Urolithin A in Central Nervous System Disorders: Therapeutic Applications and Challenges
Abstract
1. Introduction
2. Biosynthesis and Pharmacokinetics of Urolithin A
3. Biological Effects of Urolithin A
3.1. Mitophagy and Mitochondrial Homeostasis
3.2. Anti-Inflammatory and Antioxidant
3.3. Anti-Senescence
3.4. Anti-Apoptotic
3.5. Putative Mechanisms of Urolithin A’s Biological Effects
4. Preclinical Studies of Urolithin A in CNS Disorders
4.1. Alzheimer’s Disease
4.2. Parkinson’s Disease
4.3. Diabetes-Associated Cognitive Impairment
4.4. Stroke
4.5. Traumatic CNS Injuries
4.6. CNS Infectious Diseases
4.7. CNS Tumors
4.8. Radiation Brain Injury
4.9. Multiple Sclerosis
4.10. Amyotrophic Lateral Sclerosis
4.11. Spinal Muscular Atrophy
5. Advances in Clinical Trials of Urolithin A
6. Future Perspectives and Challenges
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Moreira, R.; Nóbrega, C.; de Almeida, L.P.; Mendonça, L. Brain-targeted drug delivery—Nanovesicles directed to specific brain cells by brain-targeting ligands. J. Nanobiotechnol. 2024, 22, 260. [Google Scholar] [CrossRef] [PubMed]
- Knopman, D.S.; Amieva, H.; Petersen, R.C.; Chételat, G.; Holtzman, D.M.; Hyman, B.T.; Nixon, R.A.; Jones, D.T. Alzheimer disease. Nat. Rev. Dis. Primers 2021, 7, 33. [Google Scholar] [CrossRef]
- Bloem, B.R.; Okun, M.S.; Klein, C. Parkinson’s disease. Lancet 2021, 397, 2284–2303. [Google Scholar] [CrossRef] [PubMed]
- Wojciechowska, O.; Kujawska, M. Urolithin A in Health and Diseases: Prospects for Parkinson’s Disease Management. Antioxidants 2023, 12, 1479. [Google Scholar] [CrossRef] [PubMed]
- Campbell, B.C.V.; de Silva, D.A.; Macleod, M.R.; Coutts, S.B.; Schwamm, L.H.; Davis, S.M.; Donnan, G.A. Ischaemic stroke. Nat. Rev. Dis. Primers 2019, 5, 70. [Google Scholar] [CrossRef]
- Campbell, B.C.V.; Khatri, P. Stroke. Lancet 2020, 396, 129–142. [Google Scholar] [CrossRef]
- Brett, B.L.; Gardner, R.C.; Godbout, J.; Dams-O’Connor, K.; Keene, C.D. Traumatic Brain Injury and Risk of Neurodegenerative Disorder. Biol. Psychiatry 2022, 91, 498–507. [Google Scholar] [CrossRef]
- Patel, A.P.; Fisher, J.L.; Nichols, E.; Abd-Allah, F.; Abdela, J.; Abdelalim, A.; Abraha, H.N.; Agius, D.; Alahdab, F.; Alam, T.; et al. Global, regional, and national burden of brain and other CNS cancer, 1990–2016: A systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol. 2019, 18, 376–393. [Google Scholar] [CrossRef]
- D’Amico, D.; Andreux, P.A.; Valdés, P.; Singh, A.; Rinsch, C.; Auwerx, J. Impact of the Natural Compound Urolithin A on Health, Disease, and Aging. Trends Mol. Med. 2021, 27, 687–699. [Google Scholar] [CrossRef]
- Villalgordo, J.M.; Trulli, L.; García-Villalba, R.; García, V.; Althobaiti, Y.; Tomás-Barberán, F.A. Novel Regioselective Synthesis of Urolithin Glucuronides─Human Gut Microbiota Cometabolites of Ellagitannins and Ellagic Acid. J. Agric. Food. Chem. 2022, 70, 5819–5828. [Google Scholar] [CrossRef]
- Selma, M.V.; Beltran, D.; Garcia-Villalba, R.; Espin, J.C.; Tomas-Barberan, F.A. Description of urolithin production capacity from ellagic acid of two human intestinal Gordonibacter species. Food Funct. 2014, 5, 1779–1784. [Google Scholar] [CrossRef] [PubMed]
- Ryu, D.; Mouchiroud, L.; Andreux, P.A.; Katsyuba, E.; Moullan, N.; Nicolet-Dit-Félix, A.A.; Williams, E.G.; Jha, P.; Lo Sasso, G.; Huzard, D.; et al. Urolithin A induces mitophagy and prolongs lifespan in C. elegans and increases muscle function in rodents. Nat. Med. 2016, 22, 879–888. [Google Scholar] [CrossRef]
- Liu, C.; Li, X.-L.; Zhang, Z.-L.; Qiu, L.; Ding, S.-X.; Xue, J.-X.; Zhao, G.-P.; Li, J. Antiaging Effects of Urolithin A on Replicative Senescent Human Skin Fibroblasts. Rejuvenation Res. 2019, 22, 191–200. [Google Scholar] [CrossRef]
- Singh, A.; D’Amico, D.; Andreux, P.A.; Fouassier, A.M.; Blanco-Bose, W.; Evans, M.; Aebischer, P.; Auwerx, J.; Rinsch, C. Urolithin A improves muscle strength, exercise performance, and biomarkers of mitochondrial health in a randomized trial in middle-aged adults. Cell Rep. Med. 2022, 3, 100633. [Google Scholar] [CrossRef]
- Liu, S.; D’Amico, D.; Shankland, E.; Bhayana, S.; Garcia, J.M.; Aebischer, P.; Rinsch, C.; Singh, A.; Marcinek, D.J. Effect of Urolithin A Supplementation on Muscle Endurance and Mitochondrial Health in Older Adults: A Randomized Clinical Trial. JAMA Netw. Open 2022, 5, e2144279. [Google Scholar] [CrossRef]
- Andreux, P.A.; Blanco-Bose, W.; Ryu, D.; Burdet, F.; Ibberson, M.; Aebischer, P.; Auwerx, J.; Singh, A.; Rinsch, C. The mitophagy activator urolithin A is safe and induces a molecular signature of improved mitochondrial and cellular health in humans. Nat. Metab. 2019, 1, 595–603. [Google Scholar] [CrossRef]
- Iglesias-Aguirre, C.E.; García-Villalba, R.; Beltrán, D.; Frutos-Lisón, M.D.; Espín, J.C.; Tomás-Barberán, F.A.; Selma, M.V. Gut Bacteria Involved in Ellagic Acid Metabolism To Yield Human Urolithin Metabotypes Revealed. J. Agric. Food Chem. 2023, 71, 4029–4035. [Google Scholar] [CrossRef]
- Zhang, M.; Cui, S.; Mao, B.; Zhang, Q.; Zhao, J.; Zhang, H.; Tang, X.; Chen, W. Ellagic acid and intestinal microflora metabolite urolithin A: A review on its sources, metabolic distribution, health benefits, and biotransformation. Crit. Rev. Food Sci. Nutr. 2023, 63, 6900–6922. [Google Scholar] [CrossRef] [PubMed]
- Pidgeon, R.; Mitchell, S.; Shamash, M.; Suleiman, L.; Dridi, L.; Maurice, C.F.; Castagner, B. Diet-derived urolithin A is produced by a dehydroxylase encoded by human gut Enterocloster species. Nat. Commun. 2025, 16, 999. [Google Scholar] [CrossRef] [PubMed]
- Inada, K.O.P.; Tomás-Barberán, F.A.; Perrone, D.; Monteiro, M. Metabolism of ellagitannins from jabuticaba (Myrciaria jaboticaba) in normoweight, overweight and obese Brazilians: Unexpected laxative effects influence urolithins urinary excretion and metabotype distribution. J. Funct. Foods 2019, 57, 299–308. [Google Scholar] [CrossRef]
- Xian, W.; Yang, S.; Deng, Y.; Yang, Y.; Chen, C.; Li, W.; Yang, R. Distribution of Urolithins Metabotypes in Healthy Chinese Youth: Difference in Gut Microbiota and Predicted Metabolic Pathways. J. Agric. Food Chem. 2021, 69, 13055–13065. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.; D’Amico, D.; Andreux, P.A.; Dunngalvin, G.; Kern, T.; Blanco-Bose, W.; Auwerx, J.; Aebischer, P.; Rinsch, C. Direct supplementation with Urolithin A overcomes limitations of dietary exposure and gut microbiome variability in healthy adults to achieve consistent levels across the population. Eur. J. Clin. Nutr. 2022, 76, 297–308. [Google Scholar] [CrossRef]
- Cortés-Martín, A.; García-Villalba, R.; González-Sarrías, A.; Romo-Vaquero, M.; Loria-Kohen, V.; Ramírez-de-Molina, A.; Tomás-Barberán, F.A.; Selma, M.V.; Espín, J.C. The gut microbiota urolithin metabotypes revisited: The human metabolism of ellagic acid is mainly determined by aging. Food Funct. 2018, 9, 4100–4106. [Google Scholar] [CrossRef] [PubMed]
- Raimundo, A.F.; Ferreira, S.; Tomás-Barberán, F.A.; Santos, C.N.; Menezes, R. Urolithins: Diet-Derived Bioavailable Metabolites to Tackle Diabetes. Nutrients 2021, 13, 4285. [Google Scholar] [CrossRef]
- Savi, M.; Bocchi, L.; Mena, P.; Dall’Asta, M.; Crozier, A.; Brighenti, F.; Stilli, D.; Del Rio, D. In vivo administration of urolithin A and B prevents the occurrence of cardiac dysfunction in streptozotocin-induced diabetic rats. Cardiovasc. Diabetol. 2017, 16, 80. [Google Scholar] [CrossRef]
- González-Sarrías, A.; Giménez-Bastida, J.A.; García-Conesa, M.T.; Gómez-Sánchez, M.B.; García-Talavera, N.V.; Gil-Izquierdo, A.; Sánchez-Alvarez, C.; Fontana-Compiano, L.O.; Morga-Egea, J.P.; Pastor-Quirante, F.A.; et al. Occurrence of urolithins, gut microbiota ellagic acid metabolites and proliferation markers expression response in the human prostate gland upon consumption of walnuts and pomegranate juice. Mol. Nutr. Food Res. 2010, 54, 311–322. [Google Scholar] [CrossRef] [PubMed]
- Kujawska, M.; Jourdes, M.; Kurpik, M.; Szulc, M.; Szaefer, H.; Chmielarz, P.; Kreiner, G.; Krajka-Kuźniak, V.; Mikołajczak, P.Ł.; Teissedre, P.-L.; et al. Neuroprotective Effects of Pomegranate Juice against Parkinson’s Disease and Presence of Ellagitannins-Derived Metabolite-Urolithin A-In the Brain. Int. J. Mol. Sci. 2019, 21, 202. [Google Scholar] [CrossRef]
- Jiménez-Loygorri, J.I.; Villarejo-Zori, B.; Viedma-Poyatos, Á.; Zapata-Muñoz, J.; Benítez-Fernández, R.; Frutos-Lisón, M.D.; Tomás-Barberán, F.A.; Espín, J.C.; Area-Gómez, E.; Gomez-Duran, A.; et al. Mitophagy curtails cytosolic mtDNA-dependent activation of cGAS/STING inflammation during aging. Nat. Commun. 2024, 15, 830. [Google Scholar] [CrossRef]
- Gustafsson, Å.B.; Dorn, G.W. Evolving and Expanding the Roles of Mitophagy as a Homeostatic and Pathogenic Process. Physiol. Rev. 2019, 99, 853–892. [Google Scholar] [CrossRef]
- Palikaras, K.; Lionaki, E.; Tavernarakis, N. Mechanisms of mitophagy in cellular homeostasis, physiology and pathology. Nat. Cell Biol. 2018, 20, 1013–1022. [Google Scholar] [CrossRef]
- Wauer, T.; Simicek, M.; Schubert, A.; Komander, D. Mechanism of phospho-ubiquitin-induced PARKIN activation. Nature 2015, 524, 370–374. [Google Scholar] [CrossRef]
- Gladkova, C.; Maslen, S.L.; Skehel, J.M.; Komander, D. Mechanism of parkin activation by PINK1. Nature 2018, 559, 410–414. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Dorn, G.W. PINK1-Phosphorylated Mitofusin 2 Is a Parkin Receptor for Culling Damaged Mitochondria. Science 2013, 340, 471–475. [Google Scholar] [CrossRef] [PubMed]
- Vargas, J.N.S.; Hamasaki, M.; Kawabata, T.; Youle, R.J.; Yoshimori, T. The mechanisms and roles of selective autophagy in mammals. Nat. Rev. Mol. Cell Biol. 2023, 24, 167–185. [Google Scholar] [CrossRef]
- Wang, S.; Long, H.; Hou, L.; Feng, B.; Ma, Z.; Wu, Y.; Zeng, Y.; Cai, J.; Zhang, D.-W.; Zhao, G. The mitophagy pathway and its implications in human diseases. Signal Transduct. Target. Ther. 2023, 8, 304. [Google Scholar] [CrossRef]
- Youle, R.J.; Narendra, D.P. Mechanisms of mitophagy. Nat. Rev. Mol. Cell Biol. 2011, 12, 9–14. [Google Scholar] [CrossRef] [PubMed]
- Kleele, T.; Rey, T.; Winter, J.; Zaganelli, S.; Mahecic, D.; Perreten Lambert, H.; Ruberto, F.P.; Nemir, M.; Wai, T.; Pedrazzini, T.; et al. Distinct fission signatures predict mitochondrial degradation or biogenesis. Nature 2021, 593, 435–439. [Google Scholar] [CrossRef]
- Lieber, T.; Jeedigunta, S.P.; Palozzi, J.M.; Lehmann, R.; Hurd, T.R. Mitochondrial fragmentation drives selective removal of deleterious mtDNA in the germline. Nature 2019, 570, 380–384. [Google Scholar] [CrossRef]
- Wei, Y.; Chiang, W.-C.; Sumpter, R.; Mishra, P.; Levine, B. Prohibitin 2 Is an Inner Mitochondrial Membrane Mitophagy Receptor. Cell 2017, 168, 224–238.e10. [Google Scholar] [CrossRef]
- Chen, W.; Zhao, H.; Li, Y. Mitochondrial dynamics in health and disease: Mechanisms and potential targets. Signal Transduct. Target. Ther. 2023, 8, 333. [Google Scholar] [CrossRef]
- Fang, E.F.; Hou, Y.; Palikaras, K.; Adriaanse, B.A.; Kerr, J.S.; Yang, B.; Lautrup, S.; Hasan-Olive, M.M.; Caponio, D.; Dan, X.; et al. Mitophagy inhibits amyloid-β and tau pathology and reverses cognitive deficits in models of Alzheimer’s disease. Nat. Neurosci. 2019, 22, 401–412. [Google Scholar] [CrossRef]
- Xie, C.; Zhuang, X.-X.; Niu, Z.; Ai, R.; Lautrup, S.; Zheng, S.; Jiang, Y.; Han, R.; Gupta, T.S.; Cao, S.; et al. Amelioration of Alzheimer’s disease pathology by mitophagy inducers identified via machine learning and a cross-species workflow. Nat. Biomed. Eng. 2022, 6, 76–93. [Google Scholar] [CrossRef] [PubMed]
- Han, R.; Wang, Q.; Xiong, X.; Chen, X.; Tu, Z.; Li, B.; Zhang, F.; Chen, C.; Pan, M.; Xu, T.; et al. Deficiency of parkin causes neurodegeneration and accumulation of pathological α-synuclein in monkey models. J. Clin. Investig. 2024, 134, e179633. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Ma, C.; Mi, K.; Cao, X.; Tan, Y.; Yuan, H.; Ren, J.; Liang, X. Urolithin A attenuates Doxorubicin-induced cardiotoxicity by enhancing PINK1-regulated mitophagy via Ambra1. Chem. Biol. Interact. 2025, 406, 111363. [Google Scholar] [CrossRef] [PubMed]
- Luan, P.; D’Amico, D.; Andreux, P.A.; Laurila, P.-P.; Wohlwend, M.; Li, H.; Imamura de Lima, T.; Place, N.; Rinsch, C.; Zanou, N.; et al. Urolithin A improves muscle function by inducing mitophagy in muscular dystrophy. Sci. Transl. Med. 2021, 13, eabb0319. [Google Scholar] [CrossRef]
- Tang, W.; Yan, C.; He, S.; Du, M.; Cheng, B.; Deng, B.; Zhu, S.; Li, Y.; Wang, Q. Neuron-targeted overexpression of caveolin-1 alleviates diabetes-associated cognitive dysfunction via regulating mitochondrial fission-mitophagy axis. Cell Commun. Signal. 2023, 21, 357. [Google Scholar] [CrossRef]
- Shi, K.; Tian, D.-C.; Li, Z.-G.; Ducruet, A.F.; Lawton, M.T.; Shi, F.-D. Global brain inflammation in stroke. Lancet Neurol. 2019, 18, 1058–1066. [Google Scholar] [CrossRef]
- Hirsch, E.C.; Hunot, S. Neuroinflammation in Parkinson’s disease: A target for neuroprotection? Lancet Neurol. 2009, 8, 382–397. [Google Scholar] [CrossRef]
- Aisen, P.S. The potential of anti-inflammatory drugs for the treatment of Alzheimer’s disease. Lancet Neurol. 2002, 1, 279–284. [Google Scholar] [CrossRef]
- Zrzavy, T.; Schwaiger, C.; Wimmer, I.; Berger, T.; Bauer, J.; Butovsky, O.; Schwab, J.M.; Lassmann, H.; Höftberger, R. Acute and non-resolving inflammation associate with oxidative injury after human spinal cord injury. Brain 2021, 144, 144–161. [Google Scholar] [CrossRef]
- Liu, P.; Zhang, T.; Chen, Q.; Li, C.; Chu, Y.; Guo, Q.; Zhang, Y.; Zhou, W.; Chen, H.; Zhou, Z.; et al. Biomimetic Dendrimer-Peptide Conjugates for Early Multi-Target Therapy of Alzheimer’s Disease by Inflammatory Microenvironment Modulation. Adv. Mater. 2021, 33, e2100746. [Google Scholar] [CrossRef]
- Mendiola, A.S.; Ryu, J.K.; Bardehle, S.; Meyer-Franke, A.; Ang, K.K.-H.; Wilson, C.; Baeten, K.M.; Hanspers, K.; Merlini, M.; Thomas, S.; et al. Transcriptional profiling and therapeutic targeting of oxidative stress in neuroinflammation. Nat. Immunol. 2020, 21, 513–524. [Google Scholar] [CrossRef] [PubMed]
- Dong, Y.; Yong, V.W. Oxidized phospholipids as novel mediators of neurodegeneration. Trends Neurosci. 2022, 45, 419–429. [Google Scholar] [CrossRef]
- Ohsawa, I.; Ishikawa, M.; Takahashi, K.; Watanabe, M.; Nishimaki, K.; Yamagata, K.; Katsura, K.-I.; Katayama, Y.; Asoh, S.; Ohta, S. Hydrogen acts as a therapeutic antioxidant by selectively reducing cytotoxic oxygen radicals. Nat. Med. 2007, 13, 688–694. [Google Scholar] [CrossRef]
- Wang, S.; Shi, X.; Xiong, T.; Chen, Q.; Yang, Y.; Chen, W.; Zhang, K.; Nan, Y.; Huang, Q.; Ai, K. Inhibiting Mitochondrial Damage for Efficient Treatment of Cerebral Ischemia-Reperfusion Injury Through Sequential Targeting Nanomedicine of Neuronal Mitochondria in Affected Brain Tissue. Adv. Mater. 2024, 36, e2409529. [Google Scholar] [CrossRef] [PubMed]
- Massaga, C.; Paul, L.; Kwiyukwa, L.P.; Vianney, J.-M.; Chacha, M.; Raymond, J. Computational analysis of Urolithin A as a potential compound for anti-inflammatory, antioxidant, and neurodegenerative pathways. Free Radic. Biol. Med. 2025, 227, 508–520. [Google Scholar] [CrossRef]
- Xu, J.; Yuan, C.; Wang, G.; Luo, J.; Ma, H.; Xu, L.; Mu, Y.; Li, Y.; Seeram, N.P.; Huang, X.; et al. Urolithins Attenuate LPS-Induced Neuroinflammation in BV2Microglia via MAPK, Akt, and NF-κB Signaling Pathways. J. Agric. Food. Chem. 2018, 66, 571–580. [Google Scholar] [CrossRef]
- DaSilva, N.A.; Nahar, P.P.; Ma, H.; Eid, A.; Wei, Z.; Meschwitz, S.; Zawia, N.H.; Slitt, A.L.; Seeram, N.P. Pomegranate ellagitannin-gut microbial-derived metabolites, urolithins, inhibit neuroinflammation in vitro. Nutr. Neurosci. 2019, 22, 185–195. [Google Scholar] [CrossRef] [PubMed]
- Toney, A.M.; Albusharif, M.; Works, D.; Polenz, L.; Schlange, S.; Chaidez, V.; Ramer-Tait, A.E.; Chung, S. Differential Effects of Whole Red Raspberry Polyphenols and Their Gut Metabolite Urolithin A on Neuroinflammation in BV-2 Microglia. Int. J. Environ. Res. Public Health 2020, 18, 68. [Google Scholar] [CrossRef]
- Wu, Y.; Yuan, Q.; Ma, Y.; Zhou, X.; Wang, G.; Wang, S.; Li, S.; Shi, J.; Wang, D. Dietary Intervention with the Gut Microbial Metabolite Urolithin A Attenuates Lipopolysaccharide-Induced Neuroinflammation and Cognitive Deficits via the Sirt1/acetyl-NF-κB Signaling Pathway. Mol. Nutr. Food Res. 2023, 67, e2200401. [Google Scholar] [CrossRef]
- Gong, Z.; Huang, J.; Xu, B.; Ou, Z.; Zhang, L.; Lin, X.; Ye, X.; Kong, X.; Long, D.; Sun, X.; et al. Urolithin A attenuates memory impairment and neuroinflammation in APP/PS1 mice. J. Neuroinflamm. 2019, 16, 62. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Liu, M.; Zhang, Y.; Tian, M.; Chen, P.; Lan, Y.; Zhou, B. Urolithin A alleviates acute kidney injury induced by renal ischemia reperfusion through the p62-Keap1-Nrf2 signaling pathway. Phytother. Res. 2022, 36, 984–995. [Google Scholar] [CrossRef] [PubMed]
- Gao, Z.; Yi, W.; Tang, J.; Sun, Y.; Huang, J.; Lan, T.; Dai, X.; Xu, S.; Jin, Z.-G.; Wu, X. Urolithin A protects against acetaminophen-induced liver injury in mice via sustained activation of Nrf2. Int. J. Biol. Sci. 2022, 18, 2146–2162. [Google Scholar] [CrossRef] [PubMed]
- Lou, L.; Wang, M.; He, J.; Yang, S.; Meng, F.; Wang, S.; Jin, X.; Cai, J.; Cai, C. Urolithin A (UA) attenuates ferroptosis in LPS-induced acute lung injury in mice by upregulating Keap1-Nrf2/HO-1 signaling pathway. Front. Pharmacol. 2023, 14, 1067402. [Google Scholar] [CrossRef]
- D’Amico, D.; Olmer, M.; Fouassier, A.M.; Valdés, P.; Andreux, P.A.; Rinsch, C.; Lotz, M. Urolithin A improves mitochondrial health, reduces cartilage degeneration, and alleviates pain in osteoarthritis. Aging Cell 2022, 21, e13662. [Google Scholar] [CrossRef]
- Misrani, A.; Tabassum, S.; Zhang, Z.-Y.; Tan, S.-H.; Long, C. Urolithin A Prevents Sleep-deprivation-induced Neuroinflammation and Mitochondrial Dysfunction in Young and Aged Mice. Mol. Neurobiol. 2024, 61, 1448–1466. [Google Scholar] [CrossRef]
- Birch, J.; Gil, J. Senescence and the SASP: Many therapeutic avenues. Genes Dev. 2020, 34, 1565–1576. [Google Scholar] [CrossRef]
- Hou, Y.; Wei, Y.; Lautrup, S.; Yang, B.; Wang, Y.; Cordonnier, S.; Mattson, M.P.; Croteau, D.L.; Bohr, V.A. NAD+ supplementation reduces neuroinflammation and cell senescence in a transgenic mouse model of Alzheimer’s disease via cGAS-STING. Proc. Natl. Acad. Sci. USA 2021, 118, e2011226118. [Google Scholar] [CrossRef]
- Wei, L.; Yang, X.; Wang, J.; Wang, Z.; Wang, Q.; Ding, Y.; Yu, A. H3K18 lactylation of senescent microglia potentiates brain aging and Alzheimer’s disease through the NFκB signaling pathway. J. Neuroinflamm. 2023, 20, 208. [Google Scholar] [CrossRef]
- Lim, S.; Kim, T.J.; Kim, Y.-J.; Kim, C.; Ko, S.-B.; Kim, B.-S. Senolytic Therapy for Cerebral Ischemia-Reperfusion Injury. Int. J. Mol. Sci. 2021, 22, 11967. [Google Scholar] [CrossRef]
- Xu, A.; Li, R.; Ren, A.; Jian, H.; Huang, Z.; Zeng, Q.; Wang, B.; Zheng, J.; Chen, X.; Zheng, N.; et al. Regulatory coupling between long noncoding RNAs and senescence in irradiated microglia. J. Neuroinflamm. 2020, 17, 321. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Erb, M.L.; Moore, D.J. Aging, cellular senescence and Parkinson’s disease. J. Parkinsons. Dis. 2025, 15, 239–254. [Google Scholar] [CrossRef]
- Zhang, W.; Sun, H.-S.; Wang, X.; Dumont, A.S.; Liu, Q. Cellular senescence, DNA damage, and neuroinflammation in the aging brain. Trends Neurosci. 2024, 47, 461–474. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Kuca, K.; You, L.; Nepovimova, E.; Heger, Z.; Valko, M.; Adam, V.; Wu, Q.; Jomova, K. The role of cellular senescence in neurodegenerative diseases. Arch. Toxicol. 2024, 98, 2393–2408. [Google Scholar] [CrossRef] [PubMed]
- Sahu, M.R.; Rani, L.; Subba, R.; Mondal, A.C. Cellular senescence in the aging brain: A promising target for neurodegenerative diseases. Mech. Ageing Dev. 2022, 204, 111675. [Google Scholar] [CrossRef]
- Lau, V.; Ramer, L.; Tremblay, M.-È. An aging, pathology burden, and glial senescence build-up hypothesis for late onset Alzheimer’s disease. Nat. Commun. 2023, 14, 1670. [Google Scholar] [CrossRef]
- Melo Dos Santos, L.S.; Trombetta-Lima, M.; Eggen, B.; Demaria, M. Cellular senescence in brain aging and neurodegeneration. Ageing Res. Rev. 2024, 93, 102141. [Google Scholar] [CrossRef]
- Luo, N.; Zhu, W.; Li, X.; Fu, M.; Zhang, Y.; Yang, F.; Zhang, Y.; Chen, Z.; Zhang, Q.; Peng, B.; et al. Defective autophagy of pericytes enhances radiation-induced senescence promoting radiation brain injury. Neuro Oncol. 2024, 26, 2288–2304. [Google Scholar] [CrossRef]
- Fu, M.; Zhang, Y.; Peng, B.; Luo, N.; Zhang, Y.; Zhu, W.; Yang, F.; Chen, Z.; Zhang, Q.; Li, Q.; et al. All-trans retinoic acid inhibits glioblastoma progression and attenuates radiation-induced brain injury. JCI Insight 2024, 9, e179530. [Google Scholar] [CrossRef]
- Madsen, H.B.; Navarro, C.; Gasparini, E.; Park, J.-H.; Li, Z.; Croteau, D.L.; Bohr, V.A. Urolithin A and nicotinamide riboside differentially regulate innate immune defenses and metabolism in human microglial cells. Front. Aging Neurosci. 2024, 16, 1503336. [Google Scholar] [CrossRef]
- Dongol, A.; Chen, X.; Zheng, P.; Seyhan, Z.B.; Huang, X.-F. Quinolinic acid impairs mitophagy promoting microglia senescence and poor healthspan in C. elegans: A mechanism of impaired aging process. Biol. Direct 2023, 18, 86. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Yan, F.; Xu, Z.; Chen, Q.; Ren, J.; Wang, Q.; Chen, L.; Ying, J.; Liu, Z.; Zhao, J.; et al. Urolithin A protects human dermal fibroblasts from UVA-induced photoaging through NRF2 activation and mitophagy. J. Photochem. Photobiol. B 2022, 232, 112462. [Google Scholar] [CrossRef] [PubMed]
- Kuatov, R.; Takano, J.; Arie, H.; Kominami, M.; Tateishi, N.; Wakabayashi, K.-I.; Takemoto, D.; Izumo, T.; Nakao, Y.; Nakamura, W.; et al. Urolithin A Modulates PER2 Degradation via SIRT1 and Enhances the Amplitude of Circadian Clocks in Human Senescent Cells. Nutrients 2024, 17, 20. [Google Scholar] [CrossRef]
- Cho, S.I.; Jo, E.-R.; Song, H. Urolithin A attenuates auditory cell senescence by activating mitophagy. Sci. Rep. 2022, 12, 7704. [Google Scholar] [CrossRef] [PubMed]
- Cinat, D.; de Souza, A.L.; Soto-Gamez, A.; Jellema-de Bruin, A.L.; Coppes, R.P.; Barazzuol, L. Mitophagy induction improves salivary gland stem/progenitor cell function by reducing senescence after irradiation. Radiother. Oncol. 2024, 190, 110028. [Google Scholar] [CrossRef]
- He, Y.; Yocum, L.; Alexander, P.G.; Jurczak, M.J.; Lin, H. Urolithin A Protects Chondrocytes From Mechanical Overloading-Induced Injuries. Front. Pharmacol. 2021, 12, 703847. [Google Scholar] [CrossRef]
- Shi, P.-Z.; Wang, J.-W.; Wang, P.-C.; Han, B.; Lu, X.-H.; Ren, Y.; Feng, X.-M.; Cheng, X.-F.; Zhang, L. Urolithin a alleviates oxidative stress-induced senescence in nucleus pulposus-derived mesenchymal stem cells through SIRT1/PGC-1α pathway. World J. Stem Cells 2021, 13, 1928–1946. [Google Scholar] [CrossRef]
- Liu, H.; Kang, H.; Song, C.; Lei, Z.; Li, L.; Guo, J.; Xu, Y.; Guan, H.; Fang, Z.; Li, F. Urolithin A Inhibits the Catabolic Effect of TNFα on Nucleus Pulposus Cell and Alleviates Intervertebral Disc Degeneration in vivo. Front. Pharmacol. 2018, 9, 1043. [Google Scholar] [CrossRef]
- Guo, X.-X.; Chang, X.-J.; Pu, Q.; Li, A.-L.; Li, J.; Li, X.-Y. Urolithin A alleviates cell senescence by inhibiting ferroptosis and enhances corneal epithelial wound healing. Front. Med. 2024, 11, 1441196. [Google Scholar] [CrossRef]
- Girotra, M.; Chiang, Y.-H.; Charmoy, M.; Ginefra, P.; Hope, H.C.; Bataclan, C.; Yu, Y.-R.; Schyrr, F.; Franco, F.; Geiger, H.; et al. Induction of mitochondrial recycling reverts age-associated decline of the hematopoietic and immune systems. Nat. Aging 2023, 3, 1057–1066. [Google Scholar] [CrossRef]
- Nijhawan, D.; Honarpour, N.; Wang, X. Apoptosis in neural development and disease. Annu. Rev. Neurosci. 2000, 23, 73–87. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.-J.; Cao, Q.; Zhang, Y.; Su, X.-D. Activation and regulation of caspase-6 and its role in neurodegenerative diseases. Annu. Rev. Pharmacol. Toxicol. 2015, 55, 553–572. [Google Scholar] [CrossRef] [PubMed]
- Frost, B. Alzheimer’s disease and related tauopathies: Disorders of disrupted neuronal identity. Trends Neurosci. 2023, 46, 797–813. [Google Scholar] [CrossRef]
- Gordon, R.; Albornoz, E.A.; Christie, D.C.; Langley, M.R.; Kumar, V.; Mantovani, S.; Robertson, A.A.B.; Butler, M.S.; Rowe, D.B.; O’Neill, L.A.; et al. Inflammasome inhibition prevents α-synuclein pathology and dopaminergic neurodegeneration in mice. Sci. Transl. Med. 2018, 10, eaah4066. [Google Scholar] [CrossRef]
- Lou, J.; Mao, Y.; Jiang, W.; Shen, H.; Fan, Y.; Yu, Q.; Zhou, C.; Wei, Z.; Zhou, K.; Jin, M.; et al. TRIM56 Modulates YBX1 Degradation to Ameliorate ZBP1-Mediated Neuronal PANoptosis in Spinal Cord Injury. Adv. Sci. 2024, 11, e2407132. [Google Scholar] [CrossRef]
- Wu, W.; Jia, S.; Xu, H.; Gao, Z.; Wang, Z.; Lu, B.; Ai, Y.; Liu, Y.; Liu, R.; Yang, T.; et al. Supramolecular Hydrogel Microspheres of Platelet-Derived Growth Factor Mimetic Peptide Promote Recovery from Spinal Cord Injury. ACS Nano 2023, 17, 3818–3837. [Google Scholar] [CrossRef] [PubMed]
- Shi, X.; Zhang, L.; Wu, S.; Zhang, C.; Mamtilahun, M.; Li, Y.; Zhang, Z.; Zuo, C.; Cui, F.; Li, W.; et al. A simple polydopamine-based platform for engineering extracellular vesicles with brain-targeting peptide and imaging probes to improve stroke outcome. J. Extracell. Vesicles 2025, 14, e70031. [Google Scholar] [CrossRef]
- Gong, Q.-Y.; Cai, L.; Jing, Y.; Wang, W.; Yang, D.-X.; Chen, S.-W.; Tian, H.-L. Urolithin A alleviates blood-brain barrier disruption and attenuates neuronal apoptosis following traumatic brain injury in mice. Neural Regener. Res. 2022, 17, 2007–2013. [Google Scholar]
- Lin, X.-H.; Ye, X.-J.; Li, Q.-F.; Gong, Z.; Cao, X.; Li, J.-H.; Zhao, S.-T.; Sun, X.-D.; He, X.-S.; Xuan, A.-G. Urolithin A Prevents Focal Cerebral Ischemic Injury via Attenuating Apoptosis and Neuroinflammation in Mice. Neuroscience 2020, 448, 94–106. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, Y.; Halemahebai, G.; Tian, L.; Dong, H.; Aisker, G. Urolithin A, a pomegranate metabolite, protects pancreatic β cells from apoptosis by activating autophagy. J. Ethnopharmacol. 2021, 272, 113628. [Google Scholar] [CrossRef]
- Yang, Y.; Hu, Q.; Kang, H.; Li, J.; Zhao, X.; Zhu, L.; Tang, W.; Wan, M. Urolithin A protects severe acute pancreatitis-associated acute cardiac injury by regulating mitochondrial fatty acid oxidative metabolism in cardiomyocytes. MedComm 2023, 4, e459. [Google Scholar] [CrossRef]
- Lin, J.; Zhuge, J.; Zheng, X.; Wu, Y.; Zhang, Z.; Xu, T.; Meftah, Z.; Xu, H.; Wu, Y.; Tian, N.; et al. Urolithin A-induced mitophagy suppresses apoptosis and attenuates intervertebral disc degeneration via the AMPK signaling pathway. Free Radic. Biol. Med. 2020, 150, 109–119. [Google Scholar] [CrossRef]
- Alfei, S.; Zuccari, G. Ellagic Acid: A Green Multi-Target Weapon That Reduces Oxidative Stress and Inflammation to Prevent and Improve the Condition of Alzheimer’s Disease. Int. J. Mol. Sci. 2025, 26, 844. [Google Scholar] [CrossRef]
- Citron, M. Alzheimer’s disease: Strategies for disease modification. Nat. Rev. Drug Discov. 2010, 9, 387–398. [Google Scholar] [CrossRef]
- Hou, Y.; Chu, X.; Park, J.-H.; Zhu, Q.; Hussain, M.; Li, Z.; Madsen, H.B.; Yang, B.; Wei, Y.; Wang, Y.; et al. Urolithin A improves Alzheimer’s disease cognition and restores mitophagy and lysosomal functions. Alzheimers. Dement. 2024, 20, 4212–4233. [Google Scholar] [CrossRef]
- Kshirsagar, S.; Alvir, R.V.; Pradeepkiran, J.A.; Hindle, A.; Vijayan, M.; Ramasubramaniam, B.; Kumar, S.; Reddy, A.P.; Reddy, P.H. A Combination Therapy of Urolithin A+EGCG Has Stronger Protective Effects than Single Drug Urolithin A in a Humanized Amyloid Beta Knockin Mice for Late-Onset Alzheimer’s Disease. Cells 2022, 11, 2660. [Google Scholar] [CrossRef]
- Jayatunga, D.P.W.; Hone, E.; Khaira, H.; Lunelli, T.; Singh, H.; Guillemin, G.J.; Fernando, B.; Garg, M.L.; Verdile, G.; Martins, R.N. Therapeutic Potential of Mitophagy-Inducing Microflora Metabolite, Urolithin A for Alzheimer’s Disease. Nutrients 2021, 13, 3744. [Google Scholar] [CrossRef]
- Zhang, X.-W.; Zhu, X.-X.; Tang, D.-S.; Lu, J.-H. Targeting autophagy in Alzheimer’s disease: Animal models and mechanisms. Zool. Res. 2023, 44, 1132–1145. [Google Scholar] [CrossRef]
- Scheltens, P.; de Strooper, B.; Kivipelto, M.; Holstege, H.; Chételat, G.; Teunissen, C.E.; Cummings, J.; van der Flier, W.M. Alzheimer’s disease. Lancet 2021, 397, 1577–1590. [Google Scholar] [CrossRef]
- Aisen, P.S.; Cummings, J.; Jack, C.R., Jr.; Morris, J.C.; Sperling, R.; Frölich, L.; Jones, R.W.; Dowsett, S.A.; Matthews, B.R.; Raskin, J.; et al. On the path to 2025: Understanding the Alzheimer’s disease continuum. Alzheimers. Res. Ther. 2017, 9, 60. [Google Scholar] [CrossRef]
- Esselun, C.; Theyssen, E.; Eckert, G.P. Effects of Urolithin A on Mitochondrial Parameters in a Cellular Model of Early Alzheimer Disease. Int. J. Mol. Sci. 2021, 22, 8333. [Google Scholar] [CrossRef]
- Velagapudi, R.; Lepiarz, I.; El-Bakoush, A.; Katola, F.O.; Bhatia, H.; Fiebich, B.L.; Olajide, O.A. Induction of Autophagy and Activation of SIRT-1 Deacetylation Mechanisms Mediate Neuroprotection by the Pomegranate Metabolite Urolithin A in BV2 Microglia and Differentiated 3D Human Neural Progenitor Cells. Mol. Nutr. Food Res. 2019, 63, e1801237. [Google Scholar] [CrossRef]
- Tu, H.-J.; Su, C.-J.; Peng, C.-S.; Lin, T.E.; HuangFu, W.-C.; Hsu, K.-C.; Hwang, T.-L.; Pan, S.-L. Urolithin A exhibits a neuroprotective effect against Alzheimer’s disease by inhibiting DYRK1A activity. J. Food Drug Anal. 2023, 31, 358–370. [Google Scholar] [CrossRef]
- Ballesteros-Álvarez, J.; Nguyen, W.; Sivapatham, R.; Rane, A.; Andersen, J.K. Urolithin A reduces amyloid-beta load and improves cognitive deficits uncorrelated with plaque burden in a mouse model of Alzheimer’s disease. Geroscience 2023, 45, 1095–1113. [Google Scholar] [CrossRef]
- Xiong, R.; Li, B.; Yu, H.; Fan, T.; Yu, H.; Yang, Y.; Wang, J.-Z.; Pi, G.; Yang, X. Urolithin A Inhibits Anterior Basolateral Amygdala to Ventral Hippocampal CA1 Circuit to Ameliorate Amyloid-β-Impaired Social Ability. J. Alzheimers. Dis. 2024, 99, 1303–1316. [Google Scholar] [CrossRef]
- Morris, H.R.; Spillantini, M.G.; Sue, C.M.; Williams-Gray, C.H. The pathogenesis of Parkinson’s disease. Lancet 2024, 403, 293–304. [Google Scholar] [CrossRef]
- Kujawska, M.; Jourdes, M.; Witucki, Ł.; Karaźniewicz-Łada, M.; Szulc, M.; Górska, A.; Mikołajczak, P.Ł.; Teissedre, P.-L.; Jodynis-Liebert, J. Pomegranate Juice Ameliorates Dopamine Release and Behavioral Deficits in a Rat Model of Parkinson’s Disease. Brain Sci. 2021, 11, 1127. [Google Scholar] [CrossRef]
- Liu, J.; Jiang, J.; Qiu, J.; Wang, L.; Zhuo, J.; Wang, B.; Sun, D.; Yu, S.; Lou, H. Urolithin A protects dopaminergic neurons in experimental models of Parkinson’s disease by promoting mitochondrial biogenesis through the SIRT1/PGC-1α signaling pathway. Food Funct. 2022, 13, 375–385. [Google Scholar] [CrossRef]
- Lu, Y.; Gao, L.; Yang, Y.; Shi, D.; Zhang, Z.; Wang, X.; Huang, Y.; Wu, J.; Meng, J.; Li, H.; et al. Protective role of mitophagy on microglia-mediated neuroinflammatory injury through mtDNA-STING signaling in manganese-induced parkinsonism. J. Neuroinflamm. 2025, 22, 55. [Google Scholar] [CrossRef]
- Qiu, J.; Chen, Y.; Zhuo, J.; Zhang, L.; Liu, J.; Wang, B.; Sun, D.; Yu, S.; Lou, H. Urolithin A promotes mitophagy and suppresses NLRP3 inflammasome activation in lipopolysaccharide-induced BV2 microglial cells and MPTP-induced Parkinson’s disease model. Neuropharmacology 2022, 207, 108963. [Google Scholar] [CrossRef]
- Ren, Y.; Wu, X.; Bai, T.; Yang, N.; Yuan, Y.; Xu, L.; Wen, Y.; Wen, Y.; Wang, Z.; Zhou, L.; et al. CDK5-USP30 signaling pathway regulates MAVS-mediated inflammation via suppressing mitophagy in MPTP/MPP+ PD model. Ecotoxicol. Environ. Saf. 2024, 279, 116446. [Google Scholar] [CrossRef] [PubMed]
- Bao, H.; Liu, Y.; Zhang, M.; Chen, Z.; Zhang, W.; Ge, Y.; Kang, D.; Gao, F.; Shen, Y. Increased β-site APP cleaving enzyme 1-mediated insulin receptor cleavage in type 2 diabetes mellitus with cognitive impairment. Alzheimers. Dement. 2021, 17, 1097–1108. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.J.; Jung, Y.H.; Choi, G.E.; Kim, J.S.; Chae, C.W.; Lim, J.R.; Kim, S.Y.; Yoon, J.H.; Cho, J.H.; Lee, S.-J.; et al. Urolithin A suppresses high glucose-induced neuronal amyloidogenesis by modulating TGM2-dependent ER-mitochondria contacts and calcium homeostasis. Cell Death Differ. 2021, 28, 184–202. [Google Scholar] [CrossRef]
- Xiao, Y.; Li, K.; Bian, J.; Liu, H.; Zhai, X.; El-Omar, E.; Han, L.; Gong, L.; Wang, M. Urolithin A Attenuates Diabetes-Associated Cognitive Impairment by Ameliorating Intestinal Barrier Dysfunction via N-glycan Biosynthesis Pathway. Mol. Nutr. Food Res. 2022, 66, e2100863. [Google Scholar] [CrossRef]
- Xiao, Y.; Li, K.; Bian, J.; Zhang, Y.; Li, J.; Liu, H.; Ye, Y.; Han, L.; Gong, L.; Wang, M. Urolithin A Protects Neuronal Cells against Stress Damage and Apoptosis by Atp2a3 Inhibition. Mol. Nutr. Food Res. 2023, 67, e2300146. [Google Scholar] [CrossRef]
- Puy, L.; Parry-Jones, A.R.; Sandset, E.C.; Dowlatshahi, D.; Ziai, W.; Cordonnier, C. Intracerebral haemorrhage. Nat. Rev. Dis. Primers 2023, 9, 14. [Google Scholar] [CrossRef]
- Tsivgoulis, G.; Katsanos, A.H.; Sandset, E.C.; Turc, G.; Nguyen, T.N.; Bivard, A.; Fischer, U.; Khatri, P. Thrombolysis for acute ischaemic stroke: Current status and future perspectives. Lancet Neurol. 2023, 22, 418–429. [Google Scholar] [CrossRef]
- Ahsan, A.; Zheng, Y.-R.; Wu, X.-L.; Tang, W.-D.; Liu, M.-R.; Ma, S.-J.; Jiang, L.; Hu, W.-W.; Zhang, X.-N.; Chen, Z. Urolithin A-activated autophagy but not mitophagy protects against ischemic neuronal injury by inhibiting ER stress in vitro and in vivo. CNS Neurosci. Ther. 2019, 25, 976–986. [Google Scholar] [CrossRef]
- Liu, M.; Chen, Z.; Zhang, H.; Cai, Z.; Liu, T.; Zhang, M.; Wu, X.; Ai, F.; Liu, G.; Zeng, C.; et al. Urolithin A alleviates early brain injury after subarachnoid hemorrhage by regulating the AMPK/mTOR pathway-mediated autophagy. Neurochirurgie 2023, 69, 101480. [Google Scholar] [CrossRef]
- Salvador, A.F.M.; Kipnis, J. Immune response after central nervous system injury. Semin. Immunol. 2022, 59, 101629. [Google Scholar] [CrossRef]
- Maas, A.I.R.; Menon, D.K.; Manley, G.T.; Abrams, M.; Åkerlund, C.; Andelic, N.; Aries, M.; Bashford, T.; Bell, M.J.; Bodien, Y.G.; et al. Traumatic brain injury: Progress and challenges in prevention, clinical care, and research. Lancet Neurol. 2022, 21, 1004–1060. [Google Scholar] [CrossRef] [PubMed]
- Chen, K.; Ying, J.; Zhu, J.; Chen, L.; Liu, R.; Jing, M.; Wang, Y.; Zhou, K.; Wu, L.; Wu, C.; et al. Urolithin A alleviates NLRP3 inflammasome activation and pyroptosis by promoting microglial mitophagy following spinal cord injury. Int. Immunopharmacol. 2025, 148, 114057. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Chang, Y.; Zhou, W.; Rao, S.; Wang, H.; Lin, R.; Hu, W.; Chen, S.; Su, G.; Li, Y.; et al. An esterase-activatable nanoprodrug mitigates severe spinal cord injury via alleviating ferroptosis and reprogramming inflammatory microenvironment. Nano Today 2024, 56, 102229. [Google Scholar] [CrossRef]
- Wang, S.; Qiao, J.; Chen, Y.; Tian, L.; Sun, X. Urolithin A inhibits enterovirus 71 replication and promotes autophagy and apoptosis of infected cells in vitro. Arch. Virol. 2022, 167, 1989–1997. [Google Scholar] [CrossRef] [PubMed]
- Tan, S.; Tong, W.H.; Vyas, A. Urolithin-A attenuates neurotoxoplasmosis and alters innate response towards predator odor. Brain Behav. Immun. Health 2020, 8, 100128. [Google Scholar] [CrossRef]
- Shetty, S.S.; Shetty, S.; Kumari, N.S. Therapeutic efficacy of gut microbiota-derived polyphenol metabolite Urolithin A. Beni-Suef Univ. J. Basic Appl. Sci. 2024, 13, 31. [Google Scholar] [CrossRef]
- Mousavi, S.; Weschka, D.; Bereswill, S.; Heimesaat, M.M. Preclinical Evaluation of Oral Urolithin-A for the Treatment of Acute Campylobacteriosis in Campylobacter jejuni Infected Microbiota-Depleted IL-10−/− Mice. Pathogens 2020, 10, 7. [Google Scholar] [CrossRef]
- Remadevi, V.; Jaikumar, V.S.; Vini, R.; Krishnendhu, B.; Azeez, J.M.; Sundaram, S.; Sreeja, S. Urolithin A, induces apoptosis and autophagy crosstalk in Oral Squamous Cell Carcinoma via mTOR/AKT/ERK1/2 pathway. Phytomedicine 2024, 130, 155721. [Google Scholar] [CrossRef]
- Zhang, Y.; Jiang, L.; Su, P.; Yu, T.; Ma, Z.; Liu, Y.; Yu, J. Urolithin A suppresses tumor progression and induces autophagy in gastric cancer via the PI3K/Akt/mTOR pathway. Drug Dev. Res. 2023, 84, 172–184. [Google Scholar] [CrossRef]
- Sahashi, H.; Kato, A.; Yoshida, M.; Hayashi, K.; Naitoh, I.; Hori, Y.; Natsume, M.; Jinno, N.; Kachi, K.; Asano, G.; et al. Urolithin A targets the AKT/WNK1 axis to induce autophagy and exert anti-tumor effects in cholangiocarcinoma. Front. Oncol. 2022, 12, 963314. [Google Scholar] [CrossRef]
- Ma, S.; Wu, Q.; Wu, W.; Tian, Y.; Zhang, J.; Chen, C.; Sheng, X.; Zhao, F.; Ding, L.; Wang, T.; et al. Urolithin A Hijacks ERK1/2-ULK1 Cascade to Improve CD8+ T Cell Fitness for Antitumor Immunity. Adv. Sci. 2024, 11, e2310065. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Cui, H.; Deng, H.; Deng, Y.; Yin, S.; Li, T.; Yuan, T. Urolithin A promotes the degradation of TMSB10 to deformation F-actin in non-small-cell lung cancer. Phytomedicine 2024, 135, 156109. [Google Scholar] [CrossRef] [PubMed]
- Denk, D.; Petrocelli, V.; Conche, C.; Drachsler, M.; Ziegler, P.K.; Braun, A.; Kress, A.; Nicolas, A.M.; Mohs, K.; Becker, C.; et al. Expansion of T memory stem cells with superior anti-tumor immunity by Urolithin A-induced mitophagy. Immunity 2022, 55, 2059–2073.e8. [Google Scholar] [CrossRef]
- Zheng, B.; Wang, Y.; Zhou, B.; Qian, F.; Liu, D.; Ye, D.; Zhou, X.; Fang, L. Urolithin A inhibits breast cancer progression via activating TFEB-mediated mitophagy in tumor macrophages. J. Adv. Res. 2025, 69, 125–138. [Google Scholar] [CrossRef]
- Friedmann-Morvinski, D.; Bushong, E.A.; Ke, E.; Soda, Y.; Marumoto, T.; Singer, O.; Ellisman, M.H.; Verma, I.M. Dedifferentiation of Neurons and Astrocytes by Oncogenes Can Induce Gliomas in Mice. Science 2012, 338, 1080–1084. [Google Scholar] [CrossRef]
- Liu, C.-L.; Zhao, D.; Li, J.-J.; Liu, S.; An, J.-J.; Wang, D.; Hu, F.-A.; Qiu, C.-Y.; Cui, M.-H. Inhibition of glioblastoma progression by Urolithin A in vitro and in vivo by regulating Sirt1-FOXO1 axis via ERK/AKT signaling pathways. Neoplasma 2022, 69, 80–94. [Google Scholar] [CrossRef]
- Shen, C.-K.; Huang, B.-R.; Charoensaensuk, V.; Yang, L.-Y.; Tsai, C.-F.; Liu, Y.-S.; Lai, S.-W.; Lu, D.-Y.; Yeh, W.-L.; Lin, C. Inhibitory Effects of Urolithins, Bioactive Gut Metabolites from Natural Polyphenols, against Glioblastoma Progression. Nutrients 2023, 15, 4854. [Google Scholar] [CrossRef] [PubMed]
- Lu, G.; Wu, J.; Zheng, Z.; Deng, Z.; Xu, X.; Li, X.; Liang, X.; Qi, W.; Zhang, S.; Qiu, Y.; et al. Urolithin A Enhances Tight Junction Protein Expression in Endothelial Cells Cultured In Vitro via Pink1-Parkin-Mediated Mitophagy in Irradiated Astrocytes. J. Mol. Neurosci. 2025, 75, 23. [Google Scholar] [CrossRef]
- Filippi, M.; Bar-Or, A.; Piehl, F.; Preziosa, P.; Solari, A.; Vukusic, S.; Rocca, M.A. Multiple sclerosis. Nat. Rev. Dis. Primers 2018, 4, 43. [Google Scholar] [CrossRef]
- Shen, P.-X.; Li, X.; Deng, S.-Y.; Zhao, L.; Zhang, Y.-Y.; Deng, X.; Han, B.; Yu, J.; Li, Y.; Wang, Z.-Z.; et al. Urolithin A ameliorates experimental autoimmune encephalomyelitis by targeting aryl hydrocarbon receptor. EBioMedicine 2021, 64, 103227. [Google Scholar] [CrossRef]
- Hardiman, O.; Al-Chalabi, A.; Chio, A.; Corr, E.M.; Logroscino, G.; Robberecht, W.; Shaw, P.J.; Simmons, Z.; van den Berg, L.H. Amyotrophic lateral sclerosis. Nat. Rev. Dis. Primers 2017, 3, 17071. [Google Scholar] [CrossRef] [PubMed]
- Hardiman, O.; van den Berg, L.H.; Kiernan, M.C. Clinical diagnosis and management of amyotrophic lateral sclerosis. Nat. Rev. Neurol. 2011, 7, 639–649. [Google Scholar] [CrossRef] [PubMed]
- de Calbiac, H.; Renault, S.; Haouy, G.; Jung, V.; Roger, K.; Zhou, Q.; Campanari, M.-L.; Chentout, L.; Demy, D.L.; Marian, A.; et al. Poly-GP accumulation due to C9orf72 loss of function induces motor neuron apoptosis through autophagy and mitophagy defects. Autophagy 2024, 20, 2164–2185. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Gao, C.; Yang, D.; Nie, L.; He, K.; Chen, C.; Li, S.; Huang, G.; Zhou, L.; Huang, X.; et al. Urolithin a Improves Motor Dysfunction Induced by Copper Exposure in SOD1G93A Transgenic Mice Via Activation of Mitophagy. Mol. Neurobiol. 2024, 62, 6922–6937. [Google Scholar] [CrossRef]
- Moultrie, F.; Chiverton, L.; Hatami, I.; Lilien, C.; Servais, L. Pushing the boundaries: Future directions in the management of spinal muscular atrophy. Trends Mol. Med. 2025, 31, 307–318. [Google Scholar] [CrossRef]
- Mikhail, A.I.; Ng, S.Y.; Xhuti, D.; Lesinski, M.A.; Chhor, J.; Deguise, M.-O.; de Repentigny, Y.; Nederveen, J.P.; Kothary, R.; Tarnopolsky, M.A.; et al. Skeletal Muscle Mitochondrial and Autophagic Dysregulation Are Modifiable in Spinal Muscular Atrophy. J. Cachexia Sarcopenia Muscle 2025, 16, e13701. [Google Scholar] [CrossRef]
- Zhao, H.; Zhu, H.; Yun, H.; Liu, J.; Song, G.; Teng, J.; Zou, D.; Lu, N.; Liu, C. Assessment of Urolithin A effects on muscle endurance, strength, inflammation, oxidative stress, and protein metabolism in male athletes with resistance training: An 8-week randomized, double-blind, placebo-controlled study. J. Int. Soc. Sports Nutr. 2024, 21, 2419388. [Google Scholar] [CrossRef]
- Tow, W.-K.; Chee, P.-Y.; Sundralingam, U.; Palanisamy, U.D. The Therapeutic Relevance of Urolithins, Intestinal Metabolites of Ellagitannin-Rich Food: A Systematic Review of In Vivo Studies. Nutrients 2022, 14, 3494. [Google Scholar] [CrossRef]
- Jin, X.-H.; Fang, J.-Q.; Wang, J.-G.; Xu, B.; Wang, X.; Liu, S.-H.; Chen, F.; Liu, J.-J. PCL NGCs integrated with urolithin-A-loaded hydrogels for nerve regeneration. J. Mater. Chem. B 2022, 10, 8771–8784. [Google Scholar] [CrossRef]
- Ji, D.; Chen, W.-Z.; Zhang, L.; Zhang, Z.-H.; Chen, L.-J. Gut microbiota, circulating cytokines and dementia: A Mendelian randomization study. J. Neuroinflamm. 2024, 21, 2. [Google Scholar] [CrossRef]
- Grabrucker, S.; Marizzoni, M.; Silajdžić, E.; Lopizzo, N.; Mombelli, E.; Nicolas, S.; Dohm-Hansen, S.; Scassellati, C.; Moretti, D.V.; Rosa, M.; et al. Microbiota from Alzheimer’s patients induce deficits in cognition and hippocampal neurogenesis. Brain 2023, 146, 4916–4934. [Google Scholar] [CrossRef] [PubMed]
Experimental Model | Route of Administration | Dosage and Duration | UA Effects | References |
---|---|---|---|---|
Alzheimer’s disease | ||||
SH-SY5Y cell line transfected with the human APP695 coding region | - | 1–10 μM for 24 h | Enhanced mitochondrial biogenesis and mitochondrial respiration | [111] |
ReNcell VM cell line transfected with APPSwe plasmids | - | 2.5–10 μM for 2 days | Prevented apoptosis and Aβ production Improved autophagy | [112] |
Alzheimer’s disease patient iPSC-derived neurons | - | 50 μM for 24 h | Increased mitophagy Improved mitochondrial function | [41] |
C. elegans expressed Aβ or tau | Oral | 100 μM daily from eggs to death | Reversed memory impairment Reduced Aβ Increased neuronal mitophagy Improved mitochondrial function | [41] |
APP/PS1 mice | Oral | 200 mg/kg daily for 2 months | Restorated neuronal mitophagy Reduced Aβ production and neuroinflammation Improved mitochondrial function | [41] |
APP/PS1 mice | Intragastric | 200 mg/kg daily for 5 months | Improved learning and memory Decreased Aβ accumulation and tau phosphorylation Restored lysosomal functions and mitophagy Decreased DNA damage and neuroinflammation | [105] |
3xTgAD mice and 3xTgAD/Polβ+/− mice | Intragastric | 200 mg/kg daily for 5 months | Decreased DNA damage and neuroinflammation | [105] |
BV2 cell line treated with Aβ | - | 0.1–1 μM, pretreatment for 24 h | Reduced inflammation Reduced cell death | [113] |
Male C57BL/6J mice with intracerebroventricular injection of okadaic acid | Intraperitoneal | 100 mg/kg daily for 20 days | Reversed memory impairment Decreased tau phosphorylation | [113] |
HT22 and SH-SY5Y cell line treated with Aβ | - | 30 μM for 24 h | Increased autophagy Enhanced Aβ clearance | [114] |
Female 3xTgAD | Oral | 25 mg/kg daily in alternate weeks for 10 months | Reduces Aβ accumulation Ameliorated memory impairment, associative learning, and exploratory behavior | [114] |
5xFAD mice | Intragastric | NA mg/kg for 1 month | Improved social ability | [115] |
APP/PS1 mice | Oral | 300 mg/kg daily for 2 weeks | Ameliorated cognitive impairment Prevented neuronal apoptosis Enhanced neurogenesis Reduced Aβ accumulation and peri-plaque microgliosis and astrocytosis Reduced neuroinflammation | [61] |
HT22 transfected with mutant APP | - | NA μM for 24 h | Improved mitochondrial function | [106] |
Homozygous amyloid beta knockin mice | Intraperitoneal | 2.5 mg/kg 3 times weekly for 4 months | Ameliorated cognitive impairment Reduced Aβ accumulation Improved mitophagy and mitochondrial function Decreased neuroinflammation | [106] |
Parkinson’s disease | ||||
Male albino Wistar rats treated with rotenone | Intragastric | Commercial 6-fold concentrated pomegranate juice, 500 mg/kg daily for 45 days | Improved postural stability, olfactory function, and vertical activity Reduced α-synuclein Enhanced neuronal survival Decreased oxidative damage | [27,117] |
PC-12 treated with 6-OHDA | - | 2.5–10 μM, pretreatment for 2 h | Reduced neurotoxicity Inhibited apoptosis Promoted mitochondrial biogenesis | [118] |
Male C57BL/6J mice treated with 6-OHDA | Intraperitoneal | 10 mg/kg daily for 1 week | Prevented dopaminergic neurodegeneration Improved mitochondrial dysfunction and damage Promoted neuronal mitochondrial biogenesis | [118] |
BV2 cell line treated with Mn | - | 10 μM, pretreatment for 2 h | Increased mitophagy Improved mitochondrial dysfunction | [119] |
Male C57BL/6J mice treated with Mn | Intraperitoneal | 2.3 mg/kg 3 times weekly for 6 weeks | Increased mitophagy Improved mitochondrial dysfunction Improved neurological function Reduced neuroinflammation | [119] |
BV2 cell line treated with LPS | - | 2.5–10 μM, pretreatment for 2 h | Suppressed inflammatory response Increased mitophagy Improved mitochondrial dysfunction and mitochondrial metabolism | [120] |
Mice injected with MPTP | Intraperitoneal | 20 mg/kg daily for 1 week | Ameliorated motor deficits and dopaminergic neurodegeneration Increased autophagy Reduced neuroinflammation | [120] |
BV2 cell line with MPP+ stimulation | - | 2.5–5 μM, pretreatment for 1 h | Suppressed inflammatory response Increased mitophagy Improved DA neuron injury | [121] |
Male C57BL/6J mice injected with MPTP hydrochloride | Intragastric | 200 mg/kg daily for 11 days | Increased mitophagy Reduced neuroinflammation Improved DA neuron injury | [121] |
Diabetes-associated cognitive impairment | ||||
HT22 cell line treated with DMNQ | - | 2.5–10 μM, pretreatment for 3 h | Inhibited ER stress, and apoptosis Decreased oxidative damage Improved mitochondrial function Attenuated calcium overload and disorder | [125] |
Mouse primary hippocampal neurons treated with 45 mM glucose | - | 5 μM for 24 h | Inhibited tau hyperphosphorylation, ER stress, and apoptosis | [125] |
Male C57BL/6J mice treated with HFD and STZ | Intragastric | 200 mg/kg daily for 10 weeks | Improved hyperglycemia Ameliorated cognitive impairment Attenuated systemic inflammation Ameliorated the intestinal barrier dysfunction | [124,125] |
SH-SY5Y cell line treated with a high glucose or Aβ | - | 0.1 μM, pretreatment for 48 h | Decreased mitochondrial calcium influx, and mtROS accumulation Reduced Aβ production | [123] |
iPSC-derived neurons treated with a high glucose | - | 0.1 μM, pretreatment for 0.5 h | Decreased mitochondrial calcium influx, and mtROS accumulation Reduced Aβ production | [123] |
Male CrljOri:CD1(ICR) mice treated with STZ | Intraperitoneal | 2.5 mg/kg daily for 8 weeks | Improved cognitive impairment Decreased Aβ production and tau phosphorylation | [123] |
HT22 treated with high glucose and palmitate | - | 100 μM for 24 h | Increased mitophagy | [46] |
Male C57BL/6J mice treated with HFD and STZ | Intraperitoneal | 2.5 mg/kg daily for 8 weeks | Improved learning and memory Increased mitophagy Improved mitochondrial function | [46] |
Ischaemic stroke | ||||
Mouse primary cortical neuronal and N2a cell line, oxygen-glucose deprivation/reperfusion model | - | 3–30 μM for 1 h | Inhibited neuronal injury Induced autophagy Repressed ER stress | [128] |
Male C57BL/6 mice with middle cerebral artery occlusion | Intraperitoneal | 2.5–5 mg/kg for 24 h and 1 h prior to operation | Reduced acute ischemic brain injury Induced autophagy Repressed ER stress | [128] |
Male C57BL/6 mice with middle cerebral artery occlusion | Intraperitoneal | 1.5–2 mg/kg at 1 h and 24 h prior to operation 1.5–2 mg/kg after surgery | Improved neurological outcomes Inhibited neuronal injury and apoptosis Reduced neuroinflammation | [99] |
Subarachnoid hemorrhage | ||||
Wistar rats, endovascular perforation Subarachnoid hemorrhage model | Intraperitoneal | 2.5–10 mg/kg at 30 min prior to operation | Relieved neurological deficits, BBB disruption, and cerebral edema Inhibited neuronal apoptosis Improved autophagy | [129] |
Traumatic brain injury | ||||
Male C57BL/6J mice, controlled cortical impact model | Intraperitoneal | 2.5–10 mg/kg daily for 3 days | Ameliorated neurological deficits Relieved BBB disruption, and cerebral edema Attenuated neuronal apoptosis Promoted neuronal autophagy | [98] |
Spinal cord injury | ||||
BV2 treated with LPS and ATP | - | 5–20 μM, pretreatment for 2 h | Inhibited pyroptosis and inflammatory response Improved mitophagy and mitochondrial homeostasis | [132] |
Female C57BL/6 mice with striking the spinal cord | Intragastric | 50 mg/kg daily for 8 weeks | Attenuated motor dysfunction Promoted autophagy Decreased pyroptosis | [132] |
PC-12 treated with RSL3 | - | PUASi NPs, 30 μM for 6 h | Inhibited ferroptosis | [133] |
BV2 treated with LPS or LPS and IFN-γ | - | PUASi NPs, 30 μM for 24 h | Inhibited M1 polarization and inflammatory response | [133] |
Female C57BL/6 mice with striking the spinal cord | Intraperitoneal | PUASi NPs, 10 mg/kg daily for 7 days | Attenuated motor dysfunction Reduced neuroinflammation and neuronal damage Promoted nerve regeneration Inhibited ferroptosis | [133] |
EV71 infection | ||||
SK-N-SH cell line infected with EV71 | - | 25 μM for 12 h and 24 h | Inhibited virus proliferation | [134] |
Cerebral toxoplasmosis | ||||
Differentiated ReNcell infected with T. gondii | - | 50–100 μM for 24 h | Reduced tachyzoite load and perturbs cyst formation | [135] |
Female BALB/cJInv mice infected with T. gondii | Intraperitoneal | 30 μg daily for 34 days | Increased survival Inhibited cyst formation Improved the innate response towards predatory cat odor | [135] |
Glioblastoma | ||||
U251, U118, and U87 cell line | - | 5–80 μM | Inhibited migration ability and cell proliferation | [146] |
Male BALB/c nu/nu mice, xenograft model | Intragastric | 50 mg/kg daily for 15 days | Suppressed the tumor growth | [146] |
U251, U87, and ALTS1C1 cell line | - | 2–10 μM | Inhibited migration ability and cell proliferation Reduce expression of VCAM-1 and PD-L1 | [147] |
Male C57BL/6 mice, xenograft model | Intraperitoneal | 40 mg/kg for 9 days | Suppressed the tumor growth | [147] |
Radiation brain injury | ||||
Mouse primary astrocytes received 20 Gy of irradiation | - | 10 μM for 24 h | Improved mitophagy and mitochondrial homeostasis Reduced BBB injury | [148] |
Multiple sclerosis | ||||
Female C57BL/6 mice, EAE model | Oral | 25 mg/kg on the day of immunization, disease onset, and peak respectively | inhibited myelin depletion Reduced neuroinflammation Inhibited migration of pathogenic T cells from the periphery to CNS Suppressed the activation of dendritic cells Restricted Th17 polarization | [150] |
Amyotrophic lateral sclerosis | ||||
Zebrafish expressed glycine–proline DPR in a C9orf72 knockdown context | embryo medium containing urolithin A | 5 μM | Improved the swimming ability | [153] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Q.; Zhang, W.; Yuan, X.; Peng, X.; Hu, G. Urolithin A in Central Nervous System Disorders: Therapeutic Applications and Challenges. Biomedicines 2025, 13, 1553. https://doi.org/10.3390/biomedicines13071553
Zhang Q, Zhang W, Yuan X, Peng X, Hu G. Urolithin A in Central Nervous System Disorders: Therapeutic Applications and Challenges. Biomedicines. 2025; 13(7):1553. https://doi.org/10.3390/biomedicines13071553
Chicago/Turabian StyleZhang, Qiang, Wan Zhang, Xinya Yuan, Xiaohong Peng, and Guangyuan Hu. 2025. "Urolithin A in Central Nervous System Disorders: Therapeutic Applications and Challenges" Biomedicines 13, no. 7: 1553. https://doi.org/10.3390/biomedicines13071553
APA StyleZhang, Q., Zhang, W., Yuan, X., Peng, X., & Hu, G. (2025). Urolithin A in Central Nervous System Disorders: Therapeutic Applications and Challenges. Biomedicines, 13(7), 1553. https://doi.org/10.3390/biomedicines13071553