy | Molecular Targets/Biomarkers | Targeted Therapy |
---|---|---|
AML | FLT3, IDH1/2, NPM1, TP53 | FLT3 inhibitors (midostaurin, gilteritinib, quizartinib); IDH inhibitors (ivosidenib, enasidenib); hypomethylating agents (azacitidine, decitabine); investigational: APR-246 (eprenetapopt); menin inhibitors (revumenib, ziftomenib) |
ALL (B-cell) | BCR-ABL1 (Ph+), ABL-class/JAK fusions (Ph-like), CD19, CD22 | TKIs (imatinib, dasatinib, asciminib, olverembatinib, ponatinib); BiTE (blinatumomab); CAR T (tisagenlecleucel, KTE-X19 [brexucabtagene autoleucel]); ADC (inotuzumab ozogamicin) |
ALL (T-cell) | NOTCH1, CDK4/6, BCL-2 | Investigational: venetoclax, navitoclax, NOTCH1 inhibitors, CDK4/6 inhibitors |
CML | BCR-ABL1, T315I mutation | TKIs (imatinib, dasatinib, nilotinib, bosutinib, ponatinib, asciminib) |
CLL | TP53, del(17p), IGHV mutation status, NOTCH1, SF3B1, BIRC3 | BTK inhibitors (ibrutinib, acalabrutinib, zanubrutinib); BCL-2 inhibitor: venetoclax ± Obinutuzumab; Emerging: pirtobrutinib |
Lymphomas | MYC/BCL2/BCL6 rearrangements, PD-L1 (9p24.1) | BTK inhibitor: ibrutinib (ABC-DLBCL); immune checkpoint inhibitors (nivolumab, pembrolizumab); ADC: polatuzumab vedotin; anti-CD19 (tafasitamab + lenalidomide); selinexor; CAR T (axi-cel, liso-cel, tisa-cel) |
Multiple Myeloma | t(4;14), t(14;16), del(17p), BCMA | BCMA-targeted CAR T-cells (idecabtagene vicleucel, ciltacabtagene autoleucel), bispecifics (teclistamab, elranatamab), ADCs (belantamab mafodotin), CELMoDs (e.g., iberdomide, mezigdomide), anti-CD38 antibodies (daratumumab, isatuximab) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khoury, R.; Raffoul, C.; Khater, C.; Hanna, C. Precision Medicine in Hematologic Malignancies: Evolving Concepts and Clinical Applications. Biomedicines 2025, 13, 1654. https://doi.org/10.3390/biomedicines13071654
Khoury R, Raffoul C, Khater C, Hanna C. Precision Medicine in Hematologic Malignancies: Evolving Concepts and Clinical Applications. Biomedicines. 2025; 13(7):1654. https://doi.org/10.3390/biomedicines13071654
Chicago/Turabian StyleKhoury, Rita, Chris Raffoul, Christina Khater, and Colette Hanna. 2025. "Precision Medicine in Hematologic Malignancies: Evolving Concepts and Clinical Applications" Biomedicines 13, no. 7: 1654. https://doi.org/10.3390/biomedicines13071654
APA StyleKhoury, R., Raffoul, C., Khater, C., & Hanna, C. (2025). Precision Medicine in Hematologic Malignancies: Evolving Concepts and Clinical Applications. Biomedicines, 13(7), 1654. https://doi.org/10.3390/biomedicines13071654