Hashimoto’s Encephalopathy: Clinical Features, Therapeutic Strategies, and Rehabilitation Approaches
Abstract
:1. Introduction
2. Clinical and Neurological Features
3. Laboratory Abnormalities
4. Abnormalities in Cerebrospinal Fluid Analysis
5. Abnormalities in Radiological Investigations
6. Pharmacological Treatment
7. Rehabilitation for People with HE
8. Future Directions
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Brain, L.; Jellinek, E.H.; Ball, K. Hashimoto’s disease and encephalopathy. Lancet 1966, 2, 512–514. [Google Scholar] [CrossRef] [PubMed]
- Nakata, T.; Natsume, J.; Yamamoto, H.; Ito, Y.; Suzuki, T.; Kawaguchi, M.; Shiraki, A.; Kumai, S.; Sawamura, F.; Suzui, R.; et al. Underlying Disorders in Children with Infection-Related Acute Encephalopathy. Pediatr. Neurol. 2024, 155, 126–132. [Google Scholar] [CrossRef]
- Le Guennec, L.; Marois, C.; Demeret, S.; Wijdicks, E.F.M.; Weiss, N. Toxic-metabolic encephalopathy in adults: Critical discussion and pragmatical diagnostic approach. Rev. Neurol. 2022, 178, 93–104. [Google Scholar] [CrossRef] [PubMed]
- Stevens, R.D.; Pronovost, P.J. The spectrum of encephalopathy in critical illness. Semin. Neurol. 2006, 26, 440–451. [Google Scholar] [CrossRef] [PubMed]
- Venkatesan, A.; Michael, B.D.; Probasco, J.C.; Geocadin, R.G.; Solomon, T. Acute encephalitis in immunocompetent adults. Lancet 2019, 393, 702–716. [Google Scholar] [CrossRef]
- Riva, N.; Franconi, I.; Meschiari, M.; Franceschini, E.; Puzzolante, C.; Cuomo, G.; Bianchi, A.; Cavalleri, F.; Genovese, M.; Mussini, C. Acute human herpes virus 7 (HHV-7) encephalitis in an immunocompetent adult patient: A case report and review of literature. Infection 2017, 45, 385–388. [Google Scholar] [CrossRef]
- Quist-Paulsen, E.; Kran, A.B.; Lindland, E.S.; Ellefsen, K.; Sandvik, L.; Dunlop, O.; Ormaasen, V. To what extent can clinical characteristics be used to distinguish encephalitis from encephalopathy of other causes? Results from a prospective observational study. BMC Infect. Dis. 2019, 19, 80. [Google Scholar] [CrossRef]
- Buch, K.; Bodilsen, J.; Knudsen, A.; Larsen, L.; Helweg-Larsen, J.; Storgaard, M.; Brandt, C.; Wiese, L.; Østergaard, C.; Nielsen, H.; et al. Cerebrospinal fluid lactate as a marker to differentiate between community-acquired acute bacterial meningitis and aseptic meningitis/encephalitis in adults: A Danish prospective observational cohort study. Infect. Dis. 2018, 50, 514–521. [Google Scholar] [CrossRef]
- Sirsi, D.; Lowden, A.; Dolce, A.; Machie, M.; Thomas, J.; Joshi, C. EEG and clinical characteristics of neonatal parechovirus encephalitis. Epilepsy Res. 2023, 192, 107143. [Google Scholar] [CrossRef]
- Sutter, R.; Kaplan, P.W.; Cervenka, M.C.; Thakur, K.T.; Asemota, A.O.; Venkatesan, A.; Geocadin, R.G. Electroencephalography for diagnosis and prognosis of acute encephalitis. Clin. Neurophysiol. 2015, 126, 1524–1531. [Google Scholar] [CrossRef]
- Jha, S.; Mundlamuri, R.C.; Alladi, S.; Mahadevan, A.; Netravathi, M. Electroencephalographic outcomes and predictors of epilepsy in autoimmune encephalitis. Seizure 2024, 121, 162–171. [Google Scholar] [CrossRef]
- Bertrand, A.; Leclercq, D.; Martinez-Almoyna, L.; Girard, N.; Stahl, J.P.; De-Broucker, T. MR imaging of adult acute infectious encephalitis. Med. Mal. Infect. 2017, 47, 195–205. [Google Scholar] [CrossRef] [PubMed]
- Venkatesan, A.; Jagdish, B. Imaging in Encephalitis. Semin. Neurol. 2019, 39, 312–321. [Google Scholar] [CrossRef]
- Flanagan, E.P.; Geschwind, M.D.; Lopez-Chiriboga, A.S.; Blackburn, K.M.; Turaga, S.; Binks, S.; Zitser, J.; Gelfand, J.M.; Day, G.S.; Dunham, S.R.; et al. Autoimmune Encephalitis Misdiagnosis in Adults. JAMA Neurol. 2023, 80, 30–39. [Google Scholar] [CrossRef]
- Toledano, M.; Davies, N.W.S. Infectious encephalitis: Mimics and chameleons. Pract. Neurol. 2019, 19, 225–237. [Google Scholar] [CrossRef] [PubMed]
- Graus, F.; Titulaer, M.J.; Balu, R.; Benseler, S.; Bien, C.G.; Cellucci, T.; Cortese, I.; Dale, R.C.; Gelfand, J.M.; Geschwind, M.; et al. A clinical approach to diagnosis of autoimmune encephalitis. Lancet Neurol. 2016, 15, 391–404. [Google Scholar] [CrossRef]
- Dalmau, J.; Graus, F. Diagnostic criteria for autoimmune encephalitis: Utility and pitfalls for antibody-negative disease. Lancet Neurol. 2023, 22, 529–540. [Google Scholar] [CrossRef] [PubMed]
- Spatola, M.; Dalmau, J. Seizures and risk of epilepsy in autoimmune and other inflammatory encephalitis. Curr. Opin. Neurol. 2017, 30, 345–353. [Google Scholar] [CrossRef]
- Verrusio, W.; Magro, V.M.; Summa, M.L.; Angeloni, U.; Gueli, N.; Cacciafesta, M. Acute disseminated encephalomyelitis in an elderly patient. Neurol. Sci. 2017, 38, 2045–2047. [Google Scholar] [CrossRef]
- Budhram, A.; Butendieck, R.R.; Duarte-Garcia, A.; Brinjikji, W.; Zalewski, N.L. Striatal Encephalitis: Potential Inflammatory Vasculopathy in Systemic Lupus Erythematosus. Can. J. Neurol. Sci. 2021, 48, 415–416. [Google Scholar] [CrossRef]
- Casagrande, S.; Zuliani, L.; Grisold, W. Paraneoplastic encephalitis. Handb. Clin. Neurol. 2024, 200, 131–149. [Google Scholar] [CrossRef] [PubMed]
- Marinas, J.E.; Matveychuk, D.; McCombe, J.A.; Tymchuk, S.; Dursun, S.M.; Baker, G.B. Paraneoplastic and autoimmune encephalitis: Alterations of mood and emotion. Handb. Clin. Neurol. 2021, 183, 221–234. [Google Scholar] [CrossRef]
- Kosek, S.; Burman, J.; Punga, A.R. Antibody-positive autoimmune encephalitis and paraneoplastic neurological syndrome: A Swedish case series. Brain Behav. 2024, 14, e3534. [Google Scholar] [CrossRef] [PubMed]
- Millet, C.; van Pesch, V.; Sindic, C.J. Idiopathic limbic encephalitis associated with antibodies to glutamic acid decarboxylase. Acta Neurol. Belg. 2015, 115, 165–167. [Google Scholar] [CrossRef]
- Vincent, A.; Buckley, C.; Schott, J.M.; Baker, I.; Dewar, B.K.; Detert, N.; Clover, L.; Parkinson, A.; Bien, C.G.; Omer, S.; et al. Potassium channel antibody-associated encephalopathy: A potentially immunotherapy-responsive form of limbic encephalitis. Brain 2004, 127 Pt 3, 701–712. [Google Scholar] [CrossRef]
- Xu, X.; Lin, A.; Wang, X. Seizures in steroid-responsive encephalopathy. Neurol. Sci. 2021, 42, 521–530. [Google Scholar] [CrossRef]
- Jiang, Y.; Tian, X.; Gu, Y.; Li, F.; Wang, X. Application of Plasma Exchange in Steroid-Responsive Encephalopathy. Front. Immunol. 2019, 10, 324. [Google Scholar] [CrossRef] [PubMed]
- Dinoto, A.; Ferrari, S.; Mariotto, S. Treatment Options in Refractory Autoimmune Encephalitis. CNS Drugs 2022, 36, 919–931. [Google Scholar] [CrossRef]
- Kamei, S. An Update on Therapeutic Management in Autoimmune Encephalitis. Brain Nerves 2023, 75, 479–484. [Google Scholar] [CrossRef]
- Hardy, D. Autoimmune Encephalitis in Children. Pediatr. Neurol. 2022, 132, 56–66. [Google Scholar] [CrossRef]
- Litmeier, S.; Prüss, H.; Witsch, E.; Witsch, J. Initial serum thyroid peroxidase antibodies and long-term outcomes in SREAT. Acta Neurol. Scand. 2016, 134, 452–457. [Google Scholar] [CrossRef]
- Castillo, P.R.; Boeve, B.F.; Caselli, J.R. Steroid-responsive encephalopathy associated with thyroid autoimmunity: Clinical and laboratory findings [abstract]. Neurology 2002, 58 (Suppl. S3), A248. [Google Scholar]
- Tamer, S.; Gokce Gunes, H.N.; Gokcal, E.; Yoldas, T.K. Coexistence of autoimmune diseases and autoantibodies in patients with myasthenia gravis. Neurol. India 2016, 64, 45–49. [Google Scholar] [CrossRef] [PubMed]
- Skov, J.; Kuja-Halkola, R.; Magnusson, P.K.E.; Gudbjörnsdottir, S.; Kämpe, O.; Bensing, S. Shared etiology of type 1 diabetes and Hashimoto’s thyroiditis: A population-based twin study. Eur. J. Endocrinol. 2022, 186, 677–685. [Google Scholar] [CrossRef] [PubMed]
- Skov, J.; Eriksson, D.; Kuja-Halkola, R.; Höijer, J.; Gudbjörnsdottir, S.; Svensson, A.M.; Magnusson, P.K.E.; Ludvigsson, J.F.; Kämpe, O.; Bensing, S. Co-aggregation and heritability of organ-specific autoimmunity: A population-based twin study. Eur. J. Endocrinol. 2020, 182, 473–480. [Google Scholar] [CrossRef]
- Benvenga, S.; Antonelli, A.; Fallahi, P.; Bonanno, C.; Rodolico, C.; Guarneri, F. Amino acid sequence homology between thyroid autoantigens and central nervous system proteins: Implications for the steroid-responsive encephalopathy associated with autoimmune thyroiditis. J. Clin. Transl. Endocrinol. 2021, 26, 100274. [Google Scholar] [CrossRef]
- Boelen, R.; de Vries, T. Clinical characteristics of paediatric Hashimoto’s encephalopathy. Eur. J. Paediatr. Neurol. 2021, 32, 122–127. [Google Scholar] [CrossRef]
- Sahu, R.K.; Rana, A. Hashimoto’s encephalopathy presenting with psychotic symptoms. Ind. Psychiatry J. 2023, 32, 193–194. [Google Scholar] [CrossRef]
- Tsai, C.H.; Yu, K.T.; Chan, H.Y.; Chan, C.H. Hashimoto’s encephalopathy presenting as catatonia in a bipolar patient. Asian J Psychiatr. 2021, 66, 102895. [Google Scholar] [CrossRef]
- Ali, H.T.; Mohamed, F.R.; Al-Ghannami, A.K.; Caprara, A.L.F.; Rissardo, J.P. Catatonia as the Presentation of Encephalopathy Associated With Autoimmune Thyroiditis: A Case Report and Literature Review. J. Psychiatr. Pract. 2023, 29, 499–504. [Google Scholar] [CrossRef]
- Singh, A.; Verma, L. Hashimoto’s encephalopathy with psychiatric presentation. Ind. Psychiatry J. 2022, 31, 162–164. [Google Scholar] [CrossRef]
- Arrojo, M.; Perez-Rodriguez, M.M.; Mota, M.; Moreira, R.; Azevedo, A.; Oliveira, A.; Abreu, P.; Marques, P.; Silva, A.; Pereira, J.G.; et al. Psychiatric presentation of Hashimoto’s encephalopathy. Psychosom. Med. 2007, 69, 200–201. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Bernal, G.J.; Reboreda, A.; Romero, F.; Bernal, M.M.; Gómez, F. A case of hashimoto’s encephalopathy manifesting as psychosis. Prim. Care Companion J. Clin. Psychiatry 2007, 9, 318–319. [Google Scholar] [CrossRef] [PubMed]
- Amamou, B.; Ben Saida, I.; Ben Haouala, A.; Mhalla, A.; Zaafrane, F.; Gaha, L. Hashimoto’s Encephalopathy Revealed by Hypochondriacal Delusion: A Case Report Involving a Male Patient. Am. J. Men’s Health 2020, 14, 1557988320955080. [Google Scholar] [CrossRef]
- Lee, J.; Yu, H.J.; Lee, J. Hashimoto encephalopathy in pediatric patients: Homogeneity in clinical presentation and heterogeneity in antibody titers. Brain Dev. 2018, 40, 42–48. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.J.; Lee, J.; Seo, D.W.; Lee, M. Clinical manifestations and treatment response of steroid in pediatric Hashimoto encephalopathy. J. Child. Neurol. 2014, 29, 938–942. [Google Scholar] [CrossRef]
- Gul Mert, G.; Horoz, O.O.; Herguner, M.O.; Incecik, F.; Yildizdas, R.D.; Onenli Mungan, N.; Yuksel, B.; Altunbasak, S. Hashimoto’s encephalopathy: Four cases and review of literature. Int. J. Neurosci. 2014, 124, 302–306. [Google Scholar] [CrossRef]
- Goenka, A.; George, M.C.; Yu, S.G.; Fonseca, L.D.; Ballaban-Gil, K.R. Hashimoto encephalopathy: A case series assessing the markers of recurrence in a pediatric po. pulation. Pediatr. Neonatol. 2023, 64, 468–469. [Google Scholar] [CrossRef]
- Katagiri, N.; Ohta, R.; Yamane, F.; Sano, C. Hashimoto Encephalopathy of a Middle-Aged Man with Progressive Symptoms of Dementia. Cureus 2022, 14, e27518. [Google Scholar] [CrossRef]
- Dumrikarnlert, C.; Thakolwiboon, S.; Senanarong, V. Clinical presentations and treatment outcomes of Hashimoto encephalopathy at Siriraj Hospital—Thailand’s largest national tertiary referral center. BMC Neurol. 2023, 23, 334. [Google Scholar] [CrossRef]
- Aladdin, Y.; Shirah, B. Hashimoto’s Encephalopathy Masquerading as Rapidly Progressive Dementia and Extrapyramidal Failure. J. Neurosci. Rural Pract. 2022, 13, 101–104. [Google Scholar] [CrossRef] [PubMed]
- John, R.; Datta, A.; Ovallath, S. A Case of Euthyroid Steroid-Responsive Encephalopathy with Subacute Dementia. Cureus 2021, 13, e17689. [Google Scholar] [CrossRef]
- McGinley, J.; McCabe, D.J.; Fraser, A.; Casey, E.; Ryan, T.; Murphy, R. Hashimoto’s encephalopathy; an unusual cause of status epilepticus. Ir. Med. J. 2000, 93, 118. [Google Scholar] [PubMed]
- Sliwinska, A.; Fumuso, P.; Stringer, B.; Ansar, M.; Baldwin, J. Hashimoto Encephalopathy with Status Epilepticus. Cureus 2020, 12, e11857. [Google Scholar] [CrossRef]
- Pari, E.; Rinaldi, F.; Premi, E.; Codella, M.; Rao, R.; Paghera, B.; Panarotto, M.B.; De Maria, G.; Padovani, A. A follow-up 18F-FDG brain PET study in a case of Hashimoto’s encephalopathy causing drug-resistant status epilepticus treated with plasmapheresis. J. Neurol. 2014, 261, 663–667. [Google Scholar] [CrossRef]
- Nazeri, M.; Abolhasani Foroughi, A.; Heidari, H.; Sajadianfard, S.; Eghbali, T.; Arasteh, P. Hashimoto Encephalopathy with an Unusual Presentation of Status Epilepticus Seizures: A Case Report. Iran. J. Public Health 2016, 45, 1220–1223. [Google Scholar]
- Varrasi, C.; Vecchio, D.; Magistrelli, L.; Strigaro, G.; Tassi, L.; Cantello, R. Auditory seizures in autoimmune epilepsy: A case with anti-thyroid antibodies. Epileptic Disord. 2017, 19, 99–103. [Google Scholar] [CrossRef]
- Guo, Z.; He, X.; Zhang, G.; Zhang, C.; Tao, A.; Wang, B.; Wang, X.; Li, L.; He, M. Hashimoto’s encephalopathy: A rare cause of refractory status epilepticus. CNS Neurosci. Ther. 2021, 27, 372–375. [Google Scholar] [CrossRef] [PubMed]
- Ercoli, T.; Defazio, G.; Muroni, A. Status epilepticus in Hashimoto’s encephalopathy. Seizure 2019, 70, 1–5. [Google Scholar] [CrossRef]
- Aydin-Ozemir, Z.; Tüzün, E.; Baykan, B.; Akman-Demir, G.; Ozbey, N.; Gürses, C.; Christadoss, P.; Gökyiğit, A. Autoimmune thyroid encephalopathy presenting with epilepsia partialis continua. Clin. EEG Neurosci. 2006, 37, 204–209. [Google Scholar] [CrossRef]
- Alink, J.; de Vries, T.W. Unexplained seizures, confusion or hallucinations: Think Hashimoto encephalopathy. Acta Paediatr. 2008, 97, 451–453. [Google Scholar] [CrossRef]
- Osman, H.; Panicker, A.; Nguyen, P.; Mitry, M. Hashimoto’s Encephalopathy: A Rare Cause of Seizure-like Activity. Cureus 2021, 13, e14626. [Google Scholar] [CrossRef]
- Yoneda, M.; Fujii, A.; Ito, A.; Yokoyama, H.; Nakagawa, H.; Kuriyama, M. High prevalence of serum autoantibodies against the amino terminal of alpha-enolase in Hashimoto’s encephalopathy. J. Neuroimmunol. 2007, 185, 195–200. [Google Scholar] [CrossRef]
- Chaudhuri, A.; Behan, P.O. The clinical spectrum, diagnosis, pathogenesis and treatment of Hashimoto’s encephalopathy (recurrent acute disseminated encephalomyelitis). Curr. Med. Chem. 2003, 10, 1945–1953. [Google Scholar] [CrossRef]
- van Oostrom, J.C.; Schaafsma, A.; Haaxma, R. Variable manifestations of Hashimoto’s encephalopathy. Ned. Tijdschr. Geneeskd. 1999, 143, 1319–1322. [Google Scholar]
- Wei, C.; Shen, Y.; Zhai, W.; Shang, T.; Wang, Z.; Wang, Y.; Li, M.; Zhao, Y.; Sun, L. Hashimoto’s encephalopathy with cerebellar ataxia as the main symptom: A case report and literature review. Front. Neurol. 2022, 13, 970141. [Google Scholar] [CrossRef]
- Gutch, M.; Bhattacharjee, A.; Kumar, S.; Pushkar, D. Hashimoto’s Encephalitis: Rare Manifestation of Hypothyroidism. Int. J. Appl. Basic. Med. Res. 2017, 7, 193–195. [Google Scholar] [CrossRef]
- Churilov, L.P.; Sobolevskaia, P.A.; Stroev, Y.I. Thyroid gland and brain: Enigma of Hashimoto’s encephalopathy. Best Pract. Res. Clin. Endocrinol. Metab. 2019, 33, 101364. [Google Scholar] [CrossRef]
- Leyhe, T.; Müssig, K. Cognitive and affective dysfunctions in autoimmune thyroiditis. Brain Behav. Immun. 2014, 41, 261–266. [Google Scholar] [CrossRef] [PubMed]
- Müssig, K.; Künle, A.; Säuberlich, A.L.; Weinert, C.; Ethofer, T.; Saur, R.; Klein, R.; Häring, H.U.; Klingberg, S.; Gallwitz, B.; et al. Thyroid peroxidase antibody positivity is associated with symptomatic distress in patients with Hashimoto’s thyroiditis. Brain Behav. Immun. 2012, 26, 559–563. [Google Scholar] [CrossRef] [PubMed]
- Tsai, S.L.; Lewis, E.C.; Sell, E.; Whiting, S. Central nervous system vasculitis with positive antithyroid antibodies in an adolescent boy. Pediatr. Neurol. 2011, 45, 189–192. [Google Scholar] [CrossRef] [PubMed]
- Amanat, M.; Thijs, R.D.; Salehi, M.; Sander, J.W. Seizures as a clinical manifestation in somatic autoimmune disorders. Seizure 2019, 64, 59–64. [Google Scholar] [CrossRef]
- Kitamura, E.; Kondo, Y.; Kanazawa, N.; Akutsu, T.; Nishiyama, K.; Iizuka, T. Autoimmune Encephalitis as an Extra-articular Manifestation of Rheumatoid Arthritis. Intern. Med. 2019, 58, 1007–1009. [Google Scholar] [CrossRef] [PubMed]
- Fiore, A.A.; Pfeiffer, W.B.; Rizvi, S.A.A.; Cortes, A.; Ziembinski, C.; Pham, R.; Graves, S.; Patel, U. Hashimoto Encephalopathy as a Complication of Autoimmune Thyroiditis. Med. Princ. Pract. 2019, 28, 91–95. [Google Scholar] [CrossRef]
- Kishitani, T.; Matsunaga, A.; Yoneda, M. The biomarker and treatment in Hashimoto’s encephalopathy. Nihon Rinsho 2013, 71, 893–897. [Google Scholar] [PubMed]
- Matsunaga, A.; Yoneda, M. Anti-NAE autoantibodies and clinical spectrum in Hashimoto’s encephalopathy. Rinsho Byori 2009, 57, 271–278. [Google Scholar]
- Yoneda, M. Hashimoto’s encephalopathy and autoantibodies. Brain Nerves 2013, 65, 365–376. [Google Scholar]
- Wakai, M.; Nishikage, H.; Goshima, K. Reversible white matter lesions and antithyroid antibodies in the cerebrospinal fluid in Hashimoto’s encephalopathy: A case report. Rinsho Shinkeigaku 2004, 44, 432–437. [Google Scholar]
- Serrier, J.; Branger, P.; Gondolf, C.; Khoy, K.; Derache, N.; Le Mauff, B.; Comby, E.; Mariotte, D. The detection of antithyroid antibodies in cerebrospinal fluid using fluorescent enzyme immuno assay (FEIA) is suitable for biological diagnosis of Hashimoto’s encephalopathy. Ann. Biol. Clin. 2021, 79, 159–167. [Google Scholar] [CrossRef]
- Mocellin, R.; Walterfang, M.; Velakoulis, D. Hashimoto’s encephalopathy: Epidemiology, pathogenesis and management. CNS Drugs 2007, 21, 799–811. [Google Scholar] [CrossRef]
- Mattozzi, S.; Sabater, L.; Escudero, D.; Ariño, H.; Armangue, T.; Simabukuro, M.; Iizuka, T.; Hara, M.; Saiz, A.; Sotgiu, S.; et al. Hashimoto encephalopathy in the 21st century. Neurology 2020, 94, e217–e224. [Google Scholar] [CrossRef] [PubMed]
- Ueno, H.; Nishizato, C.; Shimazu, T.; Watanabe, H.; Mizukami, T.; Kosuge, H.; Ozasa, S.; Nomura, K.; Kimura, S.; Takahashi, Y. Hashimoto’s encephalopathy presenting with vertigo and muscle weakness in a male pediatric patient. No To Hattatsu 2016, 48, 45–47. [Google Scholar] [PubMed]
- Zhu, M.; Yu, X.; Liu, C.; Duan, C.; Li, C.; Zhu, J.; Zhang, Y. Hashimoto’s encephalitis associated with AMPAR2 antibodies: A case report. BMC Neurol. 2017, 17, 37. [Google Scholar] [CrossRef]
- Gliebus, G.; Lippa, C.F. Cerebrospinal immunoglobulin level changes and clinical response to treatment of Hashimoto’s encephalopathy. Am. J. Alzheimer’s Dis. Other Dement. 2009, 24, 373–376. [Google Scholar] [CrossRef]
- Gregory, T.A.; Jones, G.N.; Loh, Y. Hemiencephalitis: A hyperaemic presentation of Hashimoto’s encephalopathy. BMJ Case Rep. 2019, 12, e230011. [Google Scholar] [CrossRef]
- Nagano, M.; Kobayashi, K.; Yamada-Otani, M.; Kuzuya, A.; Matsumoto, R.; Oita, J.; Yoneda, M.; Ikeda, A.; Takahashi, R. Hashimoto’s Encephalopathy Presenting with Smoldering Limbic Encephalitis. Intern. Med. 2019, 58, 1167–1172. [Google Scholar] [CrossRef]
- Uwatoko, H.; Yabe, I.; Sato, S.; Abe, M.; Shirai, S.; Takahashi, I.; Matsushima, M.; Kano, T.; Yamaguchi, S.; Hatanaka, K.C.; et al. Hashimoto’s encephalopathy mimicking a brain tumor and its pathological findings: A case report. J. Neurol. Sci. 2018, 394, 141–143. [Google Scholar] [CrossRef] [PubMed]
- Ramalho, J.; Castillo, M. Hashimoto’s encephalopathy. Radiol. Case Rep. 2015, 6, 445. [Google Scholar] [CrossRef]
- Ide, T.; Inoue, Y.; Suzuyama, K.; Koike, H. Delayed Improvement of Magnetic Resonance Imaging Findings in Hashimoto’s Encephalopathy. Intern. Med. 2024, 15, 4704-24. [Google Scholar] [CrossRef]
- Ogbebor, O.; Patel, K. Hashimoto’s encephalopathy: A rare cause of delirium. BMJ Case Rep. 2019, 12, e230118. [Google Scholar] [CrossRef]
- Yang, S.; Wang, X.Y.; Liao, W.H.; Xiao, H.Q.; Zhou, G.F.; Hu, P.; Peng, X.J. Magnetic Resonance Imaging Features and Their Pathological Mechanisms of Hashimoto’s Encephalopathy. Zhongguo Yi Xue Ke Xue Yuan Xue Bao 2018, 40, 501–509. (In Chinese) [Google Scholar] [CrossRef] [PubMed]
- Sanvito, F.; Pichiecchio, A.; Paoletti, M.; Rebella, G.; Resaz, M.; Benedetti, L.; Massa, F.; Morbelli, S.; Caverzasi, E.; Asteggiano, C.; et al. Autoimmune encephalitis: What the radiologist needs to know. Neuroradiology 2024, 66, 653–675. [Google Scholar] [CrossRef] [PubMed]
- Tokuda, N.; Imai, K.; Kasai, T.; Kimura, A.; Abe, Y.; Tominaga, T.; Fukui, K.; Yoneda, M.; Nakagawa, M.; Mizuno, T. A case of Hashimoto’s encephalopathy successfully treated with oral steroid therapy, resistant to high-dose methylprednisolone, plasma exchange and intravenous immunoglobulin. Rinsho Shinkeigaku 2015, 55, 737–742. (In Japanese) [Google Scholar] [CrossRef] [PubMed]
- Laycock, K.; Chaudhuri, A.; Fuller, C.; Khatami, Z.; Nkonge, F.; Stojanovic, N. A novel assessment and treatment approach to patients with Hashimoto’s encephalopathy. Endocrinol. Diabetes Metab. Case Rep. 2018, 2018, 17–0117. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Pempera, N.; Miedziaszczyk, M.; Lacka, K. Difficulties in the Diagnostics and Treatment of Hashimoto’s Encephalopathy—A Systematic and Critical Review. Int. J. Mol. Sci. 2024, 25, 7101. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Chaudhuri, J.; Mukherjee, A.; Chakravarty, A. Hashimoto’s Encephalopathy: Case Series and Literature Review. Curr. Neurol. Neurosci. Rep. 2023, 23, 167–175. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Şorodoc, V.; Constantin, M.; Asaftei, A.; Lionte, C.; Ceasovschih, A.; Sîrbu, O.; Haliga, R.E.; Şorodoc, L. The use of intravenous immunoglobulin in the treatment of Hashimoto’s encephalopathy: Case based review. Front. Neurol. 2023, 14, 1243787. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Knecht, S.; Roßmüller, J.; Unrath, M.; Stephan, K.M.; Berger, K.; Studer, B. Old benefit as much as young patients with stroke from high-intensity neurorehabilitation: Cohort analysis. J. Neurol. Neurosurg. Psychiatry 2016, 87, 526–530. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Tramontano, M.; Argento, O.; Manocchio, N.; Piacentini, C.; Orejel Bustos, A.S.; De Angelis, S.; Bossa, M.; Nocentini, U. Dynamic Cognitive-Motor Training versus Cognitive Computer-Based Training in People with Multiple Sclerosis: A Preliminary Randomized Controlled Trial with 2-Month Follow-Up. J. Clin. Med. 2024, 13, 2664. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bossa, M.; Manocchio, N.; Argento, O. Non-Pharmacological Treatments of Cognitive Impairment in Multiple Sclerosis: A Review. NeuroSci 2022, 3, 476–493. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bossa, M.; Argento, O.; Piacentini, C.; Manocchio, N.; Scipioni, L.; Oddi, S.; Maccarrone, M.; Nocentini, U. Effects of Long-Term Oral Administration of N-Palmitoylethanolamine in Subjects with Mild Cognitive Impairment: Study Protocol. Brain Sci. 2023, 13, 1138. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Göbel, A.; Göttlich, M.; Reinwald, J.; Rogge, B.; Uter, J.C.; Heldmann, M.; Sartorius, A.; Brabant, G.; Münte, T.F. The Influence of Thyroid Hormones on Brain Structure and Function in Humans. Exp. Clin. Endocrinol. Diabetes 2020, 128, 432–436. [Google Scholar] [CrossRef] [PubMed]
- Honaga, K. Neurorehabilitation for stroke patients with hemiparesis—Functional recovery and motor learning-. Juntendo Med. J. 2021, 67, 24–31. [Google Scholar] [CrossRef]
- Novakovic-Agopians, T.; Abrams, G.M. Cognitive Rehabilitation Therapy. In Encyclopedia of the Neurological Sciences, 2nd ed.; Aminoff, M.J., Daroff, R.B., Eds.; Academic Press: Cambridge, MA, USA, 2014; pp. 824–826. ISBN 9780123851581. [Google Scholar] [CrossRef]
- Alzahrani, H.; Venneri, A. Cognitive Rehabilitation in Parkinson’s Disease: A Systematic Review. J. Park. Dis. 2018, 8, 233–245. [Google Scholar] [CrossRef] [PubMed]
- Etesami, M.S.; Saboury, N.; Mohraz, M.; SeyedAlinaghi, S.; Jones, D.L.; Vance, D.E.; Habibi Asgarabad, M. Immediate and Long-Term Effects of a Computerized Cognitive Rehabilitation Therapy on Cognitive Function in People Living with HIV in Iran: A Single-Blind Two-Arm Parallel Randomized Controlled Trial. J. Assoc. Nurses AIDS Care 2022, 33, 505–522. [Google Scholar] [CrossRef] [PubMed]
- Saadati, S.A. Neurorehabilitation success: How personality influences recovery. J. Personal. Psychosom. Res. 2023, 1, 1–4. [Google Scholar] [CrossRef]
- Almarwani, M.; Aldawsary, N. Is it only nice in theory? Implementation of motor learning principles in neurorehabilitation among Saudi physical therapists. NeuroRehabilitation 2023, 53, 385–395. [Google Scholar] [CrossRef] [PubMed]
- Migliorini, F.; Maffulli, N.; Schäfer, L.; Manocchio, N.; Bossa, M.; Foti, C.; Betsch, M.; Kubach, J. Impact of education in patients undergoing physiotherapy for lower back pain: A level I systematic review and meta-analysis. Eur. J. Trauma Emerg. Surg. 2025, 51, 113. [Google Scholar] [CrossRef]
- Krist, A.H.; Tong, S.T.; Aycock, R.A.; Longo, D.R. Engaging Patients in Decision-Making and Behavior Change to Promote Prevention. Stud. Health Technol. Inform. 2017, 240, 284–302. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Goldman, J.G.; Volpe, D.; Ellis, T.D.; Hirsch, M.A.; Johnson, J.; Wood, J.; Aragon, A.; Biundo, R.; Di Rocco, A.; Kasman, G.S.; et al. Delivering Multidisciplinary Rehabilitation Care in Parkinson’s Disease: An International Consensus Statement. J Park. Dis. 2024, 14, 135–166. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
Condition | Key Features/Distinguishing Factors |
---|---|
Infectious Etiologies | Encephalitis (e.g., viral) must be ruled out. May present with fever and other signs/symptoms of infection. Sepsis-associated encephalopathy should also be considered. |
Stroke/TIA | Interruption of blood flow to the brain leading to neurological deficits. TIA causes similar symptoms that resolve quickly. |
Autoimmune/Inflammatory Processes | SREAT itself is an autoimmune-mediated inflammatory disease. Vasculitis may be present. Rapid progression of neuropsychiatric symptoms. |
Psychiatric Disorders | Can mimic encephalopathy with altered mental status and behavioral changes. SREAT can present with acute psychiatric symptoms. |
Metabolic Encephalopathy | Encephalopathy due to metabolic derangements. Hepatic, uremic, or respiratory encephalopathy should be considered. |
Drug Toxicity/Withdrawal | Overdosing of certain medications. Withdrawal of sedatives or opioids, alcohol withdrawal delirium. |
Creutzfeldt–Jakob Disease (CJD) | SREAT can mimic sporadic CJD. |
Clinical Domain | Symptomatology |
---|---|
Cognitive/Behavioral | Behavioral abnormalities, cognitive abnormalities, dementia |
Motor | Tremor (shaking), ataxic gait, lateralized motor deficits, myoclonus |
Speech | Transient aphasia |
Seizures | Generalized seizures, partial seizures, status epilepticus |
Sleep | Hypersomnia, insomnia |
Sensory | Headache, lateralized sensory deficits |
Psychiatric | Psychosis, paranoia, hallucinations, delusions, mood disturbance |
Antibody/Marker | Description |
---|---|
Anti-Thyroperoxidase (TPO) Antibodies | Elevated levels of antibodies against thyroid peroxidase, a key enzyme in thyroid hormone production. |
Anti-Thyroid Microsome Antibodies | Elevated levels of antibodies against thyroid microsomes, which are cellular components involved in thyroid hormone synthesis. |
Anti-Thyroglobulin Antibodies (Ab anti-Tg) | Elevated levels of antibodies against thyroglobulin, a protein used by the thyroid gland to produce thyroid hormones. The presence of anti-thyroglobulin antibodies should not be taken as the definitive diagnostic criteria since these antibodies could be associated with other autoimmune encephalopathies, which include anti-LGI1, anti-NMDA, and anti-Caspr2. |
Anti-Nuclear Antibodies (ANA) | Presence of antibodies that target the cell nucleus, indicating a possible autoimmune process. |
Anti-Extractable Nuclear Antigen (ENA) Antibodies | Presence of antibodies against extractable nuclear antigens, which are specific proteins within the cell nucleus. |
Rheumatoid Factor | Elevated levels of rheumatoid factor, an antibody associated with rheumatoid arthritis and other autoimmune conditions. |
Anti-Gliadin Antibodies | Presence of antibodies against gliadin, a component of gluten, which may indicate gluten sensitivity or celiac disease. |
Erythrocyte Sedimentation Rate (ESR) | Elevated ESR, a non-specific marker of inflammation in the body. |
C-Reactive Protein (CRP) | Elevated CRP, another non-specific marker of inflammation in the body. |
Serum Aminotransferase Levels (AST/ALT) | Elevated levels of AST and ALT, liver enzymes that may indicate liver inflammation or damage. |
Thyroid Functional Status | Heterogeneous thyroid function, including euthyroid (normal thyroid function), subclinical hypothyroid (mildly underactive thyroid), and subclinical hyperthyroid (mildly overactive thyroid). |
Anti-Amino (NH2)-Terminal of α-Enolase Antibodies | Presence of antibodies against the amino-terminal of alpha-enolase, a glycolytic enzyme found in various tissues, including the brain. |
CSF Parameter | Abnormality |
---|---|
Protein Level | Elevated |
Leukocyte Count | Elevated (>4 leukocytes/μL) |
IgG Synthesis Rate | Elevated |
IgG Index | Elevated |
Oligoclonal Bands | Increased (>2) |
Feature | Description |
---|---|
MRI Findings | Normal or nonspecific. |
White Matter Abnormalities | Diffuse white matter signal abnormalities (hyperintensities on T2/FLAIR). Can be focal or confluent, punctate or small patchy. Leukoencephalopathy with confluent T2/FLAIR changes can be present. |
Meningeal Enhancement | May be present. |
Temporal Lobe Involvement | T2/FLAIR hyperintensities in the mesial temporal lobe (MTL) regions. |
Basal Ganglia/Thalamic Involvement | Can be involved. One case mimicked a tumor-like lesion in the caudate nucleus. Symmetric and bilateral high signals on T2-weighted and FLAIR images involving the caudate nuclei and putamina. |
Brainstem Involvement | Can be involved. |
DWI Abnormalities | Hyperintensity on DWI with corresponding hypo-intensity on ADC in acute cases; hyperintensity on DWI with increased ADC in subacute/slow onset cases. |
Intracranial Artery Stenosis | Localized intracranial artery stenosis. |
Functional Imaging (MRS) | Decreased N-acetylaspartate (NAA) peak, increased choline peak, visible lactate or lipid peak. |
Conus Medullaris Involvement | Can be present. |
Migratory Pattern | Appearance of signal anomalies in new sites while others disappear. |
Response to Steroid Therapy | Some abnormalities may resolve after steroid therapy. However, some abnormalities may not change after treatment. |
Treatment | Description | Dosage/Administration | Considerations |
---|---|---|---|
Corticosteroids | Cornerstone of treatment; suppresses the inflammatory cascade and reduces antibody-mediated neurotoxicity. A profound improvement in mental status following steroid administration is a hallmark of HE. | Initial treatment: IV methylprednisolone (e.g., 500–1000 mg/day for 3–5 days), followed by oral prednisolone (1–2 mg/kg/day), with gradual tapering. | Clinical response can vary; monitor carefully and adjust treatment individually. Long-term high doses associated with significant side effects. Doses may need to be reduced to reduce the incidence of iatrogenic Cushing’s syndrome and the risk of osteoporosis. |
Immunosuppressive Agents | Alternative agents for patients with inadequate response to corticosteroids or unacceptable side effects. Examples include azathioprine, methotrexate, or cyclophosphamide. | Dosage varies depending on the agent. | Requires careful consideration of potential toxicities and regular monitoring of hematological and hepatic function. Used as steroid-sparing agents. |
Intravenous Immunoglobulin (IVIG) | Immunomodulatory therapy effective in some patients, especially those refractory to corticosteroids or other immunosuppressants. The mechanism may involve the blockade of receptors, modulation of complement activation, and neutralization of pathogenic antibodies. | Dosage: IVIg 2 gm/kg was given twice at 1-month intervals. Number of plasma exchange courses may vary from 3 to 10. | Monitor for side effects. |
Rituximab | Anti-B-cell therapy (monoclonal antibody directed against CD20). | Dosage: 1000 mg intravenously on days 1 and 14, and then once every 6 to 9 months depending on the white blood cell count; 375 mg/m², twice at 1-week intervals. | Can be of value in steroid-refractory cases.Well-tolerated and induces a sustained remission without the need for additional corticosteroids. Monitor carefully for side effects due to low levels of immunoglobulins. |
Plasmapheresis | A method for removing unwanted substances (toxins, metabolic substances, autoantibodies) from the blood. | During plasmapheresis, blood is removed from the affected individual and blood cells are separated from plasma. The plasma is then replaced with other human plasma, and the blood is transfused back into the affected individual. Number of plasma exchange courses may vary from 3 to 10. | Thought to induce clinical improvement by removing other antibodies, autoimmune complexes, cytokines, and/or other inflammatory mediators currently unknown. |
Levetiracetam | Suggested due to its anti-inflammatory properties in treating associated epileptic syndrome. | Not specified in the provided search results. | Indicated in patients with seizure-like epileptic syndromes. |
Thyroid Hormone Management | Monitoring and normalization of thyroid hormone levels. | As needed to maintain euthyroid status. | Thyroid dysfunction can exacerbate neurological symptoms. Consider levothyroxine or antithyroid drugs. |
Criterion | Description |
---|---|
1. Encephalopathy | Presence of encephalopathy with one or more of the following: seizures, myoclonus, hallucinations, or stroke-like episodes. |
2. Thyroid Disease | Evidence of thyroid disease, typically subclinical or mild overt hypothyroidism. |
3. Brain MRI Findings | Brain MRI is either normal or shows non-specific abnormalities. |
4. Thyroid Antibodies | Presence of serum thyroid antibodies, specifically anti-thyroid peroxidase (TPO) and/or anti-thyroglobulin antibodies. |
5. Exclusion of Other Neuronal Antibodies | Absence of other neuronal antibodies in both serum and cerebrospinal fluid (CSF). |
6. Exclusion of Alternative Causes of Encephalopathy | Reasonable exclusion of alternative causes of encephalopathy. This requires a thorough evaluation to rule out other potential etiologies before attributing the symptoms to Hashimoto’s encephalopathy. It is therefore important to rule out infectious and non-infectious etiologies. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Manocchio, N.; Magro, V.M.; Massaro, L.; Sorbino, A.; Ljoka, C.; Foti, C. Hashimoto’s Encephalopathy: Clinical Features, Therapeutic Strategies, and Rehabilitation Approaches. Biomedicines 2025, 13, 726. https://doi.org/10.3390/biomedicines13030726
Manocchio N, Magro VM, Massaro L, Sorbino A, Ljoka C, Foti C. Hashimoto’s Encephalopathy: Clinical Features, Therapeutic Strategies, and Rehabilitation Approaches. Biomedicines. 2025; 13(3):726. https://doi.org/10.3390/biomedicines13030726
Chicago/Turabian StyleManocchio, Nicola, Valerio Massimo Magro, Livio Massaro, Andrea Sorbino, Concetta Ljoka, and Calogero Foti. 2025. "Hashimoto’s Encephalopathy: Clinical Features, Therapeutic Strategies, and Rehabilitation Approaches" Biomedicines 13, no. 3: 726. https://doi.org/10.3390/biomedicines13030726
APA StyleManocchio, N., Magro, V. M., Massaro, L., Sorbino, A., Ljoka, C., & Foti, C. (2025). Hashimoto’s Encephalopathy: Clinical Features, Therapeutic Strategies, and Rehabilitation Approaches. Biomedicines, 13(3), 726. https://doi.org/10.3390/biomedicines13030726