Navigating Glioma Complexity: The Role of Abnormal Signaling Pathways in Shaping Future Therapies
Abstract
:1. Introduction
2. Key Signaling Pathways in GBM
2.1. RTK/RAS/PI3K Pathway
2.2. Wnt/β-Catenin Pathway
2.3. Hippo Signaling Pathway
2.4. Slit/Robo Signaling Pathway
3. Targeted Inhibitors
4. Combination Treatment Strategies
5. Immunotherapy
6. Gene Therapy
7. Application of Nanomedicine in Glioma Treatment
8. Effects of Irradiation on the Functions of Glioma Cell-Derived Microvesicles and Their Application Potentials
9. The Role of Metabolic Pathways in Glioma Treatment
10. Conclusions and Future Perspectives
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Esemen, Y.; Awan, M.; Parwez, R.; Baig, A.; Rahman, S.; Masala, I.; Franchini, S.; Giakoumettis, D. Molecular Pathogenesis of Glioblastoma in Adults and Future Perspectives: A Systematic Review. Int. J. Mol. Sci. 2022, 23, 2607. [Google Scholar] [CrossRef] [PubMed]
- Parker, N.R.; Khong, P.; Parkinson, J.F.; Howell, V.M.; Wheeler, H.R. Molecular heterogeneity in glioblastoma: Potential clinical implications. Front. Oncol. 2015, 5, 55. [Google Scholar] [CrossRef]
- Zheng, Y.; Xiao, M.; Zhang, J.; Chang, F. Micro RNA-640 Targeting SLIT1 Enhances Glioma Radiosensitivity by Restraining the Activation of Wnt/β-Catenin Signaling Pathway. Br. J. Biomed. Sci. 2022, 79, 10067. [Google Scholar] [CrossRef]
- Scherschinski, L.; Prem, M.; Kremenetskaia, I.; Tinhofer, I.; Vajkoczy, P.; Karbe, A.-G.; Onken, J.S. Regulation of the Receptor Tyrosine Kinase AXL in Response to Therapy and Its Role in Therapy Resistance in Glioblastoma. Int. J. Mol. Sci. 2022, 23, 982. [Google Scholar] [CrossRef] [PubMed]
- Fares, D.K.J.; Cordero, A.; Ulasov, I.; Lesniak, M. Glioblastoma Resistance to Chemotherapy: Molecular Mechanisms and Innovative Reversal Strategies, Volume 15, 1st Edition. Anticancer Res. 2021, 41, 4663. [Google Scholar]
- Colardo, M.; Segatto, M.; Di Bartolomeo, S. Targeting RTK-PI3K-mTOR Axis in Gliomas: An Update. Int. J. Mol. Sci. 2021, 22, 4899. [Google Scholar] [CrossRef]
- Behrooz, A.B.; Talaie, Z.; Jusheghani, F.; Łos, M.J.; Klonisch, T.; Ghavami, S. Wnt and PI3K/Akt/mTOR Survival Pathways as Therapeutic Targets in Glioblastoma. Int. J. Mol. Sci. 2022, 23, 1353. [Google Scholar] [CrossRef]
- Katoh, M.; Katoh, M. WNT signaling and cancer stemness. Essays Biochem. 2022, 66, 319–331. [Google Scholar] [PubMed]
- Wu, Q.; Yin, X.; Zhao, W.; Xu, W.; Chen, L. Downregulation of SFRP2 facilitates cancer stemness and radioresistance of glioma cells via activating Wnt/β-catenin signaling. PLoS ONE 2021, 16, e0260864. [Google Scholar] [CrossRef]
- Hao, J.; Han, X.Z.; Huang, H.D.; Yu, X.J.; Bao, S.D.; Prayson, R.; Yu, J. Sema3c Signaling Confers Resistance to Wnt Inhibition in Glioblastoma. Neuro-Oncology 2021, 23, 77. [Google Scholar] [CrossRef]
- Zhang, H.; Bi, Y.; Wei, Y.; Liu, J.; Kuerban, K.; Ye, L. Blocking Wnt/beta-catenin Signal Amplifies Anti-PD-1 Therapeutic Efficacy by Inhibiting Tumor Growth, Migration, and Promoting Immune Infiltration in Glioblastomas. Mol. Cancer Ther. 2021, 20, 1305–1315. [Google Scholar] [CrossRef] [PubMed]
- Mahoney, J.P.; Bruguera, E.S.; Vasishtha, M.; Killingsworth, L.B.; Kyaw, S.; Weis, W.I. PI(4,5)P2-stimulated positive feedback drives the recruitment of Dishevelled to Frizzled in Wnt-β-catenin signaling. Sci. Signal. 2022, 15, eabo2820. [Google Scholar] [CrossRef]
- Hu, W.; Li, M.; Wu, J.; Chen, H.; Zhao, T.; Zhang, C.; Wang, Z. Inhibition of Dishevelled-2 suppresses the biological behavior of pancreatic cancer by downregulating Wnt/β-catenin signaling. Oncol. Lett. 2021, 22, 769. [Google Scholar] [CrossRef] [PubMed]
- Jain, R.; Krishnan, S.; Lee, S.; Amoozgar, Z.; Subudhi, S.; Kumar, A.; Posada, J.; Lindeman, N.; Lei, P.; Duquette, M.; et al. Wnt inhibition alleviates resistance to immune checkpoint blockade in glioblastoma. Res. Sq. 2023, rs. 3, rs-3707472. [Google Scholar]
- El-Sahli, S.; Xie, Y.; Wang, L.; Liu, S. Wnt Signaling in Cancer Metabolism and Immunity. Cancers 2019, 11, 904. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.; Yu, H.; Shen, Y.; Liu, Y.; Yang, Z.; Sun, T. MiR-146b-5p overexpression attenuates stemness and radioresistance of glioma stem cells by targeting HuR/lincRNA-p21/β-catenin pathway. Oncotarget 2016, 7, 41505–41526. [Google Scholar] [CrossRef]
- Chen, Y.; Fang, R.; Yue, C.; Chang, G.; Li, P.; Guo, Q.; Wang, J.; Zhou, A.; Zhang, S.; Fuller, G.N.; et al. Wnt-Induced Stabilization of KDM4C Is Required for Wnt/β-Catenin Target Gene Expression and Glioblastoma Tumorigenesis. Cancer Res. 2019, 80, 1049–1063. [Google Scholar] [CrossRef]
- Halder, G.; Johnson, R.L. Hippo signaling: Growth control and beyond. Development 2011, 138, 9–22. [Google Scholar] [CrossRef]
- Kim, J.; Jung, S.H.; Han, S.Y.; Yoon, J.; Kim, M.; Byun, J.; Moon, H.; Lee, E.; Kim, Y.-Y.; Park, H.; et al. Abstract 1614: Antitumor activity of novel and potent YAP/TAZ-TEAD inhibitorstargeting the Hippo pathway in solid tumors. Cancer Res. 2023, 83, 1614. [Google Scholar] [CrossRef]
- Saunders, J.T.; Holmes, B.; Benavides-Serrato, A.; Kumar, S.; Nishimura, R.N.; Gera, J. Targeting the YAP-TEAD interaction interface for therapeutic intervention in glioblastoma. J. Neuro-Oncol. 2021, 152, 217–231. [Google Scholar] [CrossRef]
- Gargalionis, A.N.; Papavassiliou, K.A.; Papavassiliou, A.G. Targeting the YAP/TAZ mechanotransducers in solid tumour therapeutics. J. Cell. Mol. Med. 2023, 27, 1911–1914. [Google Scholar] [CrossRef] [PubMed]
- Shen, C.C. A role for taz/yap in dna damage repair in glioblastoma. Neuro-Oncology 2022, 24, 91. [Google Scholar] [CrossRef]
- Edwards, A.C.; Stalnecker, C.A.; Morales, A.J.; Taylor, K.E.; Klomp, J.E.; Klomp, J.A.; Waters, A.M.; Sudhakar, N.; Hallin, J.; Tang, T.T.; et al. TEAD Inhibition Overcomes YAP1/TAZ-Driven Primary and Acquired Resistance to KRASG12C Inhibitors. Cancer Res. 2023, 83, 4112–4129. [Google Scholar] [CrossRef]
- Roccograndi, L.; Binder, Z.A.; Zhang, L.; Aceto, N.; Zhang, Z.; Bentires-Alj, M.; Nakano, I.; Dahmane, N.; O’rourke, D.M. SHP2 regulates proliferation and tumorigenicity of glioma stem cells. J. Neuro-Oncol. 2017, 135, 487–496. [Google Scholar] [CrossRef]
- Mukhopadhyay, S.; Huang, H.-Y.; Lin, Z.; Ranieri, M.; Li, S.; Sahu, S.; Liu, Y.; Ban, Y.; Guidry, K.; Hu, H.; et al. Genome-Wide CRISPR Screens Identify Multiple Synthetic Lethal Targets That Enhance KRASG12C Inhibitor Efficacy. Cancer Res. 2023, 83, 4095–4111. [Google Scholar] [CrossRef]
- Kanellis, J.; Garcia, G.E.; Li, P.; Parra, G.; Wilson, C.B.; Rao, Y.; Han, S.; Smith, C.W.; Johnson, R.J.; Wu, J.Y.; et al. Modulation of inflammation by slit protein in vivo in experimental crescentic glomerulonephritis. Am. J. Pathol. 2004, 165, 341–352. [Google Scholar] [CrossRef] [PubMed]
- Guan, H.; Zu, G.; Xie, Y.; Tang, H.; Johnson, M.; Xu, X.; Kevil, C.; Xiong, W.-C.; Elmets, C.; Rao, Y.; et al. Neuronal repellent Slit2 inhibits dendritic cell migration and the development of immune responses. J. Immunol. 2003, 171, 6519–6526. [Google Scholar] [CrossRef]
- Ye, B.-Q.; Geng, Z.H.; Ma, L.; Geng, J.-G. Slit2 regulates attractive eosinophil and repulsive neutrophil chemotaxis through differential srGAP1 expression during lung inflammation. J. Immunol. 2010, 185, 6294–6305. [Google Scholar] [CrossRef]
- Qin, F.; Zhang, H.; Ma, L.; Liu, X.; Dai, K.; Li, W.; Gu, F.; Fu, L.; Ma, Y. Low Expression of Slit2 and Robo1 is Associated with Poor Prognosis and Brain-specific Metastasis of Breast Cancer Patients. Sci. Rep. 2015, 5, srep14430. [Google Scholar] [CrossRef]
- Ozhan, A.; Tombaz, M.; Konu, O. Discovery of Cancer-Specific and Independent Prognostic Gene Subsets of the Slit-Robo Family Using TCGA-PANCAN Datasets. OMICS A J. Integr. Biol. 2021, 25, 782–795. [Google Scholar] [CrossRef]
- Geraldo, L.H.; Xu, Y.; Jacob, L.; Pibouin-Fragner, L.; Rao, R.; Maissa, N.; Verreault, M.; Lemaire, N.; Knosp, C.; Lesaffre, C.; et al. SLIT2/ROBO signaling in tumor-associated microglia and macrophages drives glioblastoma immunosuppression and vascular dysmorphia. J. Clin. Investig. 2021, 131, e141083. [Google Scholar]
- Yao, J.; Wang, Z.F.; Cheng, Y.; Ma, C.; Zhong, Y.H.; Xiao, Y.L.; Gao, X.; Li, Z.Q. M2 macrophage-derived exosomal microRNAs inhibit cell migration and invasion in gliomas through PI3K/AKT/mTOR signaling pathway. J. Transl. Med. 2021, 19, 99, Erratum in J. Transl. Med. 2021, 19, 263. [Google Scholar] [PubMed]
- Markouli, M.; Papachristou, A.; Politis, A.; Boviatsis, E.; Piperi, C. Emerging Role of the Slit/Roundabout (Robo) Signaling Pathway in Glioma Pathogenesis and Potential Therapeutic Options. Biomolecules 2024, 14, 1231. [Google Scholar] [CrossRef]
- Kerstetter-Fogle, A.; Harris, P.; Hoffman, H.; Sloan, A.; Elder, T.; Couce, M.; Barnholtz-Sloan, J.; Sloan, A. CSIG-18. Hypermethylation of slit-robo pathway genes results in inactivation in glioma progression. Neuro-Oncology 2021, 23, vi37. [Google Scholar] [CrossRef]
- Shen, X.; Li, L.; He, Y.; Lv, X.; Ma, J. Raddeanin A inhibits proliferation, invasion, migration and promotes apoptosis of cervical cancer cells via regulating miR-224-3p/Slit2/Robo1 signaling pathway. Aging 2021, 13, 7166–7179. [Google Scholar] [CrossRef]
- Kleszcz, R.; Frackowiak, M.; Dorna, D.; Paluszczak, J. Combinations of PRI-724 Wnt/beta-Catenin Pathway Inhibitor with Vismodegib, Erlotinib, or HS-173 Synergistically Inhibit Head and Neck Squamous Cancer Cells. Int. J. Mol. Sci. 2023, 24, 10448. [Google Scholar] [CrossRef]
- Dallol, A.; Krex, D.; Hesson, L.; Eng, C.; Maher, E.R.; Latif, F. Frequent epigenetic inactivation of the SLIT2 gene in gliomas. Oncogene 2003, 22, 4611–4616. [Google Scholar] [PubMed]
- Jiang, P.; Mukthavaram, R.; Chao, Y.; Nomura, N.; Bharati, I.S.; Fogal, V.; Pastorino, S.; Teng, D.; Cong, X.; Pingle, S.C.; et al. In vitro and in vivo anticancer effects of mevalonate pathway modulation on human cancer cells. Br. J. Cancer 2014, 111, 1562–1571. [Google Scholar] [CrossRef]
- Da Silva, E.C.; Choulier, L.; Thevenard-Devy, J.; Schneider, C.; Carl, P.; Rondé, P.; Dedieu, S.; Lehmann, M. Role of Endocytosis Proteins in Gefitinib-Mediated EGFR Internalisation in Glioma Cells. Cells 2021, 10, 3258. [Google Scholar] [CrossRef]
- Sidorov, M.; Dighe, P.; Woo, R.W.L.; Rodriguez-Brotons, A.; Chen, M.; Ice, R.J.; Vaquero, E.; Jian, D.; Desprez, P.-Y.; Nosrati, M.; et al. Dual Targeting of EGFR and MTOR Pathways Inhibits Glioblastoma Growth by Modulating the Tumor Microenvironment. Cells 2023, 12, 547. [Google Scholar] [CrossRef]
- Pédeboscq, S.; L’Azou, B.; Passagne, I.; De Giorgi, F.; Ichas, F.; Pometan, J.-P.; Cambar, J. Cytotoxic and apoptotic effects of bortezomib and gefitinib compared to alkylating agents on human glioblastoma cells. J. Exp. Ther. Oncol. 2008, 7, 99–111. [Google Scholar]
- Vogelbaum, M.A.; Peereboom, D.; Stevens, G.; Barnett, G.; Brewer, C. Phase II trial of the EGFR tyrosine kinase inhibitor erlotinib for single agent therapy of recurrent Glioblastoma Multiforme: Interim results. J. Clin. Oncol. 2004, 22, 121S. [Google Scholar]
- Jiang, Y.; Zhuo, X.; Fu, X.; Wu, Y.; Mao, C. Targeting PAR2 Overcomes Gefitinib Resistance in Non-Small-Cell Lung Cancer Cells Through Inhibition of EGFR Transactivation. Front. Pharmacol. 2021, 12, 625289. [Google Scholar] [CrossRef]
- Zhang, L.; Fang, W.; Yu, Q.; Zhang, H.; Wu, G.; Wu, D.; Lin, Y.; Zhu, J.; Chen, J.; Hu, X.; et al. LBA10 A multicenter, randomized, double-blind, phase III study of gefitinib in combination with anlotinib or placebo in previously untreated patients with EGFR mutation-positive advanced non-small cell lung cancer (FL-ALTER). Ann. Oncol. 2022, 33, S1562. [Google Scholar] [CrossRef]
- Bowers, D.; Karajannis, M.; Gardner, S.; Su, J.; Baxter, P.; Partap, S.; Klesse, L. CTNI-52. Phase Ii Study of Everolimus (Afinitor®) for Children with Recurrent or Progressive Ependymoma. Neuro-Oncology 2020, 22, ii54. [Google Scholar] [CrossRef]
- Alam, M.; Fermin, J.M.; Knackstedt, M.; Noonan, M.J.; Daniel, E.K.; Moore-Medlin, T.; Rong, X.; Khandelwal, A.R.; Nathan, C.-A.O. Abstract 3209: Everolimus inhibits angiogenesis and lymphangiogenesis to affect tumor growth in TP53 mutant HNSCC. Cancer Res. 2022, 82, 3209. [Google Scholar] [CrossRef]
- Wen, P.Y.; Chang, S.M.; Lamborn, K.R.; Kuhn, J.G.; Norden, A.D.; Cloughesy, T.F.; Robins, H.I.; Lieberman, F.S.; Gilbert, M.R.; Mehta, M.P.; et al. Phase I/II study of erlotinib and temsirolimus for patients with recurrent malignant gliomas: North American Brain Tumor Consortium trial 04-02. Neuro-Oncology 2014, 16, 567–578. [Google Scholar] [CrossRef]
- Koul, D.; Fu, J.; Shen, R.; LaFortune, T.A.; Wang, S.; Tiao, N.; Kim, Y.-W.; Liu, J.-L.; Ramnarian, D.; Yuan, Y.; et al. Antitumor antitumor activity of NVP-BKM120—A selective pan class I PI3 kinase inhibitor showed differential forms of cell death based on p53 status of glioma cells. Clin. Cancer Res. 2012, 18, 184–195. [Google Scholar] [CrossRef]
- Huang, L.; Sheng, Z.; Tegge, A. DDDR-07. Evaluating the role of the pik3cb pathway in temozolomide resistance in glioblastoma using the genomics of drug sensitivity in cancer (gdsc) and cancer cell line encyclopedia (CCLE) databases. Neuro-Oncology 2022, 24, vii99–vii100. [Google Scholar] [CrossRef]
- Koul, D.; Shen, R.; Kim, Y.-W.; Kondo, Y.; Lu, Y.; Bankson, J.; Ronen, S.M.; Kirkpatrick, D.L.; Powis, G.; Yung, W.K.A. Cellular and in vivo activity of a novel PI3K inhibitor, PX-866, against human glioblastoma. Neuro-Oncology 2010, 12, 559–569. [Google Scholar] [CrossRef]
- Precilla, D.S.; Kuduvalli, S.S.; Purushothaman, M.; Marimuthu, P.; Muralidharan, A.R.; Anitha, T.S. Wnt/β-catenin Antagonists: Exploring New Avenues to Trigger Old Drugs in Alleviating Glioblastoma Multiforme. Curr. Mol. Pharmacol. 2022, 15, 338–360. [Google Scholar] [CrossRef] [PubMed]
- Kalantary-Charvadeh, A.; Hosseini, V.; Mehdizadeh, A.; Ahmad, S.N.S.; Rahbarghazi, R.; Charoudeh, H.N.; Nouri, M.; Darabi, M. The porcupine inhibitor WNT974 provokes ectodermal lineage differentiation of human embryonic stem cells. Cell Biochem. Funct. 2022, 40, 359–368. [Google Scholar] [CrossRef] [PubMed]
- Yusuf, S.; Aretz, P.; Nickel, A.-C.; Westhoff, P.; Sharma, A.; Qin, N.; Remke, M.; Steiger, H.-J.; Hänggi, D.; Liu, H.; et al. WNT/β-Catenin-Mediated Resistance to Glucose Deprivation in Glioblastoma Stem-like Cells. Cancers 2022, 14, 3165. [Google Scholar] [CrossRef]
- Xie, Y.; He, L.; Zhang, Y.; Huang, H.; Yang, F.; Chao, M.; Cao, H.; Wang, J.; Li, Y.; Zhang, L.; et al. Wnt signaling regulates MFSD2A-dependent drug delivery through endothelial transcytosis in glioma. Neuro-Oncology 2023, 25, 1073–1084. [Google Scholar] [CrossRef]
- Suwala, A.K.; Koch, K.; Rios, D.H.; Aretz, P.; Uhlmann, C.; Ogorek, I.; Felsberg, J.; Reifenberger, G.; Köhrer, K.; Deenen, R.; et al. Inhibition of Wnt/beta-catenin signaling downregulates expression of aldehyde dehydrogenase isoform 3A1 (ALDH3A1) to reduce resistance against temozolomide in glioblastoma in vitro. Oncotarget 2018, 9, 22703–22716. [Google Scholar] [CrossRef]
- Choi, J.; Medikonda, R.; Saleh, L.; Kim, T.; Pant, A.; Srivastava, S.; Kim, Y.-H.; Tong, L.; Routkevitch, D.; Jackson, C.; et al. Combination checkpoint therapy with anti-PD-1 and anti-BTLA results in a synergistic therapeutic effect against murine glioblastoma. OncoImmunology 2021, 10, 1956142. [Google Scholar] [CrossRef]
- Cheng, B.; Morales, L.D.; Zhang, Y.; Mito, S.; Tsin, A. Niclosamide induces protein ubiquitination and inhibits multiple pro-survival signaling pathways in the human glioblastoma U-87 MG cell line. PLoS ONE 2017, 12, e0184324. [Google Scholar] [CrossRef] [PubMed]
- Valdez, L.; Cheng, B.; Gonzalez, D.; Rodriguez, R.; Campano, P.; Tsin, A.; Fang, X. Combined treatment with niclosamide and camptothecin enhances anticancer effect in U87 MG human glioblastoma cells. Oncotarget 2022, 13, 642–658. [Google Scholar] [CrossRef]
- Oh, H.-C.; Shim, J.-K.; Park, J.; Lee, J.-H.; Choi, R.J.; Kim, N.H.; Kim, H.S.; Moon, J.H.; Kim, E.H.; Chang, J.H.; et al. Combined effects of niclosamide and temozolomide against human glioblastoma tumorspheres. J. Cancer Res. Clin. Oncol. 2020, 146, 2817–2828. [Google Scholar] [CrossRef]
- Jamalpour, S.; Alinezhad, A.; Sabah, J.T.; Vazifehmand, R.; Behrooz, A.B.; Hamzah, A.S.A.; Davazdahemami, A.A.; Homaie, F.M.; Maddah, S.M. Modulating Wnt/β-Catenin Signaling Pathway on U251 and T98G Glioblastoma Cell Lines Using a Combination of Paclitaxel and Temozolomide, A Molecular Docking Simulations and Gene Expression Study. Chem. Pharm. Bull. 2023, 71, 766–774. [Google Scholar] [CrossRef]
- Mokgautsi, N.; Wen, Y.T.; Lawal, B.; Khedkar, H.; Sumitra, M.R.; Wu, A.T.H.; Huang, H.S. An Integrated Bioinformatics Study of a Novel Niclosamide Derivative, NSC765689, a Potential GSK3?/?-Catenin/STAT3/CD44 Suppressor with Anti-Glioblastoma Properties. Int. J. Mol. Sci. 2021, 22, 2464. [Google Scholar] [CrossRef] [PubMed]
- Bielecka-Wajdman, A.M.; Lesiak, M.; Ludyga, T.; Sieroń, A.; Obuchowicz, E. Reversing glioma malignancy: A new look at the role of antidepressant drugs as adjuvant therapy for glioblastoma multiforme. Cancer Chemother. Pharmacol. 2017, 79, 1249–1256. [Google Scholar] [CrossRef] [PubMed]
- Booth, L.; Cruickshanks, N.; Tavallai, S.; Roberts, J.L.; Peery, M.; Poklepovic, A.; Dent, P. Regulation of dimethyl-fumarate toxicity by proteasome inhibitors. Cancer Biol. Ther. 2014, 15, 1646–1657. [Google Scholar] [CrossRef]
- Shchors, K.; Massaras, A.; Hanahan, D. Dual Targeting of the Autophagic Regulatory Circuitry in Gliomas with Repurposed Drugs Elicits Cell-Lethal Autophagy and Therapeutic Benefit. Cancer Cell 2015, 28, 456–471. [Google Scholar] [CrossRef]
- Barrette, A.M.; Ronk, H.; Joshi, T.; Mussa, Z.; Mehrotra, M.; Bouras, A.; Nudelman, G.; Raj, J.G.J.; Bozec, D.; Lam, W.; et al. Anti-invasive efficacy and survival benefit of the YAP-TEAD inhibitor verteporfin in preclinical glioblastoma models. Neuro-Oncology 2021, 24, 694–707. [Google Scholar] [CrossRef]
- Kim, E.; Kang, S.G. Differential yap activity in human glioblastoma tumorspheres as a potential biomarker. Neuro-Oncology 2022, 24, 44. [Google Scholar]
- Zhao, M.; Zhang, Y.; Jiang, Y.; Wang, K.; Wang, X.; Zhou, D.; Wang, Y.; Yu, R.; Zhou, X. YAP promotes autophagy and progression of gliomas via upregulating HMGB1. J. Exp. Clin. Cancer Res. 2021, 40, 99. [Google Scholar] [CrossRef]
- Qiao, X.; Wang, Z.; Chen, Y.; Peng, N.; Zhang, H.; Niu, C.; Cheng, C. Combined metformin and simvastatin therapy inhibits SREBP2 maturation and alters energy metabolism in glioma. Cell Death Dis. 2024, 15, 15. [Google Scholar] [CrossRef] [PubMed]
- Cheng, C.-C.; Chao, W.-T.; Shih, J.-H.; Lai, Y.-S.; Hsu, Y.-H.; Liu, Y.-H. Sorafenib combined with dasatinib therapy inhibits cell viability, migration, and angiogenesis synergistically in hepatocellular carcinoma. Cancer Chemother. Pharmacol. 2021, 88, 143–153. [Google Scholar] [CrossRef]
- Miklja, Z.; Yadav, V.N.; Cartaxo, R.T.; Siada, R.; Thomas, C.C.; Cummings, J.R.; Mullan, B.; Stallard, S.; Paul, A.; Bruzek, A.K.; et al. Everolimus improves the efficacy of dasatinib in PDGFRα-driven glioma. J. Clin. Investig. 2020, 130, 5313–5325. [Google Scholar] [CrossRef]
- Masliantsev, K.; Karayan-Tapon, L.; Guichet, P.-O. Hippo Signaling Pathway in Gliomas. Cells 2021, 10, 184. [Google Scholar] [CrossRef]
- Renault-Mahieux, M.; Vieillard, V.; Seguin, J.; Espeau, P.; Le, D.T.; Lai-Kuen, R.; Mignet, N.; Paul, M.; Andrieux, K. Co-Encapsulation of Fisetin and Cisplatin into Liposomes for Glioma Therapy: From Formulation to Cell Evaluation. Pharmaceutics 2021, 13, 970. [Google Scholar] [CrossRef]
- Liu, L.; Li, W.; Geng, S.; Fang, Y.; Sun, Z.; Hu, H.; Liang, Z.; Yan, Z. Slit2 and Robo1 expression as biomarkers for assessing prognosis in brain glioma patients. Surg. Oncol. 2016, 25, 405–410. [Google Scholar] [CrossRef] [PubMed]
- Jiang, L.; Sun, J.; Huang, D. Role of Slit/Robo Signaling pathway in Bone Metabolism. Int. J. Biol. Sci. 2022, 18, 1303–1312. [Google Scholar] [CrossRef]
- Ito, H.; Funahashi, S.-I.; Yamauchi, N.; Shibahara, J.; Midorikawa, Y.; Kawai, S.; Kinoshita, Y.; Watanabe, A.; Hippo, Y.; Ohtomo, T.; et al. Identification of ROBO1 as a novel hepatocellular carcinoma antigen and a potential therapeutic and diagnostic target. Clin. Cancer Res. 2006, 12, 3257–3264. [Google Scholar] [CrossRef] [PubMed]
- Han, P.-P.; Zhang, G.-Q.; Li, L.; Yue, L. Downregulation of USP33 inhibits Slit/Robo signaling pathway and is associated with poor patient survival of glioma. J. Neurosurg. Sci. 2023, 67, 113–120. [Google Scholar] [CrossRef] [PubMed]
- Mishra, R.; Patel, H.; Alanazi, S.; Kilroy, M.K.; Garrett, J.T. PI3K Inhibitors in Cancer: Clinical Implications and Adverse Effects. Int. J. Mol. Sci. 2021, 22, 3464. [Google Scholar] [CrossRef]
- Prossomariti, A.; Piazzi, G.; Alquati, C.; Ricciardiello, L. Are Wnt/beta-Catenin and PI3K/AKT/mTORC1 Distinct Pathways in Colorectal Cancer? Cell Mol. Gastroenterol. Hepatol. 2020, 10, 491–506. [Google Scholar]
- Arqués, O.; Chicote, I.; Puig, I.; Tenbaum, S.P.; Argilés, G.; Dienstmann, R.; Fernández, N.; Caratù, G.; Matito, J.; Silberschmidt, D.; et al. Tankyrase Inhibition Blocks Wnt/β-Catenin Pathway and Reverts Resistance to PI3K and AKT Inhibitors in the Treatment of Colorectal Cancer. Clin. Cancer Res. 2016, 22, 644–656. [Google Scholar] [CrossRef]
- Ahluwalia, M.S.; Rauf, Y.; Li, H.; Wen, P.Y.; Peereboom, D.M.; Reardon, D.A. Randomized phase 2 study of nivolumab (nivo) plus either standard or reduced dose bevacizumab (bev) in recurrent glioblastoma (rGBM). J. Clin. Oncol. 2021, 39, 3. [Google Scholar]
- Noch, E.K.; Palma, L.N.; Yim, I.; Bullen, N.; Qiu, Y.; Ravichandran, H.; Kim, J.; Rendeiro, A.; Davis, M.B.; Elemento, O.; et al. Insulin feedback is a targetable resistance mechanism of PI3K inhibition in glioblastoma. Neuro-Oncology 2023, 25, 2165–2176. [Google Scholar] [CrossRef] [PubMed]
- Lam, K.; Lin, H.Y.; Williford, G.; Wathoo, C.; Majd, N. Ivosidenib off-label use for IDH mutant gliomas: The MD Anderson Cancer Center real life experience. J. Clin. Oncol. 2023, 41, e14022. [Google Scholar] [CrossRef]
- Bouffet, E.; Hansford, J.R.; Garrè, M.L.; Hara, J.; Plant-Fox, A.; Aerts, I.; Locatelli, F.; van der Lugt, J.; Papusha, L.; Sahm, F.; et al. Dabrafenib plus Trametinib in Pediatric Glioma with BRAF V600 Mutations. N. Engl. J. Med. 2023, 389, 1108–1120. [Google Scholar] [CrossRef] [PubMed]
- Belli, C.; Zuin, M.; Mazzarella, L.; Trapani, D.; D’amico, P.; Guerini-Rocco, E.; Duso, B.A.; Curigliano, G. Liver toxicity in the era of immune checkpoint inhibitors: A practical approach. Crit. Rev. Oncol. 2018, 132, 125–129. [Google Scholar] [CrossRef]
- Gao, Y.; Zhong, M.; Gan, L.; Xiang, C.; Li, L.; Yan, Y. Immune checkpoint inhibitor– and phosphatidylinositol-3-kinase inhibitor–related diabetes induced by antineoplastic drugs: Two case reports and a literature review. Front. Endocrinol. 2023, 14, 1236946. [Google Scholar] [CrossRef]
- Nghiemphu, P.L.; Lai, A.; Green, R.M.; Reardon, D.A.; Cloughesy, T. A dose escalation trial for the combination of erlotinib and sirolimus for recurrent malignant gliomas. J. Neuro-Oncology 2012, 110, 245–250. [Google Scholar] [CrossRef] [PubMed]
- Durgin, J.S.; Henderson, F.; Nasrallah, M.P.; Mohan, S.; Wang, S.; Lacey, S.F.; Melenhorst, J.J.; Desai, A.S.; Lee, J.Y.K.; Maus, M.V.; et al. Case Report: Prolonged Survival Following EGFRvIII CAR T Cell Treatment for Recurrent Glioblastoma. Front. Oncol. 2021, 11, 669071. [Google Scholar] [CrossRef]
- Das, A.; Morgenstern, D.; Bianchi, V.; Sudhaman, S.; Edwards, M.; Stengs, L.; Larouche, V.; Samuel, D.; Van Damme, A.; Gass, D.; et al. IMMU-13. Dual CTLA4/ PD-1 blockade improves survival for replication-repair deficient high-grade gliomas failing single agent PD-1 inhibition: An IRRDC study. Neuro-Oncology 2022, 24, i84. [Google Scholar] [CrossRef]
- Datsi, A.; Sorg, R.V. Dendritic Cell Vaccination of Glioblastoma: Road to Success or Dead End. Front. Immunol. 2021, 12, 770390. [Google Scholar] [CrossRef]
- Li, N.; Rodriguez, J.; Binder, Z.; O’rourke, D. Abstract LB097: Armored bicistronic CAR T cells with dominant-negative TGF-β receptor II to alleviate antigenic heterogeneity and suppressive immune microenvironment in glioblastoma. Cancer Res. 2023, 83, LB097. [Google Scholar] [CrossRef]
- Nadal, E.; Saleh, M.; Aix, S.P.; Ochoa-De-Olza, M.; Patel, S.P.; Antonia, S.; Zhao, Y.; Gueorguieva, I.; Man, M.; Estrem, S.T.; et al. A phase Ib/II study of galunisertib in combination with nivolumab in solid tumors and non-small cell lung cancer. BMC Cancer 2023, 23, 13. [Google Scholar] [CrossRef]
- Jeon, S.-H.; Kim, S.H.; Kim, Y.; Kim, Y.S.; Lim, Y.; Lee, Y.H.; Shin, S.Y. The tricyclic antidepressant imipramine induces autophagic cell death in U-87MG glioma cells. Biochem. Biophys. Res. Commun. 2011, 413, 311–317. [Google Scholar] [CrossRef]
- Haryuni, R.D.; Tanaka, T.; Takahashi, J.; Onuma, I.; Zhou, Y.; Yokoyama, S.; Sakurai, H. Temozolomide Induces Endocytosis of EGFRvIII via p38-Mediated Non-canonical Phosphorylation in Glioblastoma Cells. Biol. Pharm. Bull. 2021, 44, 1681–1687. [Google Scholar]
- Strecker, M.I.; Wlotzka, K.; Strassheimer, F.; Reul, J.; Harter, P.N.; Tonn, T.; Steinbach, J.P.; Wels, W.S.; Buchholz, C.J.; Burger, M.C. OS06.2A Local immunotherapy of glioblastoma via AAV-mediated gene transfer of checkpoint inhibitors in combination with CAR-NK cells. Neuro-Oncology 2021, 23, ii8–ii9. [Google Scholar] [CrossRef]
- Cui, X.; Cui, N.; Pan, J.; Sun, X. Expression of RhoA and COX-2 and their roles in the occurrence and progression of brain glioma. Pak. J. Pharm. Sci. 2021, 34, 397–401. [Google Scholar] [CrossRef]
- Jamal, F.; Ahmed, G.; Farazuddin, M.; Altaf, I.; Farheen, S.; Zia, Q.; Azhar, A.; Ahmad, H.; Khan, A.A.; Somavarapu, S.; et al. Potential of siRNA-Bearing Subtilosomes in the Treatment of Diethylnitrosamine-Induced Hepatocellular Carcinoma. Molecules 2023, 28, 2191. [Google Scholar] [CrossRef]
- Dong, L.; Li, N.; Wei, X.; Wang, Y.; Chang, L.; Wu, H.; Song, L.; Guo, K.; Chang, Y.; Yin, Y.; et al. A Gambogic Acid-Loaded Delivery System Mediated by Ultrasound-Targeted Microbubble Destruction: A Promising Therapy Method for Malignant Cerebral Glioma. Int. J. Nanomed. 2022, 17, 2001–2017. [Google Scholar] [CrossRef]
- Janjua, T.I.; Ahmed-Cox, A.; Meka, A.K.; Mansfeld, F.M.; Forgham, H.; Ignacio, R.M.C.; Cao, Y.; McCarroll, J.A.; Mazzieri, R.; Kavallaris, M.; et al. Facile synthesis of lactoferrin conjugated ultra small large pore silica nanoparticles for the treatment of glioblastoma. Nanoscale 2021, 13, 16909–16922. [Google Scholar] [CrossRef]
- Cen, J.; Dai, X.; Zhao, H.; Li, X.; Hu, X.; Wu, J.; Duan, S. Doxorubicin-Loaded Liposome with the Function of “Killing Two Birds with One Stone” against Glioma. ACS Appl. Mater. Interfaces 2023, 15, 46697–46709. [Google Scholar] [CrossRef]
- Chan, M.H.; Chen, W.; Li, C.H.; Fang, C.Y.; Chang, Y.C.; Wei, D.H.; Liu, R.-S.; Hsiao, M. An Advanced In Situ Magnetic Resonance Imaging and Ultrasonic Theranostics Nanocomposite Platform: Crossing the Blood-Brain Barrier and Improving the Suppression of Glioblastoma Using Iron-Platinum Nanoparticles in Nanobubbles. ACS Appl. Mater. Interfaces 2021, 13, 26759–26769. [Google Scholar]
- Zou, Y.; Xiao, F.; Song, L.; Sun, B.; Sun, D.; Chu, D.; Wang, L.; Han, S.; Yu, Z.; O’Driscoll, C.M.; et al. A folate-targeted PEGylated cyclodextrin-based nanoformulation achieves co-delivery of docetaxel and siRNA for colorectal cancer. Int. J. Pharm. 2021, 606, 120888. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Yang, Y.; Wang, J.; Hong, W.; Li, Y.; Wang, Z.; Li, K. Dual Responsive Magnetic Drug Delivery Nanomicelles with Tumor Targeting for Enhanced Cancer Chemo/Magnetothermal Synergistic Therapy. Int. J. Nanomed. 2023, 18, 7647–7660. [Google Scholar] [CrossRef] [PubMed]
- Kumari, M.; Acharya, A.; Krishnamurthy, P.T. Antibody-conjugated nanoparticles for target-specific drug delivery of chemotherapeutics. Beilstein J. Nanotechnol. 2023, 14, 912–926. [Google Scholar] [CrossRef] [PubMed]
- Barcellos-Hoff, M.H.; Lyden, D.; Wang, T.C. The evolution of the cancer niche during multistage carcinogenesis. Nat. Rev. Cancer 2013, 13, 511–518. [Google Scholar] [CrossRef]
- Ma, C.; Nguyen, H.P.T.; Jones, J.J.; Stylli, S.S.; Whitehead, C.A.; Paradiso, L.; Luwor, R.B.; Areeb, Z.; Hanssen, E.; Cho, E.; et al. Extracellular Vesicles Secreted by Glioma Stem Cells Are Involved in Radiation Resistance and Glioma Progression. Int. J. Mol. Sci. 2022, 23, 2770. [Google Scholar] [CrossRef]
- Tian, T.; Liang, R.; Erel-Akbaba, G.; Saad, L.; Obeid, P.J.; Gao, J.; Chiocca, E.A.; Weissleder, R.; Tannous, B.A. Immune Checkpoint Inhibition in GBM Primed with Radiation by Engineered Extracellular Vesicles. ACS Nano 2022, 16, 1940–1953. [Google Scholar] [CrossRef]
- Théry, C.; Witwer, K.W.; Aikawa, E.; Alcaraz, M.J.; Anderson, J.D.; Andriantsitohaina, R.; Antoniou, A.; Arab, T.; Archer, F.; Atkin-Smith, G.K.; et al. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): A position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J. Extracell. Vesicles 2018, 7, 1535750. [Google Scholar] [CrossRef]
- Lin, W.; Xu, Y.; Chen, X.; Liu, J.; Weng, Y.; Zhuang, Q.; Lin, F.; Huang, Z.; Wu, S.; Ding, J.; et al. Radiation-induced small extracellular vesicles as “carriages” promote tumor antigen release and trigger antitumor immunity. Theranostics 2020, 10, 4871–4884. [Google Scholar] [CrossRef]
- Fukushi, A.; Kim, H.-D.; Chang, Y.-C.; Kim, C.-H. Revisited Metabolic Control and Reprogramming Cancers by Means of the Warburg Effect in Tumor Cells. Int. J. Mol. Sci. 2022, 23, 10037. [Google Scholar] [CrossRef]
- Trejo-Solis, C.; Silva-Adaya, D.; Serrano-García, N.; Magaña-Maldonado, R.; Jimenez-Farfan, D.; Ferreira-Guerrero, E.; Cruz-Salgado, A.; Castillo-Rodriguez, R.A. Role of Glycolytic and Glutamine Metabolism Reprogramming on the Proliferation, Invasion, and Apoptosis Resistance through Modulation of Signaling Pathways in Glioblastoma. Int. J. Mol. Sci. 2023, 24, 17633. [Google Scholar] [CrossRef]
- Wolf, A.; Agnihotri, S.; Micallef, J.; Mukherjee, J.; Sabha, N.; Cairns, R.; Hawkins, C.; Guha, A. Hexokinase 2 is a key mediator of aerobic glycolysis and promotes tumor growth in human glioblastoma multiforme. J. Exp. Med. 2011, 208, 313–326. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Li, Y.; Yan, S.; Wang, H.; Shao, X.; Xiao, M.; Yang, B.; Qin, G.; Kong, R.; Chen, R.; et al. Interactome analysis reveals that lncRNA HULC promotes aerobic glycolysis through LDHA and PKM2. Nat. Commun. 2020, 11, 3162. [Google Scholar] [CrossRef] [PubMed]
- Ocaña, M.C.; Martínez-Poveda, B.; Quesada, A.R.; Medina, M.Á. Metabolism within the tumor microenvironment and its implication on cancer progression: An ongoing therapeutic target. Med. Res. Rev. 2018, 39, 70–113. [Google Scholar] [CrossRef]
- Alannan, M.; Fayyad-Kazan, H.; Trézéguet, V.; Merched, A. Targeting Lipid Metabolism in Liver Cancer. Biochemistry 2020, 59, 3951–3964. [Google Scholar] [CrossRef] [PubMed]
- Kaur, J.; Bhattacharyya, S. Cancer Stem Cells: Metabolic Characterization for Targeted Cancer Therapy. Front. Oncol. 2021, 11, 756888. [Google Scholar] [CrossRef]
- Shen, Y.-A.; Chen, C.-C.; Chen, B.-J.; Wu, Y.-T.; Juan, J.-R.; Chen, L.-Y.; Teng, Y.-C.; Wei, Y.-H. Potential Therapies Targeting Metabolic Pathways in Cancer Stem Cells. Cells 2021, 10, 1772. [Google Scholar] [CrossRef]
- Zhou, W.; Wahl, D.R. Metabolic Abnormalities in Glioblastoma and Metabolic Strategies to Overcome Treatment Resistance. Cancers 2019, 11, 1231. [Google Scholar] [CrossRef]
Type | Drug Name | Suggested Mechanism of Action | References | |
---|---|---|---|---|
RTK/RAS/PI3K Inhibitors | EGFR Inhibitors | Gefitinib | Binding to and inhibiting the tyrosine kinase activity of EGFR, preventing abnormal activation of the pathway. | [33,34] |
Erlotinib | [39,40] | |||
Nimotuzumab | Binding to EGFR and blocking its signal transduction. | [43,44,45] | ||
Cetuximab | [43,44,45] | |||
mTOR Inhibitors | Everolimus | Inhibiting mTOR activity and blocking PI3K/AKT/mTOR signal transduction. | [45,46] | |
Temsirolimus | [47] | |||
PI3K Inhibitors | Buparlisib | Reducing PIP3 production, blocking AKT activation, and decreasing cell proliferation and survival. | [48,49] | |
Sonolisib | Inhibiting the activity of pan-phosphatidylinositol 3-kinase (PI3K) and exerting effects, including promoting autophagy, anti-invasion, and anti-angiogenesis. | [50] | ||
Wnt/β Inhibitors | Porcupine Inhibitors | LGK974 | Inhibiting the activity of Porcupine, preventing the secretion of Wnt ligands, and reducing Wnt signal activation. | [52,53,54] |
Antimalarial Drug | Lumefantrine | Inhibiting the Fli-1/HSPB1/epithelial-mesenchymal transition/ECM remodeling protein network and reversing drug resistance. | [56] | |
Anthelmintic Drug | Niclosamide | Inducing cytotoxicity in human GBM cells and down- regulating the pro-survival signal transduction pathway. | [57,58,59,60,61] | |
Antidepressant | Imipramine | Inducing autophagy and inhibiting PI3K/Akt/mTOR. | [62,63,64] | |
Hippo Inhibitors | For Macular Degeneration | Verteporfin | Inhibiting the interaction between YAP and TEAD transcription factors and reducing YAP activity. | [65,66] |
Lipid—lowering Drug | Simvastatin | Activating MST1 to reduce YAP activity. | [67,68] | |
Tyrosine Kinase Inhibitor | Dasatinib | Inhibiting YAP activity and reducing migration and invasion ability. | [69,70] | |
Flavonoid | Fisetin | Activating MST1/2 in the Hippo pathway to reduce YAP activity. | [71,72] | |
Slit/Robo Inhibitors | Deubiquitinase | USP33 | Regulating the function of the Slit/Robo signaling pathway and inhibiting glioma cell migration. | [76] |
Pathway/Classification | Drug Name | Type of Glioma (Indication) | Adjuvant/Combination Therapy | Clinical Trial ID (Phase) | Sponsors | Expected Enrollment |
---|---|---|---|---|---|---|
RTK/RAS/PI3K | Everolimus | Newly diagnosed high-grade glioma (HGG), including DIPG | Ribociclib | NCT05843253 (Phase II) | Nationwide Children’s Hospital | 100 (estimated) |
Afatinib/Dasatinib/Everolimus | Recurrent glioblastoma | Palbociclib/Olaparib | NCT05432518 (Early Phase 1) | AHS Cancer Control Alberta | 10 | |
Paxalisib | Diffuse midline gliomas (including DIPG) | ONC201, Panobinostat | NCT05009992 (Phase 2) | University of California, San Francisco | 360 | |
AMG386/Bevacizumab | Recurrent glioblastoma (GBM) | — | NCT01290263 (Phase I/II) | Dana-Farber Cancer Institute | 48 | |
Wnt/β-catenin | Genetic Testing-based Treatment | Glioblastoma (including various solid tumors) | None (diagnostic study) | NCT05432518 | Hospices Civils de Lyon | 410 (estimated) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Q.; Jin, J.; Li, P.; Wang, X.; Wang, Q. Navigating Glioma Complexity: The Role of Abnormal Signaling Pathways in Shaping Future Therapies. Biomedicines 2025, 13, 759. https://doi.org/10.3390/biomedicines13030759
Chen Q, Jin J, Li P, Wang X, Wang Q. Navigating Glioma Complexity: The Role of Abnormal Signaling Pathways in Shaping Future Therapies. Biomedicines. 2025; 13(3):759. https://doi.org/10.3390/biomedicines13030759
Chicago/Turabian StyleChen, Qiang, Jin Jin, Pian Li, Xiuping Wang, and Qianyan Wang. 2025. "Navigating Glioma Complexity: The Role of Abnormal Signaling Pathways in Shaping Future Therapies" Biomedicines 13, no. 3: 759. https://doi.org/10.3390/biomedicines13030759
APA StyleChen, Q., Jin, J., Li, P., Wang, X., & Wang, Q. (2025). Navigating Glioma Complexity: The Role of Abnormal Signaling Pathways in Shaping Future Therapies. Biomedicines, 13(3), 759. https://doi.org/10.3390/biomedicines13030759